• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REGULAR SPACE-LIKE HYPERSURFACES IN THE DE SITTER SPACEWITH PARALLEL BLASCHKE TENSORS

    2016-12-07 08:59:05LIXingxiaoSONGHongru
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:共形張量正則

    LI Xing-xiao,SONG Hong-ru

    (School of Mathematics and Science Information,Henan Normal University,Xinxiang 453007,China)

    REGULAR SPACE-LIKE HYPERSURFACES IN THE DE SITTER SPACEWITH PARALLEL BLASCHKE TENSORS

    LI Xing-xiao,SONG Hong-ru

    (School of Mathematics and Science Information,Henan Normal University,Xinxiang 453007,China)

    In this paper,we introduce two conformal non-homogeneous coordinate systems. Modeled on the de Sitter space,we cover the conformal space.The conformal geometry of regular space-like hypersurfaces incan be treated as in the Mbius geometry of hypersurfaces in the sphere Sm+1.As a result,we give a complete classification of the regular space-like hypersurfaces with parallel Blaschke tensors.

    conformal form;parallel Blaschke tensor;conformal metric;conformal second fundamental form;maximal hypersurfaces;constant scalar curvature

    2010 MR Subject Classification:53A30;53B25

    Document code:AArticle ID:0255-7797(2016)06-1183-18

    1 Introduction

    where the dot“·”is the standard Euclidean inner product either on Rsor on Rm.

    Denote by RPm+2the real projection space of dimension m+2.Then the so called conformal spaceis defined as(see[1])

    while,for any a>0,the de Sitter space(a)and the anti-de Sitter spaceare defined respectively by

    Then there are three conformal diffeomorphisms from the Lorentzian space forms into the conformal space

    In the reference[1],Nie at al.successfully set up a unified framework of conformal geometry for both regular surfaces and hypersurfaces in Lorentzian space forms by introducing the conformal spaceand some basic conformal invariants,including the conformal metric g,the conformal form Φ,the Blaschke tensor A and the conformal second fundamental form B.Later,all of these were generalized to regular submanifolds of higher codimensions(see [2]).Under this framework,several characterization or classification theorems were obtained for hypersurfaces with some special conformal invariants,see for example(see[1,3]).The achievement of these certainly proves the efficiency of the above framework.In particular,as the main theorems,regular hypersurfaces with parallel conformal second fundamental forms, and conformal isotropic submanifolds were classified in[1]and[2],respectively.Note that, a regular submanifold in the conformal spacewith vanishing conformal form is called conformal isotropic if its Blaschke tensor A is parallel to the conformal metric.For the later use,we rewrite these two theorems applied in the special case of space-like hypersurfaces as follows.

    Theorem 1.1[1]Let x:Mm→be a regular space-like hypersurface with parallel conformal second fundamental form.Then x is locally conformal equivalent to one of the following hypersurfaces

    Theorem 1.2[2]Any regular,space-like and conformal isotropic hypersurface inis conformal equivalent to a maximal,space-like and regular hypersurface inorwith constant scalar curvature.

    Motivated by the above theorems,we aims in the present paper at a complete classification of regular space-like hypersurfaces inwith parallel Blaschke tensors.To this end, we would like to make a direct use of the ideas and technics with which we previously studied the Mbius geometry of umbilc-free hypersurfaces in the unit sphere(see[6-9]).So we firstly define two conformal non-homogeneous coordinate systems(with the coordinate mapsrespectively)covering the conformal space,which are modeled on the de Sitter space,so that the conformal geometry of the hypersurfaces incorresponds right to that of the hypersurfaces in the de Sitter space.It follows that the conformal geometry of regular hypersurfaces in each ofandis made unified with that in.This shows that we only need to consider and study the conformal invariants of the hypersurfaces inwhich plays the same role as the unit sphere does in the Mbius geometry of umbilic-free submanifolds.With this consideration,we only focus here on the study of the conformal invariants of regular space-like hypersurfaces in the de Sitter space.As a result,we are able to establish a complete classification for all the regular space-like hypersurfaces with parallel Blaschke tensors.

    Note that the above two conformal non-homogeneous coordinate mapsandare conformal equivalent where both of them are defined.Therefore we can use Ψ to denote either one ofand.By this,the main theorem of the present paper is stated as follows.

    Theorem 1.3 Let x:Mm→,m≥2,be a regular space-like hypersurface.If the Blaschke tensor A of x is parallel,then one of the following holds.

    1.x is conformal isotropic and thus is locally conformal equivalent to a maximal spacelike regular hypersurface inwith constant scalar curvature,or the conformal image under Ψ?σ-1of a maximal regular hypersurface inwith constant scalar curvature,or the conformal image under Ψ?σ0of a maximal regular hypersurface inwith constant scalar curvature;

    2.x is of parallel conformal second fundamental form B and thus is locally conformal equivalent to

    (c)the image under Ψ?σ-1of Hk0<a<1,k= 1,···m-1;or

    3.x is non-isotropic with a non-parallel conformal second fundamental form B and is locally conformal equivalent to

    (a)one of the maximal hypersurfaces as indicated in Example 3.2;or

    (b)one of the non-maximal hypersurfaces as indicated in Example 3.3.

