• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GROUND STATE SOLUTIONS FOR NONLINEAR DIFFERENCE EQUATIONS WITH PERIODIC COEFFICIENTS

    2016-12-07 08:59:02MAIliSUNGuowei
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:阿麗方程解基態(tài)

    MAI A-li,SUN Guo-wei

    (Department of Applied Mathematics,Yuncheng University,Yuncheng 044000,China)

    GROUND STATE SOLUTIONS FOR NONLINEAR DIFFERENCE EQUATIONS WITH PERIODIC COEFFICIENTS

    MAI A-li,SUN Guo-wei

    (Department of Applied Mathematics,Yuncheng University,Yuncheng 044000,China)

    In this paper,we study the existence of ground state solutions for nonlinear second order difference equations with periodic coefficients.Using the critical point theory in combination with the Nehari manifold approach,the existence of ground state solutions is established.Under a more general super-quadratic condition than the classical Ambrosetti-Rabinowitz condition,the results considerably generalize some existing ones.Finally,an example is also presented to demonstrate our results.

    nonlinear difference equations;Nehari manifold;ground state solutions;critical point theory

    2010 MR Subject Classification:39A10;39A12

    Document code:AArticle ID:0255-7797(2016)06-1173-10

    1 Introduction

    In this paper,we consider the following nonlinear second order difference equation

    where a(k),b(k)and f(k,u)are T-periodic in k,f(k,u):Z×R→R is a continuous function on u.The forward difference operator?is defined by

    where Z and R denote the sets of all integers and real numbers,respectively.

    The solutions of(1.1)are referred to as homoclinic solutions of the equation

    In the theory of differential equations,homoclinic orbits play an important role in analyzing the chaos of dynamical systems.If a system has the transversely intersected homoclinic orbits,then it must be chaotic.If a system has the smoothly connected homoclinic orbits, then it can not stand the perturbation,its perturbed system probably produces chaotic. Therefore,it is of practical importance and mathematical significance to study the existence of homoclinic solutions.

    Difference equations represent the discrete counterpart of ordinary differential equations. The classical methods are used in difference equations,such as numerical analysis,fixed point methods,linear and nonlinear operator theory,see[1-4].In recent years,the existence and multiplicity of homoclinic solutions for difference equations have been studied in many papers by variational methods,see[5-12]and the reference therein.

    Assume the following conditions hold:

    (A)a(k)>0 and a(k+T)=a(k)for all k∈Z.

    (B)b(k)>0 and b(k+T)=b(k)for all k∈Z.

    (H1)f∈C(Z×R,R),and there exist C>0 and p∈(2,∞)such that

    Remark 1.1(H2)implies that u(k)≡0 is a trivial solution of(1.1).

    Our main result is following.

    Theorem 1.1Suppose that conditions(A),(B)and(H1)-(H4)are satisfied.Then equation(1.1)has at least a nontrivial ground state solution,i.e.,solution corresponding to the least energy of the action functional of(1.1).

    Remark 1.2 In[6],the authors also considered(1.1)and assumed that(H2)and the following classical Ambrosetti-Rabinowitz superlinear condition(see[16,17]):there exists a constantμ>2 such that

    (1.3)implies that for each k∈Z,there exists a constant C>0 such that

    This implies(H3)holds.There exists a superlinear function,such as

    does not satisfy(1.3).However,it satisfies the conditions(H1)-(H4).So our conditions are weaker than conditions presented in[6].And in our paper,we do not need periodic approximation technique to obtain homoclinic solutions.Furthermore,the existence of ground state solutions can be obtained.

    Remark 1.3In[13],the authors considered the following difference equation

    Let p=0 and M=0,(1.2)is the special case of(1.5).

    The following hypotheses with p=0 and M=0 are satisfied in[13]:

    (F1)F∈C(Z×R,R)with F(n+T,u)=F(n,u)and it satisfies=f(n,u);

    (F2)there exist positive constantsand a<such that|F(n,u)|≤a|u|2for all n∈Z and|u|≤

    (F3)there exist constants ρ,c>and b such that F(n,u)≥c|u|2+b for all n∈Z and|u|≥ρ;

    (F4)fu-2F>0 for all n∈Z and|u|0;

    (F5)fu-2F→∞,as|u|→∞.

