• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integrated Simulation Method for Interaction between Manufacturing Process and Machine Tool

    2016-12-09 06:10:24CHENWanqunHUODehongXIEWenkunTENGXiangyuandZHANGJiayi

    CHEN Wanqun, HUO Dehong, XIE Wenkun, TENG Xiangyuand ZHANG Jiayi

    ?

    Integrated Simulation Method for Interaction between Manufacturing Process and Machine Tool

    CHEN Wanqun1, 2, HUO Dehong1,*, XIE Wenkun2, TENG Xiangyu1, and ZHANG Jiayi1

    1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK;2 Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China

    The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.

    dynamic analysis, state space, surface generation, machining interaction, precision machining

    1 Introduction

    In order to meet stringent tolerance and surface finish, a great deal of attention has been paid to the machining process and the machine tool (MPMT) itself[1–3]. Most of the improvement was made on the MPMT performance separately, while the interaction between them has been always overlooked. It has been recognized that the interaction of machining process and the machine tool (IMPMT) plays an essential role in the machining performances, particularly for the precision machining, where IMPMT directly affects the material removal rate, and machined surface quality and dimensional as well as form accuracy[4–7]. It is necessary to research into the IMPMT to improve the machining accuracy, and optimize the machining process and the next generation machine tool design. Therefore, it is essential to carry out the investigation on IMPMT.

    There are two main methods for the machine tool dynamic performance analysis, one is the numerical method based on lumped mass models. It is suitable for the single and simple component analysis and has been applied to the design of spindles[8–10]and slides[11]. Eric, et al[12], simplified the machine tool in to a single degree of freedom system to study the waviness generation. Chen, et al[13], studied the multimode frequency vibration in fly cutting by the lumped mass models, and pointed that the machine tool vibrates at its multimode frequencies with large amplitudes have an important influence on surface generation. Although this method is less time consuming, the simulation accuracy is limited due to the finite dimension approximation. Another method is the finite element (FE) method, which is widely employed as an effective approach to studying statics, dynamics, and thermal aspects of single components or whole complex machine tools[14–17]due to its high computational accuracy, convenience of result interpretation and capture of time/spatial details. Piendl, et al[18], simulated the chip formation by using the FE method, in their model the structural-mechanical behavior of a machine and a workpiece was considered. But this approach is complex, time-cost made it only suitable for the small size simulation. However, a FE model of the machine tool usually has more than 10 000 degrees of freedom (DOFs), which causes the transient response calculation of the machine tool under the cutting force very time consuming, and hence affects the computational efficiency and the design cycle of the machine tool development. For studying the IMPMT more flexible, a simple but accuracy simulation method is urgently needed, which can realize the IMPMT quickly and accurately. In this study, a novel method for machine tool dynamic response analysis under the cutting force is proposed by integrating the state space model with the FE method. The proposed integrated method has the advantages both the lumped mass model and FE method. In this method, a dynamic model of the machine tool in state space is established based on the results of complex FE models representing the machine tool system, which reduces the amount of computational significantly, but still provides correct responses for the forcing function input and desired output points. The dynamic response of the machine tool is used to simulate the contour profile of the machined surface, and in order to realize the precise simulation in the whole size of the workpiece, the control system is also considered to generate the cutting trajectory in the whole machining process, the cutting force generated in the manufacturing process introduce the IMPMT. Thus, the influence of IMPMT on the machined results is achieved rapidly and precisely.

    2 Integrated Method for Machine Tool Dynamic Performance Analysis

    The traditional and the proposed integrated method for machine tool dynamic performance are outlined in Fig. 1. The modelling procedure of this method can be described as follows. Firstly, the CAD model of a machine tool is converted into a FE model which contains all the details required to describe the dynamic performance of the machine tool system, such as geometries of machine structures, moving components and bearings. Solutions are then obtained under the specified boundary and loading conditions. Secondly, different to the traditional method where time-consuming dynamic analysis on the full FE model must be performed, the modal analysis results of the FE model are used to establish a mathematical model, which can be solved by means of a computer program rapidly. Lastly, the machining trajectory generated by the control system is integrated with the mathematical model, and the machining process simulation and the machined surface generation are carried out in the state space model instead of running the time-consuming FE models. The machine tool dynamics and the IMPMT are still built into the model, however, the computational time is reduced significantly.

