• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering the Smart Factory

    2016-12-09 06:09:55HarrisonRobertVERADanielandAHMADBilal

    Harrison Robert, VERA Daniel, and AHMAD Bilal

    ?

    Engineering the Smart Factory

    Harrison Robert, VERA Daniel, and AHMAD Bilal

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

    index terms—smart factory, Industry 4.0, automation systems, cyber-physical systems, engineering, lifecycle

    1 Introduction

    Current automation systems engineering methods are frequently criticised, e.g., for poorly supporting reuse and their inability to effectively validate automation solutions across supply chains. There is also poor integration between real system and virtual system representations, which need to be closely integrated throughout the automation system lifecycle from specification and design through commissioning, validation, operation and reuse of systems.

    The left-hand side of Fig. 1 shows a typical example of the current system lifecycle. The engineering process is disjointed, and there are gaps between the various digital models of system aspects. The majority of current tools are vendor-specific and support largely closed control environments. They generally offer good point-solution functionality, are well supported and can deliver robust operational systems, but with limited agility. These factors lead to delays and ultimately to poor lifecycle uses of information, and lessons learned are not fed back to subsequent iterations of the system. There is typically poor reuse, and systems often lack commonality, needlessly deviating from a common standard. The right-hand side of Fig. 1 shows a vision of the CPS system’s lifecycle where the engineering build and operational phases are seamlessly integrated. Lessons learned are fed back into subsequent refinements of the system. The cyber and physical aspects are seamlessly integrated with the digital model continuously updated to and from the physical system.

    Cyber physical systems are distributed, heterogeneous systems connected via networks, and usually associated with the concept of the Internet of Things (IoT)[1]. The increasing availability and use of distributed industrial CPS devices and systems could radically change the nature of manufacturing and provide new opportunities to develop more effective, finer grained and self-configuring automation systems. A closely associated initiative is the Industry 4.0 platform, a specialisation within the IoT and Services, it facilitates the vision of the smart factory where CPS monitor physical processes, create a virtual copy of the physical world and make decentralised decisions[2].

    Realising CPS for industrial automation implies the need for engineering tools capable of supporting distributed systems and is coupled to a major shift in emphasis from traditional monolithic, specialism-based, isolated engineering tools and methods towards integrated, Cloud-based tool/system infrastructures based around an Internet of Services and associated data. CPS also implies a combination of physical and virtual representations where physical devices and functionality are represented in data form and can be visualised virtually with the data model maintained in correspondence to the physical system throughout their lifecycle.

    Fig. 2 shows conceptually how in a CPS context the virtual engineering of a manufacturing system can be related to its physical implementation through the design and build phases and how subsequent run-time optimization can be achieved through feeding back information related to the product, process and production resources. An approach that supports a common distributed engineering model is important so that knowledge can be captured and engineering reuse facilitated.

    Fig. 1. Current state and future vision for the smart factory lifecycle

    Fig. 2. Virtual engineering related to physical implementation in a CPS context

    2 Enablers for the Smart Factor

    A reference architecture is a general model that provides a framework for the structuring, development, integration and operation of systems[4]. The Industry 4.0 Reference Architecture model is very broad in that it aims to permit homogeneous consideration of the product to be manufactured and the production facility, with their interdependencies. The adoption of a component-based approach is at the heart of the recently published RAMI reference model of Industry 4.0, which features logically nestable components[2]. Four key aspects of Industry 4.0 are highlighted in Fig. 3, namely, the devices which compose the system, the connectivity to enable their integration, well targeted services, and appropriate data, e.g., as a foundation for digitisation, visualisation and analytics.

    Fig. 3. Key underlining aspects of Industry 4.0

    From a connectivity perspective, industrial communication systems, such as a suitable fieldbus or industrial Ethernet, are available to establish communication among the distributed components. In the vision of CPS every component (be it for control, business or engineering functionality) is potentially able to interact with any other component. This enables a strong horizontal and vertical integration not only within automation systems and their associated machine/system builders, but also more widely to enable integration and collaboration across the supply chain and throughout the lifecycle. For realising such an automation network, the question arises of how this communication is provided with high interoperability[5].