    Remark 1.1 It is directly verified in Section 3 that each of the regular space-like hypersurfaces stated in the above theorem has a parallel Blaschke tensor.

    2 Necessary Basics on Regular Space-Like Hypersurfaces

    This section provides some basics of the conformal geometry of regular space-like hypersurfaces in the Lorentzian space forms.The main idea comes originally from the work of Wang on the Mbius geometry of umbilic-free submanifolds in the unit sphere(see[10]), and much of the detail can be found in a series of papers by Nie at al(see for example[1-3]).

    Let x:Mm→be a regular space-like hypersurface in.Denote by h the(scalar-valued)second fundamental form of x with components hijand H=the mean curvature.Define the conformal factor ρ>0 and the conformal position Y of x, respectively,as follows

    Then Y(Mm)is clearly included in the light cone Cm+2?,where

    The positivity of ρ implies that Y:Mm→is an immersion of Mminto theClearly,the metric g:=〈dY,dY〉2≡ρ2〈dx,dx〉1on Mm,induced by Y and called the conformal metric,is invariant under the pseudo-orthogonal group O(m+3,2)of linear transformations onreserving the Lorentzian product〈·,·〉2.Such kind of things are called the conformal invariants of x.

    Definition 2.1(see[1-3])Let x,:Mm→be two regular space-like hypersurfaces with Y,their conformal positions,respectively.If there exists some T∈O(m+3,2) such that=T(Y),then x,are called conformal equivalent to each other.

    For any local orthonormal frame field{ei}and the dual{θi}on Mmwith respect to the standard metric〈dx,dx〉1,define

    Then{Ei}is a local orthonormal frame field with respect to the conformal metric g with {ωi}its dual coframe.Let n be the time-like unit normal of x.Define ξ=(-H,-Hx+n), then〈ξ,ξ〉2=-1.Let?denote the Laplacian with respect to the conformal metric g. Define N:Mm→by

    Then it holds that

    Furthermore,{Y,N,Yi,ξ,1≤i≤m}forms a moving frame inalong Y,with respectto which the equations of motion is as follows

    By the exterior differentiation of(2.5)and using Cartan's lemma,we can write

    Then the conformal form Φ,the Blaschke tensor A and the conformal second fundamental form B defined by

    are all conformal invariants.By a long but direct computation,we find that

    where Yij=Ej(Yi),is the Levi-Civita connection of the standard metric〈·,·〉1,and the subscript,ijdenotes the covariant derivatives with respect to.The differentiation of(2.5) also gives the following integrability conditions

    where Aijk,Bijk,Φijare respectively the components of the covariant derivatives of A,B, Φ,and Rijklis the components of the Riemannian curvature tensor of the conformal metric g.Furthermore,by(2.1)and(2.8)we have

    and by(2.13)we find the Ricci curvature tensor

    which implies that

    with κ being the normalized scalar curvature of g.

    It is easily seen[1]that the conformal position vector Y defined above is exactly the canonical lift of the composition map=σ1?x:Mm→,implying that the conformal invariants g,Φ,A,B defined above are the same as those ofintroduced by Nie at al.in[1].

    On the other hand,the conformal spaceis clearly covered by the following two open sets

    Define the following two diffeomorphisms

    by

    Then with respect to the conformal structure onintroduced in[1]and the standard metric on,bothandare conformal.

    Now for a regular space-like hypersurfacewith the canonical lift

    write Y=(Y1,Y2,Y3)∈×Rm+1.Then we have the following two composed hypersurfaces

    Then Mm=and the following lemma is clearly true by a direct computation:

    Lemma 2.1 The conformal position vectoris nothing butwhile the conformal position vectoris given by

    Corollary 2.2 The basic conformal invariants g,Φ,A,B ofcoincide accordingly with those of each ofon whereis defined,respectively.

    On the other hand,all the regular space-like hypersurfaces in the three Lorentzian space forms can be viewed as ones invia the conformal embeddings σ1,σ0and σ-1defined in(1.1).Now,usingone can shift the conformal geometry of regular space-like hypersurfaces into that of regular space-like hypersurfaces in the de Sitter spaceIt follows that,in a sense,the conformal geometry of regular space-like hypersurfaces can also be unified as that of the corresponding hypersurfaces in the de Sitter space.Concisely, we can achieve this simply by introducing the following four conformal maps

    where

    The following theorem will be used later in this paper.

    Theorem 2.4[2]Two hypersurfaces x:Mm→(m≥3) are conformal equivalent if and only if there exists a diffeomorphism f:M→which preserves the conformal metric and the conformal second fundamental form.

    3 Examples

    Before proving the main theorem,we first present some regular space-like hypersurfaces inwith parallel Blaschke tensors.

    Example 3.1(see[1,4])Let R+be the half line of positive real numbers.For any two given natural numbers p,q with p+q<m and a real number a>1,consider the hypersurface of warped product embedding

    defined by

    The similar example of WP(p,q,a)in Mbius geometry was originally found by[4]and denoted by CSS(p,q,a).