    Note that(H2)-(H4)imply that(F2)-(F4).A nontrivial homoclinic orbit of(1.5)is obtained by Mountain Pass lemma in combination with periodic approximations in[13]. However,in our paper,we employ the Nehari manifold approach instead of periodic approximation technique to obtain the ground state solutions.Furthermore,we show that the functional is coercive on Nehari manifold(Lemma 3.2),which is weaker than P.S.condition in[13].

    The rest of this paper is organized as follows.In Section 2,we establish the variational framework associated with(1.1),and transfer the existence of solutions of boundary value problem(1.1)into the existence of critical points of the corresponding functional.By employing the critical point theory,we give proofs of the main results in Section 3.Finally,we give a simple example to demonstrate our results.

    2 Variational Framework

    In this section,we firstly establish the corresponding variational setting associated with (1.1).Let

    be the set of all real sequences

    Then X is a vector space with au+bv={au(k)+bu(k)}for u,v∈X,a,b∈R.

    Define the space

    Then E is a Banach space equipped with the corresponding norm

    For 1≤p<+∞,denote

    equipped with the norm

    |·|is the usual absolute value in R.Then the following embedding between lpspaces holds

    Now we consider the variational functional J defined on E by

    Then J∈C1(E,R),and for all u,v∈E,we have

    Then we easily get the variational formulation for(1.1).

    Lemma 2.1 Every critical point u∈E of J is a solution of(1.1).

    Proof We assume that u∈E is a critical point of J,then J'(u)=0.According to (2.2),this is equivalent to

    For any h∈Z,we define eh∈E by putting eh(k)=δhkfor all k∈Z,where δhk=1 if h=k;δhk=0 if hk.If we apply(2.3)with v=eh,then

    i.e.,u is a solution of(1.1).The proof is completed.

    3 Proof of Main Results

    Now,we consider the Nehari manifold N={u∈E{0}:J'(u)u=0},and let c=J(u).By the definition of N,we know N contains all nontrivial critical points of J.

    Lemma3.1Assume that(A),(B)and(H2)-(H4)are satisfied,then N is homeomorphic to the unit sphere S in E,where S={u∈E:‖u‖=1}.

    Let U?E{0}be a weakly compact subset,we know that

    In fact,let{un}?U.It needs to show that

    as n→∞.Passing to a subsequence if necessary,un?u∈E{0}and un(k)→u(k)for every k,as n→∞.

    Note that from(H2)and(H4),it is easy to get that

    Since|snun(k)|→∞and un0,by(H3)and(3.3),we have

    Thus we obtain(3.2)holds.

    Let h(s):=J(sw),s>0.Then

    from(3.1)-(3.4),then there exists a unique sw,such that,when 0<s<sw,h'(s)>0;and when s>sw,h'(s)<0.Therefore h'(sw)=J'(sww)w=0 and sww∈N.

    Therefore swis a unique maximum of h(s),and we can define the mapping:E {0}→N by setting(w):=sww.Then the mappingis continuous.Indeed,suppose wn→w0.Since(tu)=(u)for each t>0,we may assume wn∈S for all n.Write(wn)=swnwn.Then{swn}is bounded.If not,swn→∞as n→∞.

    So for all u∈N,we have

    By(H3),we have

    which is a contradiction.Therefore,swn→s>0 after passing to a subsequence if needed. Since N is closed and(wn)=swnwn→sw,sw∈N.Hence sw=sww=(w)by the uniqueness of sw.

    Therefore we define a mapping m:S→N by setting m:=|S,then m is a homeomorphism between S and N.

    We also consider the functional:E{0}→R and Ψ:S→R by

    In fact,let w∈E{0}and z∈E.By Lemma 3.1 and the mean value theorem,we obtain

    where|t|is small enough and τt∈(0,1).Similarly,

    where ηt∈(0,1).Combining these two inequalities and the continuity of function wsw, we have

    Lemma 3.2 Assume that(A),(B)and(H1)-(H3)are satisfied,for u∈N then J(u)→∞as‖u‖→∞.