    Fig.1. Framework of the integrated method

    2.1 Establishment of the state space model

    The establishment of the state space model is the critical step in this method. It starts out with the modal analysis of the FE model to obtain eigenvalues and eigenvectors (resonant frequencies and mode shapes). The Block Lanczos method is used as eigenvalue extraction technique which can calculate all the eigenvalues and eigenvectors in a specific frequency range. The size of mass matrix, stiffness matrixand damping matrixis′, respectively, wheredenotes the DOFs of the model. There are as many eigenvalues and eigenvectors as DOFs for the model, although they provide considerable insight into the system dynamics, the extraction of all these eigenvalues and eigenvectors would account for extremely high computational resource in the simulation, and it is typically too large to be used in a mathematical model. To reduce computational resource and to obtain the solutions in an efficient manner, only the DOFs of the nodes where forces applied and outputs of interests are extracted. Then these eigenvalue results obtained from the modal analysis are used to build the state space. After then, the state space model is used to frequency and time domain analyses. This step realizes the transformation of the finite element model to the state space model, which can reduce the time cost in the following frequency and time domain analyses.

    2.2 Theoretical basis

    In the second step, the objective is to provide an efficient, ‘small’ model representing the mechanical and servo system of the machining system. It needs to reduce the size of the model and keep the accuracy of calculation, as well as maintaining the desired input-output relationship. In order to reduce the number of degrees of freedom of the model, only those degrees of freedom where forces are applied and responses are desired are reserved in the new model.

    The theoretical basis of establishing a ‘small’ state space model using limited eigenvalues and eigenvector information is explained as follows (eigenvector entries for all modes only for input and output degrees of freedom). For a given structure, a FE model can be established with mass matrix, damping matrixand stiffness matrix, the size of each matrix is′. Therefore, the fundamental equation describing the dynamic behaviour of a structure discredited by FE can be written as:

    wheredenotes a-dimensional vector designating the force applying on each degree of freedom,denotes the displacement vector, caused by the force. In order to uncoupled Eq. (1) the damping matrix can be replaced by using the Lord Rayleigh’s hypothesis:

    (2)

    whereis the constant mass matrix multiplier for alpha damping, andis the constant stiffness matrix multiplier for beta damping. Thus Eq. (1) can be rewritten as:

    After the coordinate decoupling transformation, Eq. (3) is changed as:

    (4)

    which can also be written as:

    The state space method can be convenient to tackle the problem of frequency domain response and time domain response so the dynamic equation described by state space is

    Defining states:

    (7)

    Differentiating Eq. (7) gives

    Eq. (8) can be written in the matrix form:

    (9)

    and its short form is

    where system matrixis constituted by the natural frequency and the damping ratio, theωandxare obtained from modal analysis.

    The input matrixis formed by:

    For the space state Eq. (9), applying1on the DOFs of the nodes where forces applied, the other DOFs are set to be zero, so when calculatingFonly the first column needed, as shown in Eq. (11).

    Thesolved in Eq. (9) are in principal coordinates, it should be transferred to physical coordinates,Rewriting it in the matrix form:

    which is

    (13)

    In the response analysis, the DOFs where forces applied and outputs of interests are assumed as the firstDOFs. For modal analysis, the modal vector of theseDOFs is then used to form the modal matrix.

    For the state space Eq. (12), only the displacement response of the firstDOF is needed.

    FirstDOF:

    Therefore, the size of the matrix is reduced significantly.

