• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    2016-12-07 08:58:59LIUWeiLIBiwenLIZhenweiWANGGan
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:劉煒食餌微分

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY BIOLOGICAL ECONOMIC SYSTEM

    LIU Wei,LI Bi-wen,LI Zhen-wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    In this paper,we mainly study the Hopf-bifurcation and the stability of differentialalgebraic biological economic system with predator harvesting.By using the method of stability thoery and Hopf bifurcation theorem dynamical systems and differential algebraic system,we find some related conclusions about stability and Hopf-bifurcation.We have improved the ratio-dependent predator-prey system,take economic effectμas the bifurcation parameter and make a numerical simulation by using Matlab at last,so the conclusions are made more practical.

    stability;economic system;Hopf bifurcation;harvesting

    2010 MR Subject Classification:34D20;34K18

    Document code:AArticle ID:0255-7797(2016)06-1160-13

    1 Introduction

    According to the lack of biological resources on the earth,more and more people increasingly realized the importance of the modelling and research of biological system.The predator-prey was one of the most popular models that many researchers[1-8]studied and acquired some valuable characters of dynamic behavior.For example,the stability of equilibrium,Hopf bifurcation,flip bifurcation,limit cycle and other relevant conducts.At the same time,the development and utilization of biological resources and artificial arrest was researched commonly in the fields of fishery,wildlife and forestry management by some experts[9-11].Most of them choose differential equations and difference equations to research biological models.It is well known that economic profit become more and more important and take a fundamental gradually situation in social development.In recent years,biological economic systems were researched by many authors[12-16],who describe the system by differential-algebraic equations or differential-difference-algebraic equations.

    Basic analysis model which applied by differential-algebraic equations and differentialdifference-algebraic equations are familiar at present.However,there still exist some disadvantages in many systems such as harvesting function.In this paper,the main research isthe stability and Hopf bifurcation of a biological-algebraic biological economic system,which is changed in some details and meaningful.

    Our basic model is based on the following ratio-dependent predator-prey system with harvest

    where u and v represent the predator density and prey density at time t,respectively,∈,θ and α are all positive constants,and r1and r2stand for the densities of predator and prey populations,and E represents harvesting effort.αEv denotes that the harvests for predator population are proportional to their densities at time t.

    In 1954,Gordon[17]studied the effect of the harvest effort on ecosystem form an economic perspective and proposed the following economic principle:

    Associated with system(1.1),an algebraic equation which considers the economic profit m of the harvest effort on predator can be established as follows

    where E(t)represents the harvest effort,p denotes harvesting reward per unit harvesting effort for unit weight,c represents harvesting cost per unit harvesting effort.Combining the economic theory of fishery resources,we can establish a differential algebraic biological economic system

    Nevertheless,the capture effect to predator is not always shown in the liner in nature based on many factors that can affect the predation such as the ability of search,illness and death.Therefore,the harvesting function of system(1.2)is modified as follows

    To simplify system(1.2),we use these dimensionless variables

    and then obtain the following system

    For simplicity,let

    where Z=(x,y)T,μis a bifurcation parameter,which will be defined in the follows.

    In this paper,we discuss the effects of the economic profit on the dynamics of system (1.4)in the region={(x,y,E)|x>0,y>0,E>0}.

    Next,the paper will be organized as follows.In Section 2,the stability of the positive equilibrium point is discussed by corresponding characteristic equation of system(2.2).In Section 3,we provide Hopf bifurcation analysis of system(1.4).In Section 4,we use numerical simulations to illustrate the effectiveness of result.Then give a brief conclusion in Section 5.

    2 Local Stability Analysis of System(1.4)

    It is obvious that there exists an equilibrium inif only if this point χ0:=(x0,y0,E0)Tis a real solution of the equations

    By the calculation,we get

    where

    According to this analysis procedure,this essay only concentrate on the interior equilibrium of system(1.4).Based on the ecology meaningful of the interior equilibrium,the predator and the harvest effort to predator are all exist that it is the key point to the study. Thus,a simple assumption that the inequality 0<μ<r2G0holds in this paper.Following, we use the linear transformation χT=QMT,where

    From Section 1,we obtain

    For system(2.2),we consider the local parametric ψ,which defined as follows

    where

    h:R2→R3is a smooth mapping.Then we can obtain the parametric system(2.2)as follows:

    More details about the definition can be found in[18].Based on system(2.3),we can get Jacobian matrix E(M0),which takes the form of

    Then the following theorem summarizes the stability of the positive equilibrium point of system(1.4).