    Example 3.2 Given r>0.For any integers m and K satisfying m≥3 and 2≤K≤ m-1,letbe a regular and maximal space-like hypersurface with constant scalar curvature

    and

    be the canonical embedding,where0>0.Set

    Define

    Therefore the induced“metric”=d·dis derived as

    where h is the second fundamental form of

    Let{Ei;1≤i≤K}(resp.{Ei;K+1≤i≤m})be a local orthonormal frame field onThen{Ei;1≤i≤m}gives a local orthonormal frame field oni=1,···,m.Then{ei;1≤i≤m}is a orthonormal frame field along.Thus we obtain

    where we have used the Gauss equation and(3.1).It follows thatis regular and its conformal factor=0.Thus,given in(3.2),is exactly the conformal position vector of,implying the induced metric g byis nothing but the conformal metric of.Furthermore, the conformal second fundamental form ofis given by

    where{ωi}is the local coframe field on Mmdual to{Ei}.

    On the other hand,by(3.3)and the Gauss equations of1and,one finds that the Ricci tensor of g is given as follows

    which implies that the normalized scalar curvature of g is given by

    Thus

    Since m≥3,it follows from(2.15)and(3.11)-(3.16)that the Blaschke tensor ofis given by A=∑Aijωiωj,where

    Clearly,A has two distinct eigenvalues,which are constant.Thus by (3.3),A is parallel.

    Example 3.3 Given r>0.For any integers m and K satisfying m≥3 and 2≤K≤m-1,let

    be a regular and maximal space-like hypersurface with constant scalar curvature

    Suitably choose the time-like unit normal vector field(0,1)of,define

    where h is the second fundamental form of.

    Let{Ei;1≤i≤K}(resp.{Ei;K+1≤i≤m})be a local orthonormal frame field on (M1,d2)(resp.on Sm-K(r)).Then{Ei;1≤i≤m}is a local orthonormal frame field on (Mm,g).Put ei=ε0Ei,i=1,···,m.Then{ei;1≤i≤m}is a local orthonormal frame field with respect to the metric=〈d,d〉1.Thus

    and

    Therefore,by definition,the conformal factorofis determined by

    where we have used the Gauss equation and(3.19).Hence=|0|=ε0>0 and thus=(1,)is the conformal position vector of.Consequently,the conformal metric ofis defined by〈d,d〉2=g.Furthermore,the conformal second fundamental form ofis given by

    where{ωi}is the local coframe field on Mmdual to{Ei}.

    On the other hand,by(3.21)and the Gauss equations of1and,one finds the Ricci tensor of g as follows

    which implies that the normalized scalar curvature of g is given by

    Thus

    Since m≥3,it follows from(2.15)and(3.29)-(3.34)that the Blaschke tensor ofis given by A=∑Aijωiωj,where

    which,once again,implies that A is parallel with two distinct eigenvalues λ1=-λ2=

    4 Proof of Main Theorem

    To make the argument more readable,we divide the proof into several lemmas.

    Let x:Mm→be a regular space-like hypersurface.

    Lemma 4.1 If the Blaschke tensor A is parallel,then the conformal form Φ vanishes identically.

    Proof For any given point p∈Mm,take an orthonormal frame field{Ei}around p with respect to the conformal metric g,such that Bij(p)=Biδij.Then it follows from(2.11) that

    Since A is parallel,Aijk=0 for any i,j,k.Thus at the given point p,we have

    By(2.14),there are different indices i1,i2such that Bi10 and Bi20.Then for any indices i,j,we have

    If i=i1,put j=i2;if ii1,put j=i1.Then it follows from(4.2)that Φi(p)=0.By the arbitrariness of i and p,we obtain that Φ≡0.

    Remark 4.1Since A is parallel,then all eigenvalues of the Blaschke tensor A of x are constant on Mm.From the equation

    we obtain that

    Lemma 4.2 If A is parallel,then Bij=0 as long as AiAj.

    Proof Since A is parallel,there exists around each point a local orthonormal frame field{Ei}such that

    It follows from(2.10)and Lemma 4.1 that=0.Then we have Bij(Aj-Ai)=0.

    Now,let t be the number of the distinct eigenvalues of A,and λ1,···,λtdenote the distinct eigenvalues of A.Fix a suitably chosen orthonormal frame field{Ei}for which the matrix(Aij)can be written as

    or equivalently,

    Lemma 4.3 Suppose that t≥3.If,with respect to an orthonormal frame field{Ei}, (4.5)holds and at a point p,Bij=Biδij,then Bi=Bjin the case that Ai=Aj.

    Proof By(4.3),for any i,j satisfying AiAj,we have=0.Differentiating this equation,we obtain from(2.13)that 0=Rijji=B2ij-BiiBjj+Aii-Aijδij+Ajj-Aijδij. Thus at p,it holds that

    If there exist indices i,j such that Ai=Ajbut BiBj,then for all k satisfying AkAi,we have

    It follows from(4.8)that(Bi-Bj)Bk=0,which implies that Bk=0.Thus by(4.8),we obtain Ak=-Ai=-Aj.This implies that t=2,contradicting the assumption.