    Proof By way of contradiction,we assume that there exists a sequence{un}?N such that J(un)≤d,as‖un‖→∞.Set vn=,and then there exists a subsequence,still denoted by vn,such that vn?v,and therefore vn(k)→v(k)for every k,as n→∞.

    First we can prove that there exist δ>0 and kj∈Z such that

    In fact,if not,then vn→0 in l∞as n→∞.For q>2,

    so we have vn→0 in all lq,q>2.

    Note that from(H1)and(H2),we have for any ε>0,there exists cε>0 such that

    Then for each s>0,we have

    as n→∞.This is a contradiction if s>

    By periodicity of coefficients,we know J and N are both invariant under T-translation. Making such shifts,we can assume that 1≤kj≤T-1 in(3.6).Moreover,passing to a subsequence,we can assume that kj=k0is independent of j.

    Next we can extract a subsequence,still denoted by{vn},such that vn(k)→v(k)for all k∈Z.Specially,for k=k0,inequality(3.6)shows that|v(k0)|≥δ,so v0.Since |un(k)|→∞as n→∞,it follows again from(H3)that

    a contradiction again.

    From above,we have the following lemma,which is important in this paper.

    Lemma 3.3{wn}is a Palais-Smale sequence for Ψ if and only if{m(wn)}is a Palais-Smale sequence for J.

    Proof Let{wn}be a Palais-Smale sequence for Ψ,and let un=m(wn)∈N.Since for every wn∈S we have an orthogonal splitting E=TwnS⊕Rwn,we have

    Then

    Therefore

    By(3.5),for un∈N,J(un)>0,so there exists a constant c0>0 such that J(un)>c0. And since c0≤J(un)=Together with Lemma3.2,≤‖un‖≤supn‖un‖<∞.Hence{wn}is a Palais-Smale sequence for Ψ if and only if {un}is a Palais-Smale sequence for J.

    Now,we give the detailed proof of Theorem 1.1.

    Proof From(3.9),Ψ'(w)=0 if and only if J'(m(w))=0.So w is a critical point of Ψ if and only if m(w)is a nontrivial critical point of J.Moreover,the corresponding values of Ψ and J coincide and infSΨ=infNJ.

    Let u0∈N such that J(u0)=c,then m-1(u0)∈S is a minimizer of Ψ and therefore a critical point of Ψ,so u0is a critical point of J.It needs to show that there exists a minimizer u∈N of J|N.

    Let{wn}?S be a minimizing sequence for Ψ.By Ekeland's variational principle we may assume Ψ(wn)→c,Ψ'(wn)→0 as n→∞,hence J(un)→c,J'(un)→0 as n→∞, where un:=m(wn)∈N.

    It follows from Lemma 3.2 that{un}is bounded in N,then there exists a subsequence, still denoted by the same notation,such that unweakly converges to some u∈E.We know that there exist δ>0 and kj∈Z such that

    If not,then un→0 in l∞as n→∞.Note that,for q>2,

    then un→0 in all lq,q>2.By(3.7),we have

    So‖un‖2→0,as n→∞,which contradicts with un∈N.

    Since J and J'are both invariant under T-translation.Making such shifts,we assume that 1≤kj≤T-1 in(3.10).Moreover passing to a subsequence,we assume that kj=k0is independent of j.Extracting a subsequence,still denoted by{un},we have un?u and un(k)→u(k)for all k∈Z.Specially,for k=k0,inequality(3.10)shows that|u(k0)|≥δ,so u0.Hence u∈N.

    Now,we prove that J(u)=c.By Fatou's lemma,

    So J(u)=c.The proof of Theorem 1.1 is completed.

    Example 1Consider the difference equation

    where c>0,d>0,α≥β>0,M>0,φ(k)is a bounded continuous π-periodic function and |φ(k)|<M,k∈Z.Let a(k)=|sink|,b(k)=|cosk|,

    and

    It is easy to show that all the assumptions of Theorem 1.1 are satisfied.Therefore,equation (3.11)has at least one homoclinic solution.