    Theorem 2.1 For system(2.2)

    (ii)If(r2-μ)2<4r1andμ<minthe positive equilibrium point of system(1.4)is a sink;otherwise when<μ<r2G0,the positive equilibrium point of system(1.4)is a source.

    Proof First,the characteristic equation of the matrix E(M0)can be written as

    Now donate?by

    Remark 1 The local stability of χ0is equivalent to the local stability of M0.

    Remark 2 When the roots of eq.(2.4)exist zero real parts,system(1.4)will occur bifurcation,which will be discussed in Section 3.

    3 Hopf Bifurcation Analysis of the Positive Equilibrium

    In this section,we discuss the Hopf bifurcation from the equilibrium point χ0by choosing μas the bifurcation parameter.Based on the Hopf bifurcation theorem in[19],we need find some sufficient conditions.

    According to the definition of?,we obtain

    where

    here,we assume that A2+B≥0 in this paper.

    Thus,for eq.(2.4),if B>0 and 0<μ<min{r2G0,J+}.Eq.(2.4)has one pair of imaginary roots.When B>0,A>0,J-<r2G0and J-<μ<min{r2G0,J+},eq.(2.4) has one pair of imaginary roots.

    In the case of meet the above conditions,we can get the roots as follows:

    where

    By calculating,we obtain

    Eq.(3.1)indicates that eq.(2.2)occurs Hopf bifurcation atμ0.

    In order to calculate the Hopf bifurcation,we need to lead the normal form of system (2.2)as follows

    From eq.(2.3),we have

    Then we can easily obtain

    where

    and

    Then we get

    Thus we have

    Then we obtain

    Substituting M0,μ0into above,we have

    Now,we get

    Finally,we obtain

    Thus we have eq.(3.3)

    Comparing with the normal form(3.2),we chosse the nonsingular matrix

    then we use the linear transformation H=N,noticing ω0=,we derive the normal form as follows

    where H=(u1,u2)T.Then

    According to the Hopf bifurcation theorem in[19],now we only need to calculate the value of a

    Next,there are two cases should be discussed.That is a>0 and a<0.Based on the Hopf bifurcation theorem in[19],we obtain Theorem 3.1.

    Theorem 3.1 For the system(2.2),there exist an ε>0 and two small enough neighborhoods P1and P2of χ0(μ),where P1?P2.

    (i)If

    then

    (1)whenμ0<μ<μ0+ε,χ0(μ)is unstable,and repels all the points in P2;

    (2)whenμ0-ε<μ<μ0,there exist at least one periodic solution in1,which is the closure of P1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is locally asymptotically stable.

    (ii)If

    then

    (1)whenμ0-ε<μ<μ0,χ0(μ)is locally asymptotically stable,and repels all the points in P2;

    (2)whenμ0<μ<μ0+ε,there exist at least one periodic solution in1,one of them repel all the points in1{χ0(μ)},and also have another periodic solution(may be the same that)repels all the points in P21,and χ0(μ)is unstable.

    Proof Theorem 3.1 can be similarly proved as the Hopf bifurcation theorem in[19],so we omit the process here.

    4 Numerical Simulations

    In this section,we give a numerical example of system(1.4)with the parameters r1= 3,r2=1,c=1,β=0.195,then system(1.4)becomes

    By simple computing,the only positive equilibrium point of above system is

    and the Hopf bifurcation valueμ0=

    Therefore,by Theorem 3.1,we can easily show that the positive equilibrium point χ0(μ) of system(4.1)is locally asymptitically stable whenμ=0.505<μ0as is illustrated by computer simulations in Fig.1;periodic solutions occur from χ0(μ)whenμ=0.5195<μ0as is illustrated in Fig.2;the positive equilibrium point χ0(μ)of system(4.1)is unstable whenμ=0.535>μ0as is illustrated in Fig.3.

    Figure 1:Whenμ=0.505<μ0,that show the positive equilibrium point χ0(μ)is locally asymptotically stable.

    Figure 2:Periodic solutions bifurcating from χ0(μ)whenμ=0.5195<μ0.