    Corollary 4.4 If t≥3,then there exists an orthonormal frame field{Ei}such that

    Furthermore,if(4.5)holds,then

    that is

    Proof Since A is parallel,we can find a local orthonormal frame field{Ei},such that (4.5)holds.It then suffices to show that,at any point,the component matrix(Bij)of B with respect to{Ei}is diagonal.Note that k1,...,ktare the multiplicities of the eigenvalues λ1,···,λt,respectively.By Lemma 4.2,we can write(Bij)=Diag(B(1),···,B(t)),where B(1),···,B(t)are square matrices of orders k1,···,kt,respectively.For any point p,we can choose a suitable orthogonal matrix T of the form T=Diag(T(1),···,T(t)),with T(1),···,T(t)being orthogonal matrices of orders k1,···,kt,such that

    where B1,···,Bmare the eigenvalues of tensor B at p.It then follows from Lemma 4.3 that B1=···=Bk1:=μ1,···,Bm-kt+1=···=Bm:=μt.Hence

    Therefore

    In the same way,

    Thus

    Lemma 4.5 If t≥3,then all the conformal principal curvaturesμ1,···,μtof x are constant,and hence x is conformal isoparametric.

    Proof Without loss of generality,we only need to show thatμ1is constant.To this end,choose a frame field{Ei}such that(4.5)and(4.10)hold.Note that,by(4.3),when 1≤i≤k1and j>k1,we have

    which implies that Bijk=0.

    By Lemma 4.1,Φ≡0.Hence from(2.12)one seen that Bijkis symmetric with respect to i,j,k.It follows that Bijk=0,in case that two indices in i,j,k are less than or equal to k1with the other index larger than k1,or one index in i,j,k is less than or equal to k1with the other two indices larger than k1.In particular,for any i,j satisfying 1≤i,j≤k1,

    Putting j=i,one obtains

    which implies that

    Similarly,

    On the other hand,we see from(4.7)that

    hold identically.Differentiating(4.19)in the direction of Ek,1≤k≤k1,and using(4.18), we obtain

    By(2.14)there exists some index j such that k1+1≤j≤m and Bj0.Therefore, Ek(μ1)=0 for 1≤k≤k1.This together with(4.17)implies thatμ1is a constant.

    Corollary 4.6If t≥3,then t=3 and B is parallel.

    Proof Indeed,the conclusion that B is parallel comes from(4.3),Corollary 4.4 and Lemma 4.5.

    If t>3,then there exist at least four indices i1,i2,i3,i4,such that Ai1,Ai2,Ai3,Ai4are distinct each other.Then it follows from(4.7)that

    Consequently,we obtain(Ai1-Ai4)(Ai2-Ai3)=0,a contradiction.

    Lemma 4.7If t≤2 and B is not parallel,then one of the following cases holds:

    (1)t=1 and x is conformal isotropic;

    (2)t=2,λ1+λ2=0 and Bi=0 either for all 1≤i≤k1,or for all k1+1≤i≤m.

    Proof Note that Φ≡0.Thus x is conformal isotropic if and only if t=1.

    If t=2,then for any point p∈Mm,we can find an orthonormal frame field{Ei}such that(4.9)holds at p.

    By(4.3),we see that

    hold identically.Taking exterior differentiation of(4.22)and making use of(2.13),we find that,at p

    If there exist one pair of indices i0,j0satisfying 1≤i0≤k1,k1+1≤j0≤m such that BiO0 and BjO0,then for each index i satisfying 1≤i≤k1,we obtain

    from which it follows that(Bi-BiO)BjO=0,or equivalently Bi=BiO,1≤i≤k1. Similarly,we obtain Bj=BjO,k1+1≤j≤m.Consequently,(4.10)also holds in the case that t=2.Now,an argument similar to that in the proof of Lemma 4.5 shows that the conformal principal curvatures Biare all constant.Therefore B is parallel by(4.22), contradicting to the assumption.Thus either Bi=0 for all indices i satisfying 1≤i≤k1, or Bj=0 for all indices j satisfying k1+1≤j≤m.In both cases we have,by(4.23), λ1+λ2=0.

    Proof of Theorem 1.2 By Theorem 1.1 and Theorem 1.2,it clearly suffices to consider the case that x neither is conformal isotropic nor has parallel conformal second fundamental form.Hence from those Lemmas proved in this section,we can suppose without loss of generality that

    Let{Ei;1≤i≤k1}and{Ej;k1+1≤j≤m}be orthonormal frame fields for subbundles V1and V2,respectively.Then{Ei;1≤i≤m}is an orthonormal frame field on Mmwith respect to the conformal metric g.Then(4.22)implies that both V1and V2are integrable,and thus Riemannian manifold(Mm,g)can be locally decomposed into a direct product of two Riemannian manifolds(M1,g1)and(M2,g2),that is,as a Riemannian manifold,locally

    It follows from(2.13),(4.5),(4.24)and(4.25)that the Riemannian curvature tensors of (M1,g1)and(M2,g2)have the following components,respectively,

    Thus(M2,g2)is of constant sectional curvature-2λ.

    Next we consider the following cases separately.

    Case(1)λ>0.In this case,set r=(2λ)-1/2.Then(M2,g2)can be locally identified withbe the canonical embedding.

    which has h as its second fundamental form.Clearly,1has constant scalar curvature

    and Mmcan be locally identified with

    Case(2)λ<0.In this case,set r=(-2λ)-1/2,then(M2,g2)can be locally identified with Sm-k1(r).Let2:Sm-k1(r)→Rm-k1+1be the canonical embedding.

    which has h as its second fundamental form.Clearly,has constant scalar curvature

    and Mmcan be locally identified with

    Assume without loss of generality that00.Define ε=Sgn(0)and let1=ε1/0,2=ε2/0and=(1,2).Then,by the discussion in Example 3.3,:defines a regular space-like hypersurface with the given g and B as its conformal metric and conformal second fundamental form,respectively.It follows by Theorem 2.4 that x is conformal equivalent to.