    In terms of device connectivity, the factory of the future will be heavily based on Internet and Web technologies and as devices become able to natively offer Web services, they will provide an interoperability layer that leads to easier coupling with other components despite of the high heterogeneity. Device profile for Web services (DPWS)[6], OPC-UA[7]and representational state transfer (REST) are three of the emerging technologies for realising Web service-enabled device connectivity[8–12].

    Data exchange among mechanical plant engineering, electrical design, process engineering, process control engineering, HMI development, PLC programming and other engineering tools is currently difficult[3]. Furthermore, from a lifecycle perspective, there are significant gaps in the consistent use of information throughout the lifecycle phases, and although the concept of the smart factory is well understood where consistency between physical and virtual representations of production systems would be maintained at all lifecycle phases, in reality a largely fragmented information modelling environment currently exists. AutomationML (AML) is a promising neutral data format based on XML for the storage and exchange of plant engineering information modules, to interconnect heterogeneous engineering tools from different fields, e.g., mechanical plant engineering, electrical design and PLC systems. AML is essentially combination of existing standard data formats for the storage of different aspects of engineering information.

    3 ASG Engineering Environment: vueOne

    The ASG is focusing on the design and implementation of automation systems engineering tools and methods adapted to the specific nature of CPS in particular, and that contribute more generally to achieving the goals of Industry 4.0 on the KDCM, Arrowhead and 3Deployment projects, see Acknowledgements section. The ASG’s research is delivering an engineering software environment, called vueOne, part of which is currently being used to support Ford’s virtual engineering activity in powertrain assembly in the UK. vueOne is now also being used to support engineering of battery and electric motormake-like-production systems in partnership with a range of automation companies.

    Fig. 4 provides a descriptive framework for introducing the ASG’s research. It illustrates the general architecture of the systems engineering environment and highlights the main functionalities to support key phases of the automation systems lifecycle. A layered representation is used. The top level relates to organizations within the supply chain and engineers within departments. The left part of Fig. 4 relates to system design with stakeholders feeding data models related to specific aspects of automation systems, e.g., for layout, mechanical engineering, control systems, and process and product definition through the use of domain- or user-specific representations associated with particular engineering tools or services. Each data model is then deployed at the physical level to achieve mechanical build, machine programming, and production system configuration. The operational phase of the system is shown on the right-hand side of Fig. 4. Information generated by the production system is either fed back to the machine controllers themselves or propagated to higher levels of engineering support, analysis, and management.

    Fig. 4 also serves to highlight gaps in the engineering process, in particular where fragmented data models, incompatible software environments, and poor communication and collaboration between engineering organizations exist. In particular, there is a large disconnect between the design and operational phases of production systems.

    Fig.4. Industry 4.0 oriented engineering framework

    Industry 4.0 and other CPS paradigms rely largely on seamless connectivity and interfacing between organisations and people, computational resources (e.g., databases and application servers), software environments, shop floor level devices, sensors and mobile devices[4]. The vueOne engineering environment design is based on three types of conceptually defined interfaces: a) organisation level interfaces enabling communication of information between engineers within or across organisations, b) software level connectivity allowing exchange of data between engineering tools, and c) cyber to physical environment connectivity which focus on the configuration and connectivity with components on PLC-based control or embedded devices.

    Fig.5. vueOne engineering environment overview

    4 Demonstrating the Smart Factory

    A key aspect of the approach adopted at WMG is forming a pipeline to progressively develop and then maximize the impact of innovative automation systems. The approach shown conceptually in Fig. 7 is to develop proof-of-concept systems from bench-top demonstrators through full-scale pilot implementations to make-like production lines and ultimately to factory installation, working closely with industry partners at all phases of this activity.

    Fig. 6. An example of common data model usage across the lifecycle

    Fig. 7. Pipeline to progressively develop and maximize the impact of innovative systems

    A full-scale automation system workbench (ASW) is installed at WMG to support the research and development activities of ASG (see Fig. 8). It is a modular and reconfigurable system and hence the application can be progressively changed as new requirements emerge. Machine stations can be exchanged physically and also virtually, i.e., new virtual stations model can be swapped in (and out) in place of physical stations.