    References

    [1]Zhang K,Xu J.Existence of solutions for a second order difference boundary value problem[J].J. Math.,2014,34:856-862.

    [2]Agarwal R P.Difference equations and inequalities:theory,methods and applications[M].New York: Marcel Dekker,1992.

    [3]Kelly W G,Peterson A C.Difference equations:an introduction with applications[M].New York: Academic Press,1991.

    [4]Lakshmikantham V,Trigiante D.Theory of difference equations:numerical methods and applications[M].New York:Academic Press,1988.

    [5]Ma Manjun,Guo Zhiming.Homoclinic orbits for second order self-adjoint difference equations[J]. J.Math.Anal.Appl.,2005,323:513-521.

    [6]Ma Manjun,Guo Zhiming.Homoclinic orbits for nonliear second order difference equations[J].Nonl. Anal.,2007,67:1737-1745.

    [7]Ma Defang,Zhou Zhan.Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials[J].Abstr.Appl.Anal.,2012,2012:1-15.

    [8]Mai Ali,Zhou Zhan.Ground state solutions for the periodic discrete nonlinear Schrdinger equations with superlinear nonlinearities[J].Abstr.Appl.Anal.,2013,2013:1-11.

    [9]Mai Ali,Zhou Zhan.Discrete solitons for periodic discrete nonlinear Schrdinger equations[J].Appl. Math.Comput.,2013,222:34-41.

    [10]Mai Ali,Zhou Zhan.Homoclinic solutions for a class of nonlinear difference equations[J].J.Appl. Math.,2014,2014:1-8.

    [11]Sun Guowei.On standing wave solutions for discrete nonlinear Schrdinger equations[J].Abstr. Appl.Anal.,2013,2013:1-6.

    [12]Shi Haiping,Zhang Hongqiang.Existence of gap solitons in periodic discrete nonlinear Schrdinger equations[J].J.Math.Anal.Appl.,2010,361(2):411-419.

    [13]Haiping Shi,Xia Liu,Yuanbiao Zhang.Homoclinic orbits for second order p-Laplacian difference equations containing both advance and retardation[J].RACSAM,2016,110(1):65-78.

    [14]Szulkin A,Weth T.The method of Nehari manifold[A].Gao D Y,Motreanu D,eds.Handbook of nonconvex analysis and applications[C].Boston:International Press,2010.

    [15]Willem M.Minimax theorems[M].Boston:Birkhuser,1996.

    [16]Ambrosetti A,Rabinowitz P H.Dual variational methods in critical point theory and applications[J]. J.Funct.Anal.,1973,14:349-381.

    [17]Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations[C].Providence RI:AMS,1986.

    一類(lèi)周期非線性差分方程的基態(tài)解

    買(mǎi)阿麗,孫國(guó)偉

    (運(yùn)城學(xué)院應(yīng)用數(shù)學(xué)系,山西運(yùn)城044000)

    本文研究了一類(lèi)二階周期非線性差分方程基態(tài)解的存在性問(wèn)題.利用臨界點(diǎn)理論結(jié)合Nehari流形方法,獲得了此類(lèi)方程基態(tài)解的存在性.在比經(jīng)典AR條件更一般的超二次條件下,本文結(jié)論推廣了已有的結(jié)果,并舉例說(shuō)明此類(lèi)方程解的存在性.

    非線性差分方程;Nehari流形;基態(tài)解;臨界點(diǎn)理論

    MR(2010)主題分類(lèi)號(hào):39A10;39A12O175.1

    ?date:2015-06-25Accepted date:2016-01-04

    Supported by National Natural Science Foundation of China(11526183; 11371313;11401121);the Natural Science Foundation of Shanxi Province(2015021015)and Foundation of Yuncheng University(YQ-2014011;XK-2014035).

    Biography:Mai Ali(1981-),femal,born at Yuncheng,Shanxi,associate professor,major in the theory and applications of differential equations.