    3 Case Study – IMPMT of Fly-cutting Machining

    3.1 Modeling process of the integrated method

    The integrated method for IMPMT has been used to simulate the potassium dihydrogen phosphate (KDP) crystals fly-cutting machining process[19]. The dynamic performance has been found to have significant influence on the machining results for this types of machine tools i.e. periodicities ripples have been found on the machined KDP crystal surfaces. The periodicities ripples would lead different mechanisms and differing degrees of crystal laser damage threshold[20–22], which directly affect the component's function. To study the generation reason of the ripples, the attention should be paid on the IMPMT. The integrated method proposed in this study is used to obtain the dynamic response of this machine tool during the machining process and establish the relationship between the machine process and the machine tool. The modeling process of the method is illustrated in Fig. 2. The model is generated in commercial FE software, the elements use in the FE model of the machine tool are as follows: the solid element 186 is used to mesh the solid parts of the machine tool; the spring element combin14 is used to represent the aerostatic bearing in the spindle and hydrostatic bearing in the slide, and the axial stiffness of the linear motors; the joint performance between the adjacent components are simulated by contact elements conta173 and targe170 elements; pre-load element Prets179 is used to model the bolt joint in the machine tool. There are 17 000 elements and approximately 100 000 degrees of freedom in this model. Then, a state space model is created to generate low order models of complicated systems by defining the degrees of freedom required for the desired frequency response. In this study, the cutting force only apply at the node locating at the tool tip in the,anddirections, and the output is the corresponding displacement of the tool tip cause by the cutting force. Therefore, only the DOFs of one node of the tool tip is required for the state space model. It makes the degree numbers required for the state space model reduced from 100 000 to 3, which is approximately 33 000 times smaller than the original FE model.

    Fig. 2. State space built from the FE model

    Fig.3. Tool tip response comparison between the FE method and the integration method

    Fig. 4(a) illustrates the structure diagram of the fly-cutting machine tool, the diamond cutter rotates with an air spindle to remove the material of the workpiece feeding by, and a hydrostatic slide.

    For calculating the cutting force response by using with the MATLAB function “”, a time vector, “” and input vector “” are defined. The “” and “” are generated by the control system. The product of material-dependent cutting coefficient and instantaneous area of the uncut chip are used to model the cutting force. In precision fly-cutting, the tool radiusis significantly larger than the feederate, and depth of cut, so the instantaneous area of the uncut chip can be approximately as. The cutting,, is obtained by:

    The cutting path generated by the control system is shown in Fig. 4(b), it can be found three regions named,, andon the workpiece. Fig. 4(c) shows a cutting force over two revolutions in region. The duration time of the cutting force in each part is expressed by Eq. (16):

    whereis the cutting time on the workpiece of each rotate (s),is the length of the workpiece (mm),is the spindle rotate speed (rev/s),is the radius of the cutting head (mm).Then, the whole process of the integrated method used for the ultra precision fly-cutting machine tool is shown in Fig. 5. The tool tip responses under the cutting force obtained from the state space method are coupled with the cutting path to generate the machined surface. Fig. 6(a) shows the machined surface profile obtained by this simulation model. It can be seen that this surface simulation model can realize the waviness and the profile simulation.

    Fig.4. Forming shape movements generated by the control system

    Fig.5. Integrated method used for a fly-cutting machine tool

    3.2 Experimental verification

    The fly-cutting machining tests are carried out using the following machining parameters: a spindle rotational speed of 300 r/min, a feed rate of 60 μm/s and a depth of cut of 15 μm. The material of the workpiece is KDP crystal and the size of the workpiece is 415 mm×415 mm as shown in Fig. 6(a). The Wyko RST-plus (Veeco Metrology Group, Santa Barbara, CA, USA) is used to test the machined surface, and the tested result is shown in Fig. 6(b). Fig. 6(c) and Fig. 6(d) show the simulated and tested surface profile of the workpiece, respectively. It can be found that there are seven waviness on the simulation and tested surface, the wavelength is 57 mm, the amplitude of the waviness are 50 nm and 60 nm, respectively. The simulation waviness and profile on the machined surface agree well with the experimental result, which indicates that the proposed simulation method is viable on simulation large size workpiece machining. Further, the testing results also validated that the integrated method proposed in this study could assure the surface generation simulation in precision machining.

    Fig.6.Surface profile

    4 Conclusions

    This paper presents an integrated method which can realize machine tool dynamic performance analysis rapidly without sacrificing computational accuracy. The main conclusions in this paper are summarized as follows.

    (1) A simple machine tool dynamic analysis model is established by integrated the state space and finite element method. Based on this method the dynamic response analysis of the machine tool is achieved rapidly, and hence the computational efficiency is improved significantly.

    (2) The contour profile simulation method of the machined surface was proposed by integrating the whole machining path generated by the control system and the dynamic responses of the machine tool at each machining path. Using this method can achieve the surface simulation with short time and high accuracy.

    (3) This method was used for an ultra-precision fly-cutting machine tool dynamic analysis, the result shows that it can improve the computational time more than 10800 times with less than 2% error compared with traditional method. The experimental tests evaluate and validate the effectiveness of this method.