    Fig. 8. Automation system workbench (ASW)

    The ASW features state-of-the-art control system and automation equipment from leading vendors, e.g., Siemens, Bosch-Rexroth, Rockwell Automation, ABB, Schneider Electric, Mitsubishi, Festo, and SMC. The system has been implemented to support the latest control system design and programming standards. The ASW aims to provide a full-scale demonstrator for new manufacturing automation methods, tools and technologies with the objective to support the entire lifecycle, e.g., enabling the digital validation, verification and visualisation, control code generation and cloud-based engineering services. The ASW is also used with industrial collaborators (e.g., JLR, Ford and their supply chains) for demonstration of product assembly. The ASW is currently configured to carry out a battery sub-module assembly demonstration as a part of an Innovate UK project. The product assembly consists of 18 650 form-factor cylindrical cells to be assembled into a sub-module incorporating bus-bars and an integrated cooling system.

    5 Conclusion and Future Work

    This paper has reviewed some of the common limitations in present automation systems engineering and considered what capabilities are needed for future smart factory systems engineering. The tools being implemented by the Automation Systems Group at WMG have been used as examples of solutions providing an integrated engineering environment with a common data model extending across lifecycle phases. Future research will apply and evaluate this approach across a range of applications and also focus on increasing the openness of the approach as standards related to Industry 4.0 become more mature.

    The author gratefully acknowledges the support for this work from UK EPSRC, through the Knowledge-Driven Configurable Manufacturing (KDCM) research project under the Flexible and Reconfigurable Manufacturing Initiative, from Innovate UK on the Direct Digital Deployment project, and from ARTEMIS on the Arrowhead project.

    [1] IEEE. Cyber physical systems: Design challenges[C]//Orlando, FL,USA, 5–7 May, 2008: 363–369.

    [2] VDI/VDE Society. Reference Architecture Model Industrie 4.0 (RAMI4.0): Status Report[R/OL]. (2016-06-01). http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%20Report%20ZVEI%20Reference%20Architecture%20Model.pdf.

    [3] AICHER T, SCHUTZD, VOGEL-HEUSERB. Consistent engineering information model for mechatronic components in production automation engineering[C]//, Dallas, TX, USA, 29 Oct–1 Nov, 2014: 2532–2537.

    [4] Industrie 4.0 Working Group.[R/OL]. (2016-06-01) National Academy of Science and Engineering of Germany, 2013. http://www.acatech.de/.../Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf on 1 June 2016.

    [5] ZüHLKED OLLINGERL. Agile automation systems based on cyber-physical systems and service-oriented architectures[J]., 2012, 1: 567–574.

    [6] JAMMESF MENSCHA, SMIT H. Service-oriented device communications using the devices profile for web services[C]//, Grenoble, France, Nov 28–2 Dec, 2005: 1–8.

    [7] MAHNKEW, LEITNER SH, DAMMM.[M]. Springer, 2009.

    [8] KARNOUSKOSS, SAVIOD, SPIESSP, et al. Real-world service interaction with enterprise systems in dynamic manufacturing environments[M]., Springer, 2010: 423–457.

    [9] DELAMERIM, LASTRAJLM. Loosely-coupled automation systems using device-level SOA[C]//, Vienna, Austria, 23–27 Jul., 2007: 743–748.

    [10] OPC Foundation. Interoperability for Indsutrie 4.0 and the Internet of Things[R/OL]. [2014-05-21]. (2016-06-01). https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN-v5.pdf.

    [11] IZAGUIRREM J A G, LOBOVA, LASTRAJ L M.OPC-UA and DPWS interoperability for factory floor monitoring using complex event processing[C]//Lisbon, Portugal, 26–29 July, 2011: 205–211.

    [12] XU X. From cloud computing to cloud manufacturing[J]., 2012, 28(1): 75–86.

    [13] HARRISONR, VERAD, AHMADB. Engineering methods and tools for cyber–physical automation systems[J].2016, 104(5): 973–985.

    [14] KONG X, AHMAD B, HARRISON R, et al. Realising the open virtual commissioning of modular automation systems[C]//, Athens, Greece, 28–30 Sep., 2011: paper No. 45.

    Biographical notes

    HARRISON Robert, is a professor of Automation Systems atand Head of the Automations Systems Group at WMG, with a research focus in the areas of smart factories, systems engineering and industrial automation. The Automation Systems Group, a team of around 25 researchers are undertaking internationally leading research into new generations of pilot production systems, advanced automation systems and associated lifecycle support tools for manufacturing automation. Prof. HARRISON’S research interests include manufacturing automation from the business, technical and social perspectives, and virtual engineering tools and related engineering services, particularly within the automotive and aerospace sectors. He is the author of around 150 peer-reviewed international journal and conference papers and gives frequent national and international presentations in academic and commercial contexts.