    猜你喜歡
    阿麗方程解基態(tài)
    Navier-Stokes-Coriolis方程解的長(zhǎng)時(shí)間存在性
    一類(lèi)非線性Choquard方程基態(tài)解的存在性
    擬相對(duì)論薛定諤方程基態(tài)解的存在性與爆破行為
    一類(lèi)反應(yīng)擴(kuò)散方程的Nehari-Pankov型基態(tài)解
    非線性臨界Kirchhoff型問(wèn)題的正基態(tài)解
    分手的理由
    一類(lèi)Choquard型方程解的存在性
    也得受罰
    一類(lèi)Kirchhoff-Poisson方程解的存在性
    多維的一般的BBM-Burgers方程解的逐點(diǎn)估計(jì)
    国产成人91sexporn| 亚洲欧美精品自产自拍| 在线国产一区二区在线| 日韩在线高清观看一区二区三区| 久久这里有精品视频免费| 啦啦啦观看免费观看视频高清| 日韩精品青青久久久久久| 中文字幕久久专区| 国产午夜精品一二区理论片| 国产精品人妻久久久久久| 成人高潮视频无遮挡免费网站| 在线观看66精品国产| 两个人的视频大全免费| 国产真实伦视频高清在线观看| 99热网站在线观看| 国产一区二区亚洲精品在线观看| 超碰av人人做人人爽久久| 午夜老司机福利剧场| 久久韩国三级中文字幕| 久久人人爽人人爽人人片va| 我要搜黄色片| 色视频www国产| 免费人成在线观看视频色| 欧美人与善性xxx| 国产高潮美女av| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 国产精品99久久久久久久久| www日本黄色视频网| 99九九线精品视频在线观看视频| 美女高潮的动态| 免费av观看视频| 午夜福利高清视频| 噜噜噜噜噜久久久久久91| 熟女人妻精品中文字幕| 天堂网av新在线| 中文亚洲av片在线观看爽| 久久这里只有精品中国| 亚洲va在线va天堂va国产| 久久精品国产亚洲av天美| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看 | 观看免费一级毛片| 成年女人看的毛片在线观看| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 国产亚洲av片在线观看秒播厂 | 久久精品国产鲁丝片午夜精品| 国产毛片a区久久久久| 深夜a级毛片| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 99久国产av精品| 亚洲在久久综合| av国产免费在线观看| 中文字幕熟女人妻在线| 午夜激情欧美在线| 熟妇人妻久久中文字幕3abv| 国产 一区精品| 一级二级三级毛片免费看| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 男人狂女人下面高潮的视频| 国产精品99久久久久久久久| 丰满的人妻完整版| 国产亚洲精品久久久com| av在线老鸭窝| 日韩一本色道免费dvd| 有码 亚洲区| 乱系列少妇在线播放| av专区在线播放| 91久久精品电影网| 免费看美女性在线毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 插逼视频在线观看| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 国产精品99久久久久久久久| 国产成人91sexporn| 久久久久九九精品影院| 国产精品野战在线观看| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 日本成人三级电影网站| 久久人人爽人人爽人人片va| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 亚洲欧美精品专区久久| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 成人亚洲欧美一区二区av| 91麻豆精品激情在线观看国产| 久久久久九九精品影院| 91精品一卡2卡3卡4卡| 2021天堂中文幕一二区在线观| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 亚洲最大成人中文| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产| 免费av观看视频| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 网址你懂的国产日韩在线| 美女国产视频在线观看| 国产美女午夜福利| 国产黄片美女视频| 亚洲国产欧美在线一区| 国产中年淑女户外野战色| 91狼人影院| 精华霜和精华液先用哪个| 久久韩国三级中文字幕| 国产成人a区在线观看| 在线观看免费视频日本深夜| 久久精品影院6| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 久久99精品国语久久久| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 