    [1] CHEN J S, HSU W Y. Dynamic and compliant characteristics of a Cartesian-guided tripod machine[J]., 2006, 128(2): 494–502.

    [2] SLOCUM A H.[M]. Englewood Cliffs, NJ: Prentice Hall, 1992.

    [3] TAKASU S, MSDUDA M, NISHIGUCHI T. Influence of study vibration with small amplitude upon surface roughness in diamond machining[J]., 1985, 34(1): 463–467

    [4] BRECHER C, ESSER M, WITT S. Interaction of manufacturing process and machine tool[J]., 2009, 58: 588–607.

    [5] BRECHER C, B?UMLER S, GURALNIK A. Machine tool dynamics-advances in metrological investigation, modeling and simulation techniques, optimization of process stability[C]//, Zaragoza, 2013: 1–9.

    [6] DENKENA B, HOLLMANN F.[M]. Springer Heidelberg New York Dordrecht London, 2013.

    [7] AURICH J C, BIERMANN D, BLUM H, et al. Modelling and simulation of process: machine interaction in grinding[J]., 2009, 3: 111–120.

    [8] CAO Y Z, ALTINTAS Y. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations[J]., 2007, 47(9): 1342–1350.

    [9] JIANG S Y, ZHENG S F. Dynamic design of a high-speed motorized spindle-bearing system[J]., 2010, 132(2): 034501.

    [10] CAO Y, ALTINTAS Y. A general method for the modeling of spindle bearing systems[J]., 2004, 126(6): 1089–1104.

    [11] STEFAN B, PAWE G. Identication of the dynamic models of machine tool supporting systems. Part I: an algorithm of the method[J]., 2006, 12(3): 257–277.

    [12] MARSH E R, ARNESON D, DOREN M V, et al. Interferometric measurement of workpiece flatness in ultra precision fly cutting[J]., 2006, 26(3): 209–217.

    [13] CHEN W, LU L, YANG K, et al. An experimental and theoretical investigation into multimode machine tool vibration with surface generation in flycutting[J]., 2016, 230(2): 381–386.

    [14] LINC Y, HUNG J P, LOT L. Effect of preload of linear guides on dynamic characteristics of a vertical column–spindle system[J]., 2010, 50(8): 741–746.

    [15] HUO D, CHENG K. A dynamics-driven approach to the design of precision machine tools for micro-manufacturing and its implementation perspectives[J]., 2008, 222(1): 1–13.

    [16] LEE S W, MAYOR R, NI J. Dynamic analysis of a Mesoscale machine tool[J]., 2006, 128(1): 194–203.

    [17] ALTINTAS Y, BRECHER C, WECK M, et al. Virtual machine tool[J]., 2005, 54(2): 115–138.

    [18] Piendl S, Aurich J. FEM simulation of chip formation coupled with process dynamics[J]., 2006, 220(10): 1597–1604.

    [19] LIANG Y C, CHEN W Q, SUN Y Z, et al. Dynamic design approach of an ultra-precision machine tool used for optical parts machining[J]., 2012, 226(11): 1930–1936.

    [20] CHEN W Q, SUN Y Z. Influence of low-spatial frequency ripples in machined potassium dihydrogen phosphate crystal surfaces on wave front errors based on the wavelet method[J]., 2015, 54(2): 024101.

    [21] LI M Q, CHEN M J, AN C H, et al. Mechanism of micro-waviness induced KH2PO4 crystal laser damage and the corresponding vibration source[J]., 2012, 21: 050301.

    [22] ANGELSKY O V, MAKSIMYAK A P, MAKSIMYAK P P. Optical correlation measurement of surface roughness[C]., 2007, 6616: 66162G.

    Biographical notes

    CHEN Wanqun, born in 1987, is currently a lecturer at.

    He is also a Research Associate atHe received his PhD degree from, in 2014. His research interests include ultra-precision machine design and dynamic analysis.

    Tel: +86-451-86413840; E-mail: chwq@hit.edu.cn

    HUO Dehong, born in 1975, is currently a senior lecturer atHe received his PhD degree from, China, in 2004. His research interests include micro machining process and precision machine design.