    Figure 3:Whenμ=0.535>μ0,that show the positive equilibrium point χ0(μ)is unstable.

    5 Conclusions

    Based on the above inference and calculation,we find that economic effect will influence the stability of differential-algebraic biological economic system.For instance,according to those statistics and graphs,if people fix the economic index at a high level,over the bifurcation value of Hopf-bifurcation,the system will become unstable that means people have destroyed the economic balance even led to the extinction of ecologic species.Therefore, with an aim to realize the harmonious sustainable development co-existence between man and nature,we should not seek economic effect blindly and control it within a certain limit, such as less than bifurcation value.

    In addition,we can make some improvements in our model.For example,we do not consider the influence of time delays and double harvesting that is,human harvesting will harvest predator and prey at the same time.So it is necessary for us to go on with our research in these aspects in the future.

    References

    [1]Chen B S,Liu Y Q.On the stable periodic solutions of single sepias models with hereditary effects[J]. Math.Appl.,1999,12:42-46.

    [2]Xiao D M,Li W X,Han M A.Dynamics in ratio-dependent predator-prey model with predator harvesting[J].J.Math.Anal.Appl.,2006,324(1):14-29.

    [3]Zhang Y,Zhang Q L.Chaotic control based on descriptor bioeconomic systems[J].Contr.Dec., 2007,22(4):445-452.

    [4]Pan K,Li B W.Existence of positive periodic solution for two-patches predator-prey impulsive diffusion delay system with functional response[J].J.Math.,2010,30(1):183-190.

    [5]Li P L,Yu C C,Zeng X W.The qualitative analysis of a class of predator-prey system with functional response[J].J.Math.,2006,26(2):217-222.

    [6]Qu Y,Wei J J.Bifurcation analysis in a predator-prey system with stage-structure and harvesting[J]. J.Franklin Institute,2010,347:1097-1113.

    [7]Rebaza J.Dynamical of prey threshold harvesting and refuge[J].J.Comput.Appl.Math.,2012, 236:1743-1752.

    [8]Gupta R P,Chandra P.Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting[J].J.Math.Anal.Appl.,2013,398:278-295.

    [9]Liu C,Zhang Q L,Zhang Y,Duan X D.Bifurcation and control in a differential-algebraic harvested prey-predator model with stage structure for predator[J].Int.J.Bifurcation Chaos,2008,18:3159-3168.

    [10]Chen L N,Tada Y,Okamoto H,Tanabe R,Ono A.Optimal operation solutions of power systems with transient stability constraints[J].IEEE Trans.Circuits Syst.,2001,48:327-339.

    [11]Liu X X,Li B W,Chen B S.Global stability for a predator-prey model with disease in the prey[J]. J.Math.,2013,33(1):69-73.

    [12]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation and stability for a differential-algebraic biological economic system[J].Appl.Math.Comput.,2010,217:330-338.

    [13]Chen B S,Chen J J.Bifurcation and chaotic behavior of a discrete singular biological economic system[J].Appl.Math.Comput.,2012,219:2371-2386.

    [14]Liu W,Fu C J,Chen B S.Hopf bifurcation for a predator-prey biological economic system with Holling type II functional response[J].J.Franklin Institute,2011,348:1114-1127.

    [15]Liu W,Fu C J.Hopf bifurcation of a modified Leslie-Gower predator-prey system[J].Cogn Comput., 2013,5:40-47.

    [16]Zhang G D,Zhu L L,Chen B S.Hopf bifurcation in a delayed differential-algebraic biological economic system[J].Nonl.Anal.:Real World Appl.,2011,12:1708-1719.

    [17]Gordon H S.Economic theory of a common property resource:the fishery[J].J.Polit.Econ.,1954, 62(2):124-142.

    [18]Chen B S,Liao X X,Liu Y Q.Normal forms and bifurcations for the differential-algebraic systems[J]. Acta Math.Appl.Sinica,2000,23(3):429-443(in Chinese).

    [19]Gukenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983.