    E-mail: Robert.Harrison@warwick.ac.uk

    VERA Daniel is currently a Senior Research Fellow at the. Daniel has a PhD (use of VR technologies to support virtual planning and validation of engine assembly processes), which was followed by more than 12 years of experience in the design, development and deployment of digital solutions to support the mechanical and manufacturing engineering industry. Dr. Vera is author of over 20 international peer-reviewed international journal and conference publications, and his search currently focuses on the practical implementation of Industry 4.0 concept and the deployment of technologies to practically support Cyber Physical System Lifecycle.

    AHMAD Bilal received the M.Sc. degree in Mechatronics and the Ph.D. degree in Automation Systems from. Dr Ahmad is working as a Senior Research Fellow at. His research interests are in the area of industrial automation and controls engineering. He has worked on a number of projects in collaboration with automotive manufacturers, machine builders and control vendors to develop tools and methods to support lifecycle engineering of industrial automation systems. He has previously worked as a Research Associate and University Teacher at.

    ? Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2016

    Received July 5, 2016; revised September 1, 2016; accepted September 8, 2016

    10.3901/CJME.2016.0908.109, available online at www.springerlink.com; www.cjmenet.com

    E-mail: Robert.Harrison@warwick.ac.uk

    久久久久久久久久久免费av| 久久久国产一区二区| 久久影院123| 夜夜骑夜夜射夜夜干| 秋霞在线观看毛片| 宅男免费午夜| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| av卡一久久| 在线免费观看不下载黄p国产| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 亚洲精品自拍成人| 国产亚洲最大av| 最近手机中文字幕大全| 免费黄频网站在线观看国产| av在线app专区| 人妻人人澡人人爽人人| 波多野结衣av一区二区av| 国产成人欧美| 麻豆乱淫一区二区| 三级国产精品片| 国产乱来视频区| 超碰97精品在线观看| 久久久精品区二区三区| 另类精品久久| 女人被躁到高潮嗷嗷叫费观| 午夜精品国产一区二区电影| 乱人伦中国视频| 日本91视频免费播放| 午夜福利一区二区在线看| 精品视频人人做人人爽| 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 亚洲三区欧美一区| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 国产av一区二区精品久久| 男女免费视频国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲,一卡二卡三卡| 久久影院123| 99久久人妻综合| 久久综合国产亚洲精品| 成人黄色视频免费在线看| 人人妻人人澡人人爽人人夜夜| 岛国毛片在线播放| 波野结衣二区三区在线| 欧美日韩一区二区视频在线观看视频在线| 波野结衣二区三区在线| 亚洲av欧美aⅴ国产| 精品人妻偷拍中文字幕| 亚洲精品,欧美精品| 69精品国产乱码久久久| 日本wwww免费看| 中国三级夫妇交换| 免费久久久久久久精品成人欧美视频| 777久久人妻少妇嫩草av网站| 日本欧美视频一区| 久久久亚洲精品成人影院| 免费久久久久久久精品成人欧美视频| 亚洲国产色片| 国产精品不卡视频一区二区| 免费观看a级毛片全部| av在线播放精品| 欧美 日韩 精品 国产| 午夜福利,免费看| 亚洲精品,欧美精品| 久久热在线av| 国产深夜福利视频在线观看| 国产av码专区亚洲av| 色吧在线观看| 