一个人看的www免费观看视频| avwww免费| 夜夜爽天天搞| 国内精品久久久久精免费| 久久热精品热| 国产国拍精品亚洲av在线观看| 一本久久中文字幕| 看黄色毛片网站| 久久99蜜桃精品久久| 欧美激情在线99| 丝袜喷水一区| 神马国产精品三级电影在线观看| 嫩草影院新地址| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 国产高清视频在线观看网站| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 99久久精品热视频| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 国产高清视频在线观看网站| 晚上一个人看的免费电影| 黄色一级大片看看| 国产精品人妻久久久影院| 久久精品夜色国产| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 中文字幕制服av| 高清午夜精品一区二区三区 | 久久亚洲国产成人精品v| 五月伊人婷婷丁香| 亚洲国产色片| 不卡视频在线观看欧美| 欧美精品国产亚洲| 亚洲av不卡在线观看| 九九在线视频观看精品| 偷拍熟女少妇极品色| 国内久久婷婷六月综合欲色啪| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 国产v大片淫在线免费观看| 你懂的网址亚洲精品在线观看 | 在线免费十八禁| 精品少妇黑人巨大在线播放 | 最近手机中文字幕大全| 国产精品人妻久久久久久| avwww免费| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 久久久久网色| 伦理电影大哥的女人| 久久中文看片网| 亚洲国产精品成人久久小说 | 一级毛片我不卡| 99精品在免费线老司机午夜| 久久精品久久久久久噜噜老黄 | 国产色婷婷99| www日本黄色视频网| 国产亚洲精品久久久com| 久久久欧美国产精品| 欧美bdsm另类| 午夜激情福利司机影院| 搞女人的毛片| 国产私拍福利视频在线观看| 可以在线观看的亚洲视频| 久久亚洲国产成人精品v| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 亚洲国产欧美人成| 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 少妇裸体淫交视频免费看高清| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 91在线精品国自产拍蜜月| 国产高清三级在线| 日本五十路高清| 一区二区三区四区激情视频 | 色综合站精品国产| 又黄又爽又刺激的免费视频.| 99国产极品粉嫩在线观看| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验 | 国产色婷婷99| avwww免费| 国产黄色视频一区二区在线观看 | 精品国产三级普通话版| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 91精品国产九色| 国产高潮美女av| 男女视频在线观看网站免费| 国产精品电影一区二区三区| 久久久久久久久大av| 久久精品国产亚洲网站| 天堂中文最新版在线下载 | 亚洲人成网站在线播| 悠悠久久av| 少妇裸体淫交视频免费看高清| 老女人水多毛片| 只有这里有精品99| 最近手机中文字幕大全| 人妻制服诱惑在线中文字幕| 国产精品精品国产色婷婷| 国产 一区 欧美 日韩| av天堂在线播放| 日韩高清综合在线| 欧美变态另类bdsm刘玥| 国内揄拍国产精品人妻在线| 久久精品国产亚洲网站| 九九在线视频观看精品| 舔av片在线| 久久久久久久久久久丰满| 大型黄色视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 成人一区二区视频在线观看| 爱豆传媒免费全集在线观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇人妻一区二区三区视频| 久久久久网色| 波多野结衣巨乳人妻| 热99在线观看视频| 久久精品久久久久久久性| 波野结衣二区三区在线| 97在线视频观看| 日本三级黄在线观看| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 久久久久久久久久久丰满| 国产极品天堂在线| 精品久久久久久久末码| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 99久久人妻综合| 日韩一本色道免费dvd| 一区二区三区免费毛片| 黄色一级大片看看| 久久久精品欧美日韩精品| 乱码一卡2卡4卡精品| 国产 一区精品| 美女 人体艺术 gogo| 精品不卡国产一区二区三区| av在线天堂中文字幕| 久久久a久久爽久久v久久| 村上凉子中文字幕在线| 一本一本综合久久| 在线观看66精品国产| 日本爱情动作片www.