    Tel: +44-191-2086230, E-mail: dehong.huo@ncl.ac.uk

    XIEWenkun, born in 1990, is currently a PhDcandidate at.

    E-mail: xiewenkun@163.com

    TENG Xiangyu, born in 1991, is currently a PhD candidate at

    E-mail: xiangyu.teng@ncl.ac.uk

    ZHANG Jiayi,born in 1988,is currently an assistant engineer at. She received her Master degree from, in 2014.

    Supported by National Natural Science Foundation of China (Grant No. 51505107) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology of China (Grant No. HIT.NSRIF.2017029)

    ? Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2016

    Received May 24, 2016; revised July 6, 2016; accepted August 4, 2016

    10.3901/CJME.2016.0804.087, available online at www.springerlink.com; www.cjmenet.com

    E-mail: dehong.huo@ncl.ac.uk

    欧美日韩乱码在线| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美一区视频在线观看| 国产av一区二区精品久久| 亚洲真实伦在线观看| 男人舔女人的私密视频| 日本免费一区二区三区高清不卡| 天天一区二区日本电影三级| 又紧又爽又黄一区二区| 黑人巨大精品欧美一区二区mp4| 一边摸一边做爽爽视频免费| 在线观看www视频免费| 在线观看www视频免费| 99国产极品粉嫩在线观看| 精品不卡国产一区二区三区| 亚洲欧美精品综合一区二区三区| 不卡一级毛片| 久久婷婷成人综合色麻豆| 成人国产一区最新在线观看| 亚洲第一av免费看| 国产91精品成人一区二区三区| 长腿黑丝高跟| 久久中文字幕人妻熟女| 国产精品 国内视频| 真人一进一出gif抽搐免费| 在线看三级毛片| 久久久国产精品麻豆| 亚洲精品中文字幕一二三四区| 这个男人来自地球电影免费观看| 18美女黄网站色大片免费观看| 欧美色视频一区免费| 桃色一区二区三区在线观看| 国产精品 欧美亚洲| 脱女人内裤的视频| 欧美绝顶高潮抽搐喷水| 国产亚洲精品久久久久久毛片| 动漫黄色视频在线观看| 久久久久久人人人人人| 欧美av亚洲av综合av国产av| 国产又色又爽无遮挡免费看| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 久久久久久久精品吃奶| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 国产av一区在线观看免费| 黑人欧美特级aaaaaa片| netflix在线观看网站| 麻豆成人av在线观看| 久久精品人妻少妇| 男女下面进入的视频免费午夜 | 日韩免费av在线播放| 国产一级毛片七仙女欲春2 | 首页视频小说图片口味搜索| 欧美成人免费av一区二区三区| 亚洲国产中文字幕在线视频| 国内精品久久久久精免费| 欧美国产精品va在线观看不卡| 成人永久免费在线观看视频| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 日本免费一区二区三区高清不卡| 巨乳人妻的诱惑在线观看| 91麻豆精品激情在线观看国产| 欧美日韩中文字幕国产精品一区二区三区| 啦啦啦 在线观看视频| 国产黄色小视频在线观看| 欧美成狂野欧美在线观看| 后天国语完整版免费观看| 亚洲精品国产精品久久久不卡| 亚洲国产欧洲综合997久久, | 少妇裸体淫交视频免费看高清 | 久久伊人香网站| 国产精品 国内视频| 亚洲黑人精品在线| 黄频高清免费视频| 精品久久久久久久毛片微露脸| 久久亚洲精品不卡| 午夜福利欧美成人| 亚洲国产精品sss在线观看| 日韩欧美国产一区二区入口| av欧美777| 淫秽高清视频在线观看| 精品免费久久久久久久清纯| 天堂√8在线中文| 不卡一级毛片| 久久久久久九九精品二区国产 | 亚洲av成人一区二区三| 可以在线观看毛片的网站| 亚洲在线自拍视频| 国产在线精品亚洲第一网站| 美国免费a级毛片| 在线观看www视频免费| 久久精品人妻少妇| 久久精品夜夜夜夜夜久久蜜豆 | 国产黄片美女视频| 草草在线视频免费看| 免费看十八禁软件| 国产精品一区二区免费欧美| 最好的美女福利视频网| 亚洲黑人精品在线| 日日夜夜操网爽| 18禁观看日本| 色播亚洲综合网| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 国产一区二区激情短视频| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩一区二区三| 久久久久国内视频| 国产在线精品亚洲第一网站| 国产三级在线视频| 