黄色视频在线播放观看不卡| 午夜福利乱码中文字幕| 只有这里有精品99| 一区二区三区四区激情视频| 国产野战对白在线观看| 天天操日日干夜夜撸| 成人国产av品久久久| 国产熟女午夜一区二区三区| 中文欧美无线码| 一区二区av电影网| 亚洲av.av天堂| 色婷婷av一区二区三区视频| 中文精品一卡2卡3卡4更新| 男女边吃奶边做爰视频| 久久综合国产亚洲精品| 狂野欧美激情性bbbbbb| 国产精品香港三级国产av潘金莲 | 日韩av在线免费看完整版不卡| 成人手机av| 黑人猛操日本美女一级片| 精品第一国产精品| 国产人伦9x9x在线观看 | 午夜免费男女啪啪视频观看| 丝袜在线中文字幕| 侵犯人妻中文字幕一二三四区| 激情视频va一区二区三区| 在线观看国产h片| 卡戴珊不雅视频在线播放| 国产高清国产精品国产三级| 久久久久久伊人网av| 大香蕉久久成人网| 亚洲精品久久久久久婷婷小说| 一区二区av电影网| 亚洲内射少妇av| av一本久久久久| 多毛熟女@视频| 男女边吃奶边做爰视频| 亚洲欧洲日产国产| 美女国产视频在线观看| 国产欧美日韩综合在线一区二区| 七月丁香在线播放| 亚洲国产av新网站| 女人精品久久久久毛片| 一级毛片电影观看| 国产成人精品婷婷| 国产一区二区 视频在线| 国产成人a∨麻豆精品| 亚洲精品日本国产第一区| 一级黄片播放器| 成年av动漫网址| 欧美在线黄色| 成人免费观看视频高清| 这个男人来自地球电影免费观看 | 亚洲内射少妇av| 日韩一本色道免费dvd| 日韩中字成人| 欧美精品av麻豆av| 嫩草影院入口| 一级毛片我不卡| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 久久国内精品自在自线图片| 黑人巨大精品欧美一区二区蜜桃| 看免费成人av毛片| 电影成人av| 亚洲一级一片aⅴ在线观看| 2022亚洲国产成人精品| 一级毛片 在线播放| a级毛片在线看网站| 久久这里只有精品19| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 在线观看国产h片| 免费观看性生交大片5| 日本av手机在线免费观看| 亚洲成国产人片在线观看| 亚洲av成人精品一二三区| 色吧在线观看| 91精品伊人久久大香线蕉| 国产成人aa在线观看| 久久久久久久大尺度免费视频| 国产精品熟女久久久久浪| 夜夜骑夜夜射夜夜干| 一级毛片我不卡| 亚洲综合精品二区| 老司机亚洲免费影院| 精品一区二区三区四区五区乱码 | av又黄又爽大尺度在线免费看| 精品第一国产精品| 男女高潮啪啪啪动态图| 777米奇影视久久| 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 在现免费观看毛片| 男男h啪啪无遮挡| 免费观看无遮挡的男女| av女优亚洲男人天堂| 少妇猛男粗大的猛烈进出视频| √禁漫天堂资源中文www| 一级毛片 在线播放| 大码成人一级视频| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 激情五月婷婷亚洲| 有码 亚洲区| 午夜福利视频精品| 在线 av 中文字幕| 亚洲成人手机| 天堂8中文在线网| 久久国产亚洲av麻豆专区| 麻豆乱淫一区二区| 国产日韩欧美亚洲二区| 亚洲国产成人一精品久久久| 亚洲男人天堂网一区| 久久av网站| 日韩精品免费视频一区二区三区| videos熟女内射| 大陆偷拍与自拍| 黄片无遮挡物在线观看| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 亚洲少妇的诱惑av| a级片在线免费高清观看视频| 制服丝袜香蕉在线| 亚洲欧美成人综合另类久久久| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 黄片小视频在线播放| 免费观看av网站的网址| 欧美日韩成人在线一区二区| 日韩av免费高清视频| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 深夜精品福利| 亚洲激情五月婷婷啪啪| av一本久久久久| 亚洲欧美精品综合一区二区三区 | 黄色配什么色好看| 这个男人来自地球电影免费观看 | 老汉色∧v一级毛片| 夫妻性生交免费视频一级片| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 精品人妻偷拍中文字幕| 丝袜美足系列| 亚洲欧美成人精品一区二区| 成年女人毛片免费观看观看9 | 国产成人精品婷婷| 国产精品久久久久久精品电影小说| 丝袜美足系列| 久久人妻熟女aⅴ| freevideosex欧美| 大片电影免费在线观看免费| 好男人视频免费观看在线| 一区二区三区激情视频| av线在线观看网站| 国产精品二区激情视频| 久久99蜜桃精品久久| 91久久精品国产一区二区三区| a级毛片黄视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产露脸久久av麻豆| 亚洲av男天堂| 美女福利国产在线| 欧美 日韩 精品 国产| 国产在线免费精品| 久久这里只有精品19| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 久久久久久久久久久久大奶| 亚洲欧美清纯卡通| av有码第一页| 国产精品女同一区二区软件| 久热这里只有精品99| 亚洲国产av新网站| 欧美 日韩 精品 国产| av网站免费在线观看视频| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 多毛熟女@视频| 97在线人人人人妻| 最新中文字幕久久久久| 妹子高潮喷水视频| av网站免费在线观看视频| 