    References

    [1]Nie Changxiong,Wu Chuanxi.Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space(in Chinese)[J].Acta Math.Sinica,Chin.Ser.,2008,51(4):685-692.

    [2]Nie Changxiong,Wu Chuanxi.Regular submanifolds in the conformal space[J].Chin.Ann. Math.,2012,33:695-714.

    [3]Nie Changxiong,Li Tongzhu,He Yijun,Wu Chuanxi.Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space[J].Sci.China Math.,2010,53(4): 953-965.

    [4]Hu Zejun,Li Haizhong.Classification of hypersurfaces with parallel Mbius second fundamental form in Sn+1[J].Sci.China Ser.A,2004,47:417-430.

    [5]Han Yingbo,Feng Shuxiang.On complete hypersurfaces in hyperbolic space form Hn+1(-1)[J].J. Math.,2013,33(5):767-772.

    [6]Hu Zejun,Li Xingxiao,Zhai Shujie.On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues[J].Sci.China Math.,2011:54:2171-2194.

    [7]Li Xingxiao,Zhang Fengyun.A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors[J].Tohoku Math.J.,2006,58:581-597.

    [8]Li Xingxiao,Zhang Fengyun.Immersed hypersurfaces in the unit sphere Sm+1with constant Blaschke eigenvalues[J].Acta Math.Sinica,Engl.Ser.,2007,23(3):533-548.

    [9]Li Xingxiao,Zhang Fengyun.On the Blaschke isoparametric hypersurfaces in the unit sphere[J]. Acta Math.Sinica,Engl.Ser.,2009,25(4):657-678.

    李興校,宋虹儒

    (河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng)453007)

    本文引入兩個(gè)以de Sitter空間為模型的非齊性坐標(biāo)來覆蓋共形空間.利用球面Sm+1中超曲面的Mbius幾何的方法,本文研究了中正則類空超曲面的共形幾何.作為其結(jié)果,本文對(duì)所有具有平行Blaschke張量的正則類空超曲面進(jìn)行了完全分類.

    共形形式;平行Blaschke張量;共形度量;共形第二基本形式;極大超曲面;常數(shù)量曲率

    MR(2010)主題分類號(hào):53A30;53B25O186

    ?date:2015-07-04Accepted date:2016-02-19

    Supported by National Natural Science Foundation of China(11171091; 11371018).

    Biography:Li Xingxiao(1958-),male,born at Jiyuan,Henan,professor,major in differential geometry.