    一類捕食食餌微分經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性與Hopf分支

    劉煒,李必文,李震威,汪淦

    (湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,湖北黃石435002)

    本文主要研究了一個帶有對捕食者進(jìn)行捕獲的微分代數(shù)經(jīng)濟(jì)系統(tǒng)的穩(wěn)定性和Hopf分支問題.利用了動力系統(tǒng)和微分代數(shù)系統(tǒng)中的穩(wěn)定性理論和分支理論的方法,得到了穩(wěn)定性和Hopf分支穩(wěn)定性的相關(guān)結(jié)論.本文對Ratio-Dependent捕食食餌模型進(jìn)行了一定程度的完善,并且選取經(jīng)濟(jì)效益μ為分支參數(shù)進(jìn)行研究,最后利用Matlab進(jìn)行數(shù)值模擬,這樣使得到的結(jié)論更符合現(xiàn)實意義.

    穩(wěn)定性;經(jīng)濟(jì)系統(tǒng);Hopf分支;捕獲

    MR(2010)主題分類號:34D20;34K18O29;O193

    ?date:2014-04-03Accepted date:2014-11-11

    Supported by the Research Project of Hubei Provincial Department of Education of China under Grant(T201412).

    Biography:Liu Wei(1989-),female,born at Taiyuan,Shanxi,master,major in ordinary differential equations and control theory.