色播在线永久视频| 亚洲精品美女久久av网站| 国产精品三级大全| 欧美97在线视频| 欧美日韩一级在线毛片| 精品国产超薄肉色丝袜足j| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 午夜免费观看性视频| 亚洲美女视频黄频| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 人妻人人澡人人爽人人| 亚洲成色77777| 青春草亚洲视频在线观看| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 免费黄色在线免费观看| av网站免费在线观看视频| videossex国产| 亚洲,欧美,日韩| 色哟哟·www| 国产野战对白在线观看| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 亚洲激情五月婷婷啪啪| 9热在线视频观看99| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| kizo精华| av一本久久久久| 久久久久久久亚洲中文字幕| 中国三级夫妇交换| av在线app专区| 日韩中字成人| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 秋霞在线观看毛片| 视频在线观看一区二区三区| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 国产1区2区3区精品| 亚洲,欧美精品.| 一级片'在线观看视频| 九九爱精品视频在线观看| 香蕉国产在线看| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 亚洲一区中文字幕在线| 国产福利在线免费观看视频| 在现免费观看毛片| 久久精品国产亚洲av高清一级| 9191精品国产免费久久| 女性生殖器流出的白浆| 91精品国产国语对白视频| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| av网站在线播放免费| 丁香六月天网| 中国三级夫妇交换| 久久久a久久爽久久v久久| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件| 成人亚洲精品一区在线观看| 亚洲成人手机| 免费高清在线观看日韩| 99久久综合免费| 九草在线视频观看| 亚洲 欧美一区二区三区| 熟女av电影| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| 日日撸夜夜添| 精品亚洲成国产av| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 涩涩av久久男人的天堂| 成人国语在线视频| 国产成人精品一,二区| 美女国产视频在线观看| 精品亚洲成国产av| 十分钟在线观看高清视频www| 老熟女久久久| 一区二区av电影网| 十八禁高潮呻吟视频| 视频区图区小说| 亚洲av综合色区一区| 免费人妻精品一区二区三区视频| 性色av一级| 亚洲av中文av极速乱| 亚洲国产精品成人久久小说| 午夜福利网站1000一区二区三区| 免费日韩欧美在线观看| 欧美精品一区二区大全| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 午夜免费鲁丝| 欧美黄色片欧美黄色片| 久久综合国产亚洲精品| 国产在线视频一区二区| 卡戴珊不雅视频在线播放| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 成年女人在线观看亚洲视频| 日韩视频在线欧美| 电影成人av| 精品一区在线观看国产| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 国产激情久久老熟女| 久久久久久人人人人人| 国产成人精品久久久久久| 天美传媒精品一区二区| 欧美av亚洲av综合av国产av | 大陆偷拍与自拍| 亚洲av日韩在线播放| av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲三级黄色毛片| 大话2 男鬼变身卡| 中国国产av一级| 欧美中文综合在线视频| 在线观看美女被高潮喷水网站| 久久精品国产鲁丝片午夜精品| 国产精品 国内视频| 亚洲国产欧美网| 国产成人午夜福利电影在线观看| 日本wwww免费看| 精品少妇一区二区三区视频日本电影 | 欧美另类一区| 男女午夜视频在线观看| 超色免费av| 久久精品国产综合久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美在线一区| 久久久久久久大尺度免费视频| 一级片免费观看大全| 久久精品国产综合久久久| 免费在线观看完整版高清| 国产片内射在线| 亚洲,欧美精品.