    猜你喜歡
    共形張量正則
    具有共形能力的阻抗可調(diào)天線
    偶數(shù)階張量core逆的性質(zhì)和應(yīng)用
    基于共形超表面的波束聚焦研究
    四元數(shù)張量方程A*NX=B 的通解
    剩余有限Minimax可解群的4階正則自同構(gòu)
    共形雙曲度量的孤立奇點(diǎn)
    類似于VNL環(huán)的環(huán)
    擴(kuò)散張量成像MRI 在CO中毒后遲發(fā)腦病中的應(yīng)用
    有限秩的可解群的正則自同構(gòu)
    工程中張量概念的思考
    河南科技(2014年19期)2014-02-27 14:15:33
    哪里可以看免费的av片| 欧美日韩瑟瑟在线播放| 狠狠狠狠99中文字幕| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 国产精品人妻久久久久久| 一区二区三区四区激情视频 | 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 久久久久国产精品人妻aⅴ院| 日本爱情动作片www.在线观看 | 色综合站精品国产| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 女同久久另类99精品国产91| 午夜福利视频1000在线观看| 免费av不卡在线播放| 日本 欧美在线| 永久网站在线| 久久午夜亚洲精品久久| 在线天堂最新版资源| 51国产日韩欧美| 日韩人妻高清精品专区| 九九爱精品视频在线观看| av在线天堂中文字幕| 国产aⅴ精品一区二区三区波| 99视频精品全部免费 在线| 人妻制服诱惑在线中文字幕| 男女视频在线观看网站免费| 男女边吃奶边做爰视频| 日本黄大片高清| 精品人妻一区二区三区麻豆 | 午夜福利成人在线免费观看| 一边摸一边抽搐一进一小说| 又粗又爽又猛毛片免费看| 精品福利观看| 又爽又黄a免费视频| 黄色视频,在线免费观看| 免费在线观看影片大全网站| 精品一区二区三区av网在线观看| 欧美性感艳星| 欧美又色又爽又黄视频| 免费黄网站久久成人精品| 我要看日韩黄色一级片| 欧美又色又爽又黄视频| 九九爱精品视频在线观看| 国产黄色小视频在线观看| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 国产精品久久久久久精品电影| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 精品人妻熟女av久视频| 九九热线精品视视频播放| 日韩一本色道免费dvd| 国产精品99久久久久久久久| 日本三级黄在线观看| videossex国产| 国产一区二区在线观看日韩| 日韩大尺度精品在线看网址| 69人妻影院| 五月玫瑰六月丁香| 91久久精品电影网| 亚洲午夜理论影院| 精品人妻一区二区三区麻豆 | 亚洲av熟女| 人人妻,人人澡人人爽秒播| 啦啦啦观看免费观看视频高清| 一进一出抽搐动态| 国产在线精品亚洲第一网站| 嫩草影院精品99| av中文乱码字幕在线| 成人av一区二区三区在线看| 免费看光身美女| 九九爱精品视频在线观看| 午夜老司机福利剧场| 国产精品一及| 国产一级毛片七仙女欲春2| 日韩国内少妇激情av| av在线亚洲专区| 中文字幕久久专区| 精品人妻一区二区三区麻豆 | 亚洲avbb在线观看| 在线免费十八禁| 69av精品久久久久久| 国产一区二区三区在线臀色熟女| 夜夜爽天天搞| 最新中文字幕久久久久| 色哟哟哟哟哟哟| 91狼人影院| 国产精品一区二区免费欧美| 最近在线观看免费完整版| 露出奶头的视频| 久久久久久久久大av| 精品人妻1区二区| 精品福利观看| 欧美日韩瑟瑟在线播放| a级一级毛片免费在线观看| 中文在线观看免费www的网站| 日韩欧美精品免费久久| 国产精品av视频在线免费观看| 22中文网久久字幕| 精品一区二区三区视频在线观看免费| 老熟妇乱子伦视频在线观看| 午夜日韩欧美国产| 中文资源天堂在线| 久久久久国产精品人妻aⅴ院| 波野结衣二区三区在线| 老熟妇仑乱视频hdxx| 不卡一级毛片| 又紧又爽又黄一区二区| 成人永久免费在线观看视频| 亚洲成av人片在线播放无| 日日夜夜操网爽| 亚洲成av人片在线播放无| 极品教师在线视频| 男人的好看免费观看在线视频| 黄色女人牲交| 91午夜精品亚洲一区二区三区 | 欧美3d第一页| 男人和女人高潮做爰伦理| 天天躁日日操中文字幕| 亚洲狠狠婷婷综合久久图片| 亚洲美女视频黄频| 3wmmmm亚洲av在线观看| 97碰自拍视频| 国产黄片美女视频| 日韩国内少妇激情av| 尤物成人国产欧美一区二区三区| 亚洲一区高清亚洲精品| 久9热在线精品视频| 最近最新免费中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 91午夜精品亚洲一区二区三区 | 精品国内亚洲2022精品成人| 久久久久九九精品影院| 国国产精品蜜臀av免费| 动漫黄色视频在线观看| 国产单亲对白刺激| 亚洲av成人av| 免费无遮挡裸体视频| 天堂影院成人在线观看| 男人的好看免费观看在线视频| 亚洲精品成人久久久久久| a级一级毛片免费在线观看| 99国产精品一区二区蜜桃av| 午夜免费成人在线视频| av黄色大香蕉| 午夜影院日韩av| 国产伦在线观看视频一区| 午夜福利成人在线免费观看| 久久久久国内视频| 久久这里只有精品中国| 国产乱人伦免费视频| 啦啦啦韩国在线观看视频| 欧美色欧美亚洲另类二区| 狂野欧美激情性xxxx在线观看| 国产三级中文精品| 国产精品国产高清国产av| 成人美女网站在线观看视频| 亚洲五月天丁香| 久久这里只有精品中国| 午夜福利高清视频| 天堂av国产一区二区熟女人妻| 男插女下体视频免费在线播放| 99久久中文字幕三级久久日本| 亚洲精品一区av在线观看| 少妇高潮的动态图| 欧美性感艳星| 久久亚洲精品不卡| 国产毛片a区久久久久| 成人亚洲精品av一区二区| a在线观看视频网站| 国产精品日韩av在线免费观看| 一区二区三区高清视频在线| 人人妻人人看人人澡| 精品国内亚洲2022精品成人| 国产成人av教育| or卡值多少钱| 久久亚洲精品不卡| 精品久久久久久久久久免费视频| 干丝袜人妻中文字幕| 日韩欧美免费精品| 国产伦精品一区二区三区视频9| 日本 av在线| 亚洲av二区三区四区| 国产精品永久免费网站| 久久九九热精品免费| 久久久久久大精品| 国产三级中文精品| 国产精品电影一区二区三区| 老女人水多毛片| 高清毛片免费观看视频网站| 