午夜福利在线观看吧| 亚洲第一电影网av| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 日韩欧美国产在线观看| 波多野结衣高清无吗| 成人亚洲精品一区在线观看| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女| 久久精品影院6| 麻豆成人午夜福利视频| 无限看片的www在线观看| 欧美在线黄色| 成年人黄色毛片网站| 日日夜夜操网爽| 欧美日本亚洲视频在线播放| 中国美女看黄片| 天堂影院成人在线观看| 神马国产精品三级电影在线观看 | 成年女人毛片免费观看观看9| 色老头精品视频在线观看| 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 欧美乱色亚洲激情| 久热这里只有精品99| 午夜福利视频1000在线观看| 欧美日本视频| 国产精品久久久久久精品电影 | 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 看免费av毛片| 精华霜和精华液先用哪个| 色精品久久人妻99蜜桃| 人人澡人人妻人| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 亚洲欧美精品综合久久99| 在线观看66精品国产| 免费电影在线观看免费观看| xxxwww97欧美| 久热爱精品视频在线9| 美女高潮喷水抽搐中文字幕| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 午夜福利免费观看在线| 国产精品 欧美亚洲| 麻豆久久精品国产亚洲av| 露出奶头的视频| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产精品九九99| 欧美丝袜亚洲另类 | 久久久久免费精品人妻一区二区 | 欧美黄色淫秽网站| av免费在线观看网站| 亚洲成av片中文字幕在线观看| 热99re8久久精品国产| 黄色丝袜av网址大全| 亚洲欧美日韩高清在线视频| 精品久久久久久久久久免费视频| 亚洲午夜精品一区,二区,三区| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 18禁裸乳无遮挡免费网站照片 | 黄网站色视频无遮挡免费观看| 亚洲精品久久成人aⅴ小说| 日本免费a在线| 中文字幕精品亚洲无线码一区 | 国产亚洲精品第一综合不卡| 美女高潮到喷水免费观看| 国产真实乱freesex| 久久久久久久久免费视频了| 一二三四在线观看免费中文在| 啦啦啦免费观看视频1| 一夜夜www| 十分钟在线观看高清视频www| 看黄色毛片网站| 欧美一区二区精品小视频在线| 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| 免费看日本二区| 欧美乱码精品一区二区三区| 大型黄色视频在线免费观看| 在线天堂中文资源库| 大香蕉久久成人网| 在线av久久热| 真人做人爱边吃奶动态| 亚洲中文字幕日韩| 国产三级在线视频| 18禁国产床啪视频网站| 亚洲欧美一区二区三区黑人| 久久久久久亚洲精品国产蜜桃av| 麻豆一二三区av精品| 中文亚洲av片在线观看爽| 久热这里只有精品99| 18禁国产床啪视频网站| 久久精品91无色码中文字幕| 深夜精品福利| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 亚洲 欧美一区二区三区| 999久久久精品免费观看国产| 久久99热这里只有精品18| 日本 欧美在线| 少妇的丰满在线观看| av电影中文网址| 亚洲精品在线观看二区| 精品欧美国产一区二区三| 超碰成人久久| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久 | 在线观看午夜福利视频| 欧美中文综合在线视频| 亚洲专区字幕在线| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av香蕉五月| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 亚洲在线自拍视频| 999久久久国产精品视频| or卡值多少钱| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 神马国产精品三级电影在线观看 | 一二三四社区在线视频社区8| 老熟妇仑乱视频hdxx| 精品电影一区二区在线| 国产av一区二区精品久久| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 久久久精品国产亚洲av高清涩受| 欧美日韩瑟瑟在线播放| 欧美午夜高清在线| 在线观看日韩欧美| 午夜日韩欧美国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 国产成人系列免费观看| 99久久无色码亚洲精品果冻| 欧美黄色淫秽网站| 少妇熟女aⅴ在线视频| av在线播放免费不卡| 18美女黄网站色大片免费观看| 男女那种视频在线观看| 身体一侧抽搐| 免费高清在线观看日韩| 成人三级做爰电影| 久久精品91蜜桃| 国产精品九九99| 成人国语在线视频| 免费无遮挡裸体视频| 亚洲av美国av| x7x7x7水蜜桃| 成人国产综合亚洲| 男女床上黄色一级片免费看| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看 | netflix在线观看网站| 