在线观看| 日本一本二区三区精品| 午夜福利高清视频| 麻豆国产97在线/欧美| 麻豆国产av国片精品| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 国产成人精品婷婷| 国产精品久久视频播放| 亚洲国产精品国产精品| 夫妻性生交免费视频一级片| www日本黄色视频网| av视频在线观看入口| 熟女人妻精品中文字幕| 国产伦理片在线播放av一区 | 99久久无色码亚洲精品果冻| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 久久精品影院6| 欧美3d第一页| 伦理电影大哥的女人| 国产成人福利小说| 国产久久久一区二区三区| 蜜臀久久99精品久久宅男| 精品欧美国产一区二区三| 国产高清不卡午夜福利| 精品久久久久久久末码| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 黄色一级大片看看| 少妇猛男粗大的猛烈进出视频 | 啦啦啦啦在线视频资源| 亚洲国产日韩欧美精品在线观看| 久久婷婷人人爽人人干人人爱| 简卡轻食公司| 精品久久久噜噜| 日产精品乱码卡一卡2卡三| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 九草在线视频观看| 美女国产视频在线观看| 亚洲国产精品成人久久小说 | 久久久久久久久久黄片| 亚洲人与动物交配视频| 免费av不卡在线播放| 国产精品一及| 久久久久九九精品影院| 国产午夜精品论理片| 黑人高潮一二区| 午夜激情福利司机影院| 免费无遮挡裸体视频| av又黄又爽大尺度在线免费看 | 欧美日韩乱码在线| 国产久久久一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 久久久久久大精品| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 99九九线精品视频在线观看视频| 观看免费一级毛片| 热99在线观看视频| 女人被狂操c到高潮| 波野结衣二区三区在线| 国产视频首页在线观看| 久久精品国产鲁丝片午夜精品| 午夜福利高清视频| 一区二区三区四区激情视频 | 久久国产乱子免费精品| 欧美激情在线99| 亚洲在线观看片| av在线蜜桃| 久久精品综合一区二区三区| 日韩一区二区三区影片| 国产成人freesex在线| 少妇丰满av| 久久九九热精品免费| 99久久人妻综合| av在线蜜桃| 日韩av在线大香蕉| 在线播放国产精品三级| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 天堂网av新在线| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 大香蕉久久网| 99在线人妻在线中文字幕| 晚上一个人看的免费电影| 成年女人看的毛片在线观看| 国产一区二区亚洲精品在线观看| 晚上一个人看的免费电影| 国产成人精品久久久久久| 一夜夜www| 久久久精品大字幕| 在线观看av片永久免费下载| 亚洲七黄色美女视频| 少妇的逼水好多| 久久精品影院6| 在线播放国产精品三级| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 国产91av在线免费观看| 国产精品综合久久久久久久免费| 美女xxoo啪啪120秒动态图| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 国产精品99久久久久久久久| 美女国产视频在线观看| 久久久国产成人精品二区| 三级国产精品欧美在线观看| 免费搜索国产男女视频| 国产激情偷乱视频一区二区| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 啦啦啦韩国在线观看视频| 精品一区二区免费观看| 成人二区视频| 1000部很黄的大片| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 国产毛片a区久久久久| 日韩强制内射视频| 亚洲图色成人| 又粗又爽又猛毛片免费看| 一夜夜www| 午夜视频国产福利| 国产精品av视频在线免费观看| 国产日本99.免费观看| 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 欧美在线一区亚洲| 国产午夜精品一二区理论片| www.色视频.com| 美女高潮的动态| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 麻豆乱淫一区二区| 国产三级中文精品| 成人无遮挡网站| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 国产伦精品一区二区三区四那| 久久精品国产清高在天天线| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 久久精品久久久久久久性| 国产三级中文精品| av卡一久久| 伊人久久精品亚洲午夜| 久久久久久大精品| 国产 一区 欧美 日韩| eeuss影院久久| 日本欧美国产在线视频| 久久久久久久久久久免费av| 精品免费久久久久久久清纯| 