国产精品,欧美在线| 99热网站在线观看| 国产私拍福利视频在线观看| 国产精品一区二区三区四区久久| 久久婷婷人人爽人人干人人爱| 久久久成人免费电影| 最好的美女福利视频网| 精品人妻偷拍中文字幕| 在线天堂最新版资源| 在线观看66精品国产| 人妻丰满熟妇av一区二区三区| 久久久国产成人精品二区| 麻豆成人午夜福利视频| 久久99热6这里只有精品| 淫秽高清视频在线观看| 听说在线观看完整版免费高清| 中亚洲国语对白在线视频| 久99久视频精品免费| 淫妇啪啪啪对白视频| 少妇高潮的动态图| 大型黄色视频在线免费观看| 亚州av有码| 免费看美女性在线毛片视频| 乱系列少妇在线播放| 一本精品99久久精品77| 少妇高潮的动态图| 久久精品人妻少妇| 少妇丰满av| 五月玫瑰六月丁香| 日本免费a在线| av女优亚洲男人天堂| 午夜久久久久精精品| 搞女人的毛片| 亚洲专区中文字幕在线| 99久久精品热视频| 噜噜噜噜噜久久久久久91| 国产伦人伦偷精品视频| 极品教师在线免费播放| 亚洲五月天丁香| 亚洲成人久久爱视频| 老司机福利观看| 国内精品久久久久精免费| 在线播放无遮挡| 在线a可以看的网站| 色哟哟哟哟哟哟| 少妇丰满av| 中文字幕熟女人妻在线| 男插女下体视频免费在线播放| 校园春色视频在线观看| 中文资源天堂在线| 97碰自拍视频| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美人成| 久久午夜亚洲精品久久| 高清在线国产一区| 日韩国内少妇激情av| 欧美+亚洲+日韩+国产| 热99在线观看视频| 欧美一区二区国产精品久久精品| 日本欧美国产在线视频| 国产精品人妻久久久久久| 国产av一区在线观看免费| 看片在线看免费视频| 变态另类成人亚洲欧美熟女| 午夜福利在线在线| 一a级毛片在线观看| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 俺也久久电影网| 亚洲美女搞黄在线观看 | 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 久久午夜亚洲精品久久| 欧美高清性xxxxhd video| 精品一区二区三区av网在线观看| 亚洲专区国产一区二区| 久久国产乱子免费精品| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品成人综合色| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久一区二区三区 | 69av精品久久久久久| av女优亚洲男人天堂| 十八禁国产超污无遮挡网站| 日韩欧美在线乱码| 亚洲中文字幕日韩| 日韩中文字幕欧美一区二区| 久久这里只有精品中国| 我的女老师完整版在线观看| 最近最新免费中文字幕在线| 亚洲va在线va天堂va国产| 亚洲avbb在线观看| 黄色丝袜av网址大全| h日本视频在线播放| 全区人妻精品视频| 最新中文字幕久久久久| 丰满人妻一区二区三区视频av| 淫秽高清视频在线观看| 国内毛片毛片毛片毛片毛片| 在线观看午夜福利视频| 51国产日韩欧美| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 国产真实伦视频高清在线观看 | 国产日本99.免费观看| 国产亚洲精品综合一区在线观看| 亚洲成人中文字幕在线播放| 亚洲精品影视一区二区三区av| 精品久久久久久成人av| 日韩欧美国产在线观看| 成人国产综合亚洲| 99视频精品全部免费 在线| 日韩精品青青久久久久久| 国产午夜精品久久久久久一区二区三区 | 免费av毛片视频| 国产欧美日韩精品亚洲av| 我要搜黄色片| 俺也久久电影网| 很黄的视频免费| 欧美潮喷喷水| 亚洲欧美日韩东京热| 国产精品无大码| 国产精品,欧美在线| 天天躁日日操中文字幕| 在线免费十八禁| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 婷婷亚洲欧美| ponron亚洲| 婷婷六月久久综合丁香| 综合色av麻豆| 一边摸一边抽搐一进一小说| 亚洲av不卡在线观看| 国内精品久久久久精免费| 国产老妇女一区| 亚洲 国产 在线| 深爱激情五月婷婷| a在线观看视频网站| 欧美另类亚洲清纯唯美| 亚洲在线观看片| 国产视频一区二区在线看| 美女被艹到高潮喷水动态| 亚洲va日本ⅴa欧美va伊人久久| 国产在视频线在精品| 久久精品国产亚洲av涩爱 | 免费观看人在逋| 亚洲四区av| 日韩欧美在线二视频| av专区在线播放| av在线蜜桃| 午夜福利欧美成人| 国产高清有码在线观看视频| 日韩亚洲欧美综合| av专区在线播放| 又黄又爽又免费观看的视频| 一区福利在线观看| 变态另类丝袜制服| 国产真实乱freesex| 如何舔出高潮| 不卡视频在线观看欧美| 三级国产精品欧美在线观看| 久久久成人免费电影| 极品教师在线免费播放| 1024手机看黄色片| 午夜福利成人在线免费观看| 成人精品一区二区免费| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人下体高潮全视频| 俺也久久电影网| 亚洲在线自拍视频| 嫩草影视91久久| 天美传媒精品一区二区| 欧美另类亚洲清纯唯美| av.在线天堂| 综合色av麻豆| 欧美中文日本在线观看视频| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 国产精品久久久久久av不卡| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 99久久精品国产国产毛片| 国产亚洲精品综合一区在线观看| 午夜免费成人在线视频| 成人亚洲精品av一区二区| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 欧美色视频一区免费| 欧美日本视频| 黄片wwwwww| 一本一本综合久久| 色5月婷婷丁香| 国产一区二区三区av在线 | 99精品在免费线老司机午夜| 1000部很黄的大片| 超碰av人人做人人爽久久| 亚洲avbb在线观看| 动漫黄色视频在线观看| 十八禁网站免费在线| 午夜激情福利司机影院| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 精品午夜福利在线看| 精品人妻熟女av久视频| 欧美日本视频| 91av网一区二区| 亚洲精品影视一区二区三区av| 真实男女啪啪啪动态图| 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx在线观看| 两人在一起打扑克的视频| 人妻制服诱惑在线中文字幕| 丰满的人妻完整版| av女优亚洲男人天堂| 韩国av一区二区三区四区| 搡老岳熟女国产| 国产精品久久视频播放| 成人一区二区视频在线观看| 一级a爱片免费观看的视频| 嫩草影院入口| 看黄色毛片网站| 久久99热这里只有精品18| 51国产日韩欧美| 一级黄色大片毛片| 国产高清视频在线观看网站| 禁无遮挡网站| 美女被艹到高潮喷水动态| av中文乱码字幕在线| 日本爱情动作片www.