    猜你喜歡
    劉煒食餌微分
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
    一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
    雪韻
    擬微分算子在Hp(ω)上的有界性
    具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    冬天,走丟了
    上下解反向的脈沖微分包含解的存在性
    一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
    我有一個夢
    知之為知之,不知為不知
    免费在线观看完整版高清| 亚洲国产精品一区二区三区在线| 天堂√8在线中文| 美女午夜性视频免费| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 露出奶头的视频| 久久久久久大精品| 1024香蕉在线观看| 欧美午夜高清在线| 亚洲成av片中文字幕在线观看| 午夜福利,免费看| 欧美日本中文国产一区发布| 亚洲熟妇中文字幕五十中出 | 精品久久蜜臀av无| 午夜久久久在线观看| 久久影院123| 制服人妻中文乱码| 怎么达到女性高潮| 色哟哟哟哟哟哟| 国产精品香港三级国产av潘金莲| 人成视频在线观看免费观看| 国内久久婷婷六月综合欲色啪| 757午夜福利合集在线观看| 91成人精品电影| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 动漫黄色视频在线观看| 国产精品久久久人人做人人爽| 久久久久久久精品吃奶| 多毛熟女@视频| 午夜日韩欧美国产| 亚洲美女黄片视频| 国产有黄有色有爽视频| 国产亚洲欧美精品永久| 变态另类成人亚洲欧美熟女 | 母亲3免费完整高清在线观看| 中出人妻视频一区二区| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 久久中文字幕人妻熟女| 高清av免费在线| 在线十欧美十亚洲十日本专区| 91成人精品电影| 精品国产乱码久久久久久男人| av片东京热男人的天堂| 日韩精品中文字幕看吧| 亚洲视频免费观看视频| 制服诱惑二区| 丝袜美足系列| 18禁观看日本| 久久精品人人爽人人爽视色| 操美女的视频在线观看| 欧美不卡视频在线免费观看 | 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 欧美黑人精品巨大| 国产色视频综合| 国产精品一区二区在线不卡| 少妇粗大呻吟视频| 久久久国产精品麻豆| tocl精华| 脱女人内裤的视频| 一进一出抽搐gif免费好疼 | 高清av免费在线| 97人妻天天添夜夜摸| 午夜精品国产一区二区电影| 国产成人精品在线电影| 久久久国产一区二区| 亚洲av成人一区二区三| 欧美在线黄色| 最近最新中文字幕大全免费视频| www.精华液| 中文字幕精品免费在线观看视频| 村上凉子中文字幕在线| 久久精品91无色码中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 一个人免费在线观看的高清视频| 婷婷丁香在线五月| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| 这个男人来自地球电影免费观看| 亚洲精品国产一区二区精华液| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 在线观看免费视频网站a站| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 韩国av一区二区三区四区| 亚洲成人免费av在线播放| 香蕉丝袜av| 狂野欧美激情性xxxx| 91九色精品人成在线观看| 亚洲专区中文字幕在线| 午夜福利在线免费观看网站| 日韩有码中文字幕| 国产精品电影一区二区三区| 国产野战对白在线观看| 国产精品av久久久久免费| 久久久久久亚洲精品国产蜜桃av| 国产熟女xx| 嫩草影视91久久| 亚洲成人精品中文字幕电影 | 欧美大码av| 国产免费男女视频| 亚洲自拍偷在线| 国产成人精品久久二区二区91| 国产激情久久老熟女| 欧美国产精品va在线观看不卡| 久久狼人影院| av超薄肉色丝袜交足视频| 色婷婷av一区二区三区视频| 黄色成人免费大全| 亚洲av美国av| 99热国产这里只有精品6| 免费观看精品视频网站| 国产高清视频在线播放一区| 日韩欧美免费精品| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| tocl精华| 亚洲国产欧美网| 在线观看一区二区三区激情| 性色av乱码一区二区三区2| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 久久九九热精品免费| xxxhd国产人妻xxx| av天堂在线播放| 久久精品国产亚洲av高清一级| 久久久国产成人精品二区 | 91精品三级在线观看| 丝袜人妻中文字幕| 亚洲午夜理论影院| 亚洲精品一二三| 欧美精品一区二区免费开放| 久久青草综合色| 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 很黄的视频免费| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| 国产男靠女视频免费网站| av有码第一页| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看 | 成人免费观看视频高清| 极品人妻少妇av视频| 午夜日韩欧美国产| 久久人人精品亚洲av| 大陆偷拍与自拍| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月| 成年人黄色毛片网站| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 视频区图区小说| 热99国产精品久久久久久7| 亚洲片人在线观看| 电影成人av| 色综合欧美亚洲国产小说| 成年版毛片免费区| 久久精品aⅴ一区二区三区四区| 18美女黄网站色大片免费观看| 国产精品久久电影中文字幕| 身体一侧抽搐| 日韩欧美免费精品| 最新美女视频免费是黄的| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| √禁漫天堂资源中文www| 黄色成人免费大全| 女性生殖器流出的白浆| 婷婷丁香在线五月| 国产精品国产高清国产av| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 午夜福利影视在线免费观看| 黄色女人牲交| 两人在一起打扑克的视频| 中文字幕精品免费在线观看视频| 日本 av在线| 久9热在线精品视频| 可以在线观看毛片的网站| 在线视频色国产色| 大香蕉久久成人网| 看黄色毛片网站| 男女下面进入的视频免费午夜 | 亚洲欧美精品综合一区二区三区| 亚洲视频免费观看视频| 操美女的视频在线观看| a级毛片黄视频| 亚洲av成人av| 国产av又大| xxx96com| 日本五十路高清| 亚洲精品久久成人aⅴ小说| 欧美乱妇无乱码| 可以在线观看毛片的网站| 久久人人97超碰香蕉20202| 欧美日韩亚洲综合一区二区三区_| 性欧美人与动物交配| 一区二区三区激情视频| 大陆偷拍与自拍| 成人亚洲精品av一区二区 | 色精品久久人妻99蜜桃| 黑人操中国人逼视频| 亚洲美女黄片视频| 一边摸一边抽搐一进一小说| 国产1区2区3区精品| 亚洲色图综合在线观看| 国产又爽黄色视频| 一级作爱视频免费观看| 在线观看免费高清a一片| 国产高清激情床上av| 久久精品91无色码中文字幕| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 99热国产这里只有精品6| 国产精品1区2区在线观看.| 亚洲久久久国产精品| 人妻久久中文字幕网| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 精品福利永久在线观看| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片 | 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 精品一品国产午夜福利视频| 视频区图区小说| 亚洲人成网站在线播放欧美日韩| 国产成人精品久久二区二区91| 国产精品电影一区二区三区| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| cao死你这个sao货| 精品高清国产在线一区| 日韩三级视频一区二区三区| 国产国语露脸激情在线看| 国产亚洲av高清不卡| 女性生殖器流出的白浆| 一级毛片女人18水好多| 日韩 欧美 亚洲 中文字幕| 日本wwww免费看| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| av中文乱码字幕在线| 两性夫妻黄色片| 亚洲av成人一区二区三| 国产精品九九99| 99久久综合精品五月天人人| 色在线成人网| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 亚洲av日韩精品久久久久久密| 久久草成人影院| 午夜视频精品福利| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 欧美黑人精品巨大| 欧美乱妇无乱码| 免费在线观看视频国产中文字幕亚洲| 亚洲久久久国产精品| 日本三级黄在线观看| ponron亚洲| 十八禁人妻一区二区| 午夜日韩欧美国产| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | 精