免费观看精品视频网站| 少妇被粗大猛烈的视频| a级毛色黄片| 午夜福利在线在线| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 国产成年人精品一区二区| 中文字幕免费在线视频6| 一区二区三区高清视频在线| 性欧美人与动物交配| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| kizo精华| 麻豆国产97在线/欧美| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 老师上课跳d突然被开到最大视频| 久久久久久久久大av| 99热这里只有精品一区| 久久国产乱子免费精品| 99热全是精品| 亚洲欧美精品自产自拍| 亚洲最大成人手机在线| 天堂中文最新版在线下载 | 嫩草影院入口| 国语自产精品视频在线第100页| 成人午夜高清在线视频| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 十八禁国产超污无遮挡网站| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| 中文亚洲av片在线观看爽| 亚洲婷婷狠狠爱综合网| 欧美日韩国产亚洲二区| 变态另类丝袜制服| 99精品在免费线老司机午夜| 亚洲av成人av| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 青春草国产在线视频 | 色哟哟·www| 欧美最黄视频在线播放免费| 黑人高潮一二区| av黄色大香蕉| 99久久精品热视频| 日本三级黄在线观看| 少妇被粗大猛烈的视频| 国产美女午夜福利| 久久精品人妻少妇| 麻豆国产av国片精品| 国产精品一区二区在线观看99 | 高清在线视频一区二区三区 | 国产三级在线视频| 一级av片app| 久久精品国产清高在天天线| 在线播放无遮挡| 色播亚洲综合网| 色哟哟哟哟哟哟| 一级av片app| 亚洲自偷自拍三级| 国产伦一二天堂av在线观看| 一级毛片我不卡| av天堂在线播放| av黄色大香蕉| 黄色视频,在线免费观看| 小说图片视频综合网站| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 一本久久精品| 黄色日韩在线| 丝袜美腿在线中文| 少妇熟女aⅴ在线视频| 欧美在线一区亚洲| 人体艺术视频欧美日本| 麻豆国产av国片精品| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 成人毛片60女人毛片免费| 人妻少妇偷人精品九色| 小说图片视频综合网站| 亚洲精品影视一区二区三区av| 成人高潮视频无遮挡免费网站| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 国产久久久一区二区三区| a级毛片免费高清观看在线播放| 三级经典国产精品| 国产精品美女特级片免费视频播放器| 哪个播放器可以免费观看大片| 久久久久久久亚洲中文字幕| 嫩草影院新地址| 亚洲成人久久性| 特大巨黑吊av在线直播| 久久人人爽人人爽人人片va| 99久久九九国产精品国产免费| 国产精品美女特级片免费视频播放器| 亚洲美女视频黄频| 小蜜桃在线观看免费完整版高清| 一边摸一边抽搐一进一小说| 亚洲乱码一区二区免费版| 国产成人a区在线观看| 69人妻影院| 我的老师免费观看完整版| 91精品国产九色| 亚洲内射少妇av| 亚洲经典国产精华液单| 麻豆精品久久久久久蜜桃| 久久久久久久久久黄片| 成人高潮视频无遮挡免费网站| 国产精品一区www在线观看| 最新中文字幕久久久久| 18+在线观看网站| 亚洲精品久久国产高清桃花| 亚洲成人精品中文字幕电影| 亚洲在线自拍视频| 狠狠狠狠99中文字幕| 久久热精品热| 女的被弄到高潮叫床怎么办| 99热只有精品国产| 国产伦一二天堂av在线观看| 欧美色视频一区免费| 精品久久久久久久久亚洲| 国产伦精品一区二区三区四那| 少妇猛男粗大的猛烈进出视频 | 国产高清有码在线观看视频| 日韩一本色道免费dvd| 中文字幕人妻熟人妻熟丝袜美| 99九九线精品视频在线观看视频| 日本黄大片高清| 欧美高清性xxxxhd video| 我要看日韩黄色一级片| 国内精品美女久久久久久| 老司机福利观看| 国产视频首页在线观看| 国产午夜福利久久久久久| 精品99又大又爽又粗少妇毛片| or卡值多少钱| 国产一级毛片七仙女欲春2| 亚洲人成网站在线播| 乱人视频在线观看| 国产午夜福利久久久久久| 亚洲人成网站在线播| 青春草亚洲视频在线观看| 三级国产精品欧美在线观看| 亚洲图色成人| 日本免费a在线| 大型黄色视频在线免费观看| 真实男女啪啪啪动态图| 国产黄片视频在线免费观看| 小说图片视频综合网站| 欧美xxxx性猛交bbbb| 五月伊人婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄 | 青青草视频在线视频观看| 亚洲欧美日韩东京热| 亚洲高清免费不卡视频| av在线蜜桃| 成人鲁丝片一二三区免费| 亚洲美女视频黄频| 寂寞人妻少妇视频99o| 热99re8久久精品国产|