在线观看 | 男人狂女人下面高潮的视频| 免费观看在线日韩| 少妇裸体淫交视频免费看高清| 国产又黄又爽又无遮挡在线| 99国产极品粉嫩在线观看| 久久久久久久精品吃奶| av专区在线播放| 亚洲精品一区av在线观看| 色播亚洲综合网| 在线播放国产精品三级| 亚洲电影在线观看av| 久久久久久久午夜电影| 91麻豆av在线| 精品一区二区三区人妻视频| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 窝窝影院91人妻| 久久99热这里只有精品18| 真人一进一出gif抽搐免费| 又黄又爽又免费观看的视频| 麻豆国产97在线/欧美| 日韩欧美在线二视频| 亚洲av中文av极速乱 | 日韩在线高清观看一区二区三区 | 制服丝袜大香蕉在线| av在线老鸭窝| eeuss影院久久| 一进一出抽搐动态| 麻豆成人av在线观看| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 韩国av一区二区三区四区| 长腿黑丝高跟| 嫁个100分男人电影在线观看| 国产精品99久久久久久久久| 国产不卡一卡二| 桃红色精品国产亚洲av| 99久久精品一区二区三区| 欧美日本亚洲视频在线播放| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| av国产免费在线观看| 日韩高清综合在线| 国产欧美日韩精品一区二区| 黄片wwwwww| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 毛片女人毛片| 中国美白少妇内射xxxbb| 一a级毛片在线观看| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 久久久久久伊人网av| 别揉我奶头~嗯~啊~动态视频| 18+在线观看网站| 国产高清视频在线观看网站| 一级黄片播放器| 网址你懂的国产日韩在线| 免费高清视频大片| 啦啦啦啦在线视频资源| 永久网站在线| 欧美性感艳星| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 久久久久久久久中文| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 成年免费大片在线观看| 在线a可以看的网站| 久久久久久大精品| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 99riav亚洲国产免费| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 97碰自拍视频| 久久久色成人| 亚洲国产日韩欧美精品在线观看| 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 欧美日韩综合久久久久久 | 免费观看的影片在线观看| 尾随美女入室| 久久久久久久久久黄片| 很黄的视频免费| 国产乱人视频| 亚洲精华国产精华精| 日韩在线高清观看一区二区三区 | 美女xxoo啪啪120秒动态图| 18+在线观看网站| 搡女人真爽免费视频火全软件 | 亚洲18禁久久av| 亚洲美女搞黄在线观看 | 12—13女人毛片做爰片一| 丝袜美腿在线中文| 18+在线观看网站| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 97热精品久久久久久| 免费av观看视频| 国产国拍精品亚洲av在线观看| 成熟少妇高潮喷水视频| 91午夜精品亚洲一区二区三区 | 亚洲,欧美,日韩| 亚洲熟妇熟女久久| 精品久久久久久久久久久久久| 欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 一个人看的www免费观看视频| 嫩草影院精品99| 少妇的逼水好多| 天堂动漫精品| 日韩一区二区视频免费看| 成人特级av手机在线观看| 日韩在线高清观看一区二区三区 | 一夜夜www| 可以在线观看毛片的网站| 亚洲av美国av| 国产色婷婷99| 精品乱码久久久久久99久播| 中文在线观看免费www的网站| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 亚洲久久久久久中文字幕| 日韩精品有码人妻一区| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 婷婷丁香在线五月| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 国产不卡一卡二| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 国产久久久一区二区三区| avwww免费| 别揉我奶头 嗯啊视频| 久久婷婷人人爽人人干人人爱| 久久精品国产鲁丝片午夜精品 | 最新在线观看一区二区三区| 深夜a级毛片| 欧美成人免费av一区二区三区| 少妇丰满av| 亚洲天堂国产精品一区在线| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 天堂影院成人在线观看| 99热只有精品国产| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 人人妻人人看人人澡| 欧美一区二区亚洲| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 岛国在线免费视频观看| 欧美精品啪啪一区二区三区| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 久久午夜福利片| 在线a可以看的网站| a在线观看视频网站| 午夜福利在线观看免费完整高清在 | 国产淫片久久久久久久久| 久久香蕉精品热| 一夜夜www| 中文资源天堂在线| 校园人妻丝袜中文字幕| 亚洲中文日韩欧美视频| 亚洲av美国av| 国产成人a区在线观看| 国产一区二区亚洲精品在线观看| 亚洲中文日韩欧美视频|