| 日韩成人av中文字幕在线观看| 日本黄色日本黄色录像| 好男人视频免费观看在线| 人体艺术视频欧美日本| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 另类精品久久| 日本wwww免费看| 91成人精品电影| 日韩中文字幕视频在线看片| 国产精品香港三级国产av潘金莲 | 久久久久久伊人网av| 丝袜喷水一区| 亚洲精品国产一区二区精华液| 一区二区日韩欧美中文字幕| 国产精品女同一区二区软件| av有码第一页| 我要看黄色一级片免费的| 永久网站在线| 少妇 在线观看| 国产黄频视频在线观看| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 欧美激情高清一区二区三区 | 日韩电影二区| 久久热在线av| 久久精品人人爽人人爽视色| 亚洲四区av| 人成视频在线观看免费观看| 丰满饥渴人妻一区二区三| 波多野结衣一区麻豆| 日韩制服丝袜自拍偷拍| 国产男人的电影天堂91| 1024香蕉在线观看| 国产免费视频播放在线视频| 黄频高清免费视频| 狂野欧美激情性bbbbbb| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 有码 亚洲区| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 一本大道久久a久久精品| 永久免费av网站大全| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 欧美精品av麻豆av| 女性生殖器流出的白浆| 老司机亚洲免费影院| 午夜日本视频在线| 如何舔出高潮| 亚洲成国产人片在线观看| 久热这里只有精品99| 国产成人av激情在线播放| 女人久久www免费人成看片| 又黄又粗又硬又大视频| 丝袜人妻中文字幕| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 日日爽夜夜爽网站| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 国产麻豆69| 精品一区二区三卡| 色视频在线一区二区三区| 免费高清在线观看日韩| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 色播在线永久视频| 九草在线视频观看| 国产精品一区二区在线观看99| 在线观看三级黄色| 日日啪夜夜爽| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| freevideosex欧美| 水蜜桃什么品种好| 国产免费福利视频在线观看| 国产成人av激情在线播放| 国产av一区二区精品久久| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 成人国产麻豆网| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 午夜日韩欧美国产| 国产在线视频一区二区| 久久人人爽av亚洲精品天堂| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 九九爱精品视频在线观看| 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 男的添女的下面高潮视频| 国产1区2区3区精品| 夫妻午夜视频| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 精品国产超薄肉色丝袜足j| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 大话2 男鬼变身卡| 又黄又粗又硬又大视频| 国产片内射在线| 免费看不卡的av| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 久久综合国产亚洲精品| 欧美人与善性xxx| 看免费av毛片| 欧美日本中文国产一区发布| 国精品久久久久久国模美| 大香蕉久久网| av卡一久久| 欧美日韩综合久久久久久| 日韩免费高清中文字幕av| 制服丝袜香蕉在线| av女优亚洲男人天堂| a级毛片在线看网站| 国产精品国产三级国产专区5o| 只有这里有精品99| 999精品在线视频| 成人国产麻豆网| 丁香六月天网| 大码成人一级视频| 久久精品aⅴ一区二区三区四区 | 热re99久久国产66热| 成人亚洲欧美一区二区av| 大话2 男鬼变身卡| 日本av免费视频播放| 精品少妇一区二区三区视频日本电影 | 欧美日韩视频高清一区二区三区二| 亚洲人成网站在线观看播放| 国产男女内射视频| 熟妇人妻不卡中文字幕| 欧美老熟妇乱子伦牲交| 久久热在线av| 在线观看免费视频网站a站| 国产人伦9x9x在线观看 | 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| 亚洲精品国产av蜜桃| kizo精华| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| 国产日韩欧美亚洲二区| 在线观看三级黄色| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 免费女性裸体啪啪无遮挡网站| 国产 精品1| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美| 99热网站在线观看| 日本欧美视频一区| 国产人伦9x9x在线观看 | 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频| 在线观看国产h片| 国产欧美亚洲国产| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 最新中文字幕久久久久| 国产不卡av网站在线观看| 我要看黄色一级片免费的| 中文字幕人妻熟女乱码| 男女无遮挡免费网站观看| 大片免费播放器 马上看| 久久精品亚洲av国产电影网| 一级爰片在线观看| 啦啦啦在线免费观看视频4| 一级片免费观看大全| 国产亚洲av片在线观看秒播厂| xxxhd国产人妻xxx| 91午夜精品亚洲一区二区三区| 老女人水多毛片| 一区二区三区四区激情视频| 视频在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人免费无遮挡视频| 亚洲人成电影观看| 美女午夜性视频免费| 国产精品久久久久久av不卡| 成人手机av| 午夜福利乱码中文字幕|