99re在线观看精品视频| 男人的好看免费观看在线视频 | 又黄又粗又硬又大视频| 在线观看www视频免费| 婷婷亚洲欧美| 欧美av亚洲av综合av国产av| 一夜夜www| 麻豆av在线久日| 男人操女人黄网站| 韩国av一区二区三区四区| 精品国产一区二区三区四区第35| 日韩高清综合在线| 国产精品电影一区二区三区| 日本五十路高清| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 久久精品国产综合久久久| 色在线成人网| 亚洲七黄色美女视频| 亚洲人成网站高清观看| ponron亚洲| 黑丝袜美女国产一区| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出| 99久久国产精品久久久| 精品国产国语对白av| 国产又爽黄色视频| 视频在线观看一区二区三区| 国产激情欧美一区二区| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 女人高潮潮喷娇喘18禁视频| 日韩中文字幕欧美一区二区| 亚洲熟女毛片儿| 国产男靠女视频免费网站| 久久精品国产亚洲av香蕉五月| 国产激情欧美一区二区| 看片在线看免费视频| 久热爱精品视频在线9| 国产av在哪里看| 亚洲精品久久成人aⅴ小说| 琪琪午夜伦伦电影理论片6080| 亚洲久久久国产精品| 99精品欧美一区二区三区四区| 午夜福利免费观看在线| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久久人妻精品电影| 久99久视频精品免费| 在线av久久热| 好男人在线观看高清免费视频 | 中文字幕高清在线视频| 亚洲午夜理论影院| 国产熟女xx| 欧美亚洲日本最大视频资源| 99热只有精品国产| 黄片大片在线免费观看| 一进一出抽搐动态| 级片在线观看| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 免费高清视频大片| 久久久久九九精品影院| 久久午夜综合久久蜜桃| 久久精品91蜜桃| 欧美激情 高清一区二区三区| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 在线播放国产精品三级| 最近最新中文字幕大全电影3 | 亚洲最大成人中文| 亚洲美女黄片视频| 欧美激情高清一区二区三区| 老司机午夜十八禁免费视频| 成熟少妇高潮喷水视频| 精品国产国语对白av| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av香蕉五月| 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 国产精品久久久av美女十八| av有码第一页| 久久九九热精品免费| 亚洲精品国产一区二区精华液| 日本熟妇午夜| 久久久久久人人人人人| 亚洲成人国产一区在线观看| 日韩欧美免费精品| 久9热在线精品视频| 国产亚洲欧美精品永久| 欧美国产日韩亚洲一区| 波多野结衣巨乳人妻| 一级黄色大片毛片| 久久久国产欧美日韩av| 啦啦啦 在线观看视频| 亚洲精华国产精华精| 国产成人欧美在线观看| 国产99久久九九免费精品| 欧美三级亚洲精品| 两个人免费观看高清视频| 午夜亚洲福利在线播放| 色av中文字幕| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 丝袜人妻中文字幕| 一本精品99久久精品77| 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 精品欧美国产一区二区三| 久久 成人 亚洲| 老司机靠b影院| 国产精品免费一区二区三区在线| 香蕉国产在线看| 国产v大片淫在线免费观看| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 欧美性猛交╳xxx乱大交人| 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 日韩高清综合在线| 国产成人啪精品午夜网站| 脱女人内裤的视频| 美女国产高潮福利片在线看| 一级a爱片免费观看的视频| 亚洲av熟女| 成人18禁在线播放| 亚洲精品国产区一区二| 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 免费在线观看日本一区| 亚洲中文字幕日韩| 长腿黑丝高跟| 国产极品粉嫩免费观看在线| 欧美大码av| 婷婷亚洲欧美| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| 精品久久久久久成人av| 精品一区二区三区视频在线观看免费| 国产欧美日韩精品亚洲av| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 色综合站精品国产| 亚洲一区高清亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 美女午夜性视频免费| 一本一本综合久久| 国产伦一二天堂av在线观看| 久久亚洲精品不卡| 两个人视频免费观看高清| 欧美黄色淫秽网站| 亚洲第一电影网av| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产 | 日韩欧美一区视频在线观看| 男人的好看免费观看在线视频 | 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 一区二区三区高清视频在线| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 特大巨黑吊av在线直播 | 色播亚洲综合网| 看免费av毛片| 久久人人精品亚洲av| 这个男人来自地球电影免费观看| 一级毛片精品| 一a级毛片在线观看| 欧美色视频一区免费| 国产亚洲精品一区二区www| 日本 av在线| 国产精品美女特级片免费视频播放器 | aaaaa片日本免费| 一级a爱视频在线免费观看| 国产精品九九99| 中出人妻视频一区二区| 亚洲精品在线美女| 国产伦人伦偷精品视频| 男女那种视频在线观看| 91成人精品电影| 操出白浆在线播放| 日韩中文字幕欧美一区二区| cao死你这个sao货| 精品国产国语对白av| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕在线视频| 欧美日韩亚洲综合一区二区三区_| www.熟女人妻精品国产| 在线视频色国产色| 一级作爱视频免费观看| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站 | 午夜激情av网站| 黄色视频,在线免费观看| 中文字幕久久专区| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播 | 三级毛片av免费| 久久婷婷成人综合色麻豆| 十八禁人妻一区二区| 美国免费a级毛片| 99精品欧美一区二区三区四区| 熟女少妇亚洲综合色aaa.| 午夜福利在线在线| 久久精品91无色码中文字幕| 国产熟女xx| 欧美激情极品国产一区二区三区| 中文在线观看免费www的网站 | 国产亚洲精品第一综合不卡| 99在线视频只有这里精品首页| 日本黄色视频三级网站网址| 这个男人来自地球电影免费观看| 日本熟妇午夜| 国产一区二区三区在线臀色熟女| 伦理电影免费视频| 啦啦啦免费观看视频1| 老司机午夜十八禁免费视频| 丝袜在线中文字幕| 亚洲五月天丁香| 色老头精品视频在线观看| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 宅男免费午夜| 国产精品 欧美亚洲| 国产又爽黄色视频| 亚洲成国产人片在线观看| 神马国产精品三级电影在线观看 | 欧美zozozo另类| 中文资源天堂在线| 淫秽高清视频在线观看| 国产激情欧美一区二区| 宅男免费午夜| 久久伊人香网站| 亚洲欧美日韩无卡精品| 亚洲人成伊人成综合网2020| 老司机靠b影院| 午夜精品在线福利| 久久香蕉精品热| 色精品久久人妻99蜜桃| 午夜激情av网站| 一夜夜www| 搡老熟女国产l中国老女人| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 一a级毛片在线观看| 99久久综合精品五月天人人| 精品人妻1区二区| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 欧美日韩精品网址| 欧美性猛交╳xxx乱大交人| 高潮久久久久久久久久久不卡| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 最近在线观看免费完整版| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 亚洲色图av天堂| 满18在线观看网站| 国产亚洲精品一区二区www| 天天添夜夜摸| 精品国产国语对白av| 亚洲无线在线观看| 看免费av毛片| 国产欧美日韩精品亚洲av| xxx96com| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| 日韩欧美三级三区| 久久伊人香网站| 黄片小视频在线播放| 精品第一国产精品| 日本精品一区二区三区蜜桃| 国产成人av激情在线播放| 在线永久观看黄色视频| 亚洲av电影不卡..在线观看| 无遮挡黄片免费观看| 可以在线观看的亚洲视频| 国产99白浆流出| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| 成人国产综合亚洲| 日本免费a在线| 欧美乱色亚洲激情| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看 | 久久精品国产清高在天天线| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| www.精华液| 日韩 欧美 亚洲 中文字幕| 精品午夜福利视频在线观看一区| 一区福利在线观看| 亚洲国产精品久久男人天堂| 在线免费观看的www视频| 欧美一级a爱片免费观看看 | 岛国视频午夜一区免费看| 亚洲天堂国产精品一区在线| 国产精品香港三级国产av潘金莲| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 色av中文字幕| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 亚洲成人国产一区在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 中文字幕最新亚洲高清| 国产成年人精品一区二区| 中文字幕久久专区| 亚洲中文av在线| 看黄色毛片网站| 听说在线观看完整版免费高清| 欧美乱码精品一区二区三区| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 丝袜人妻中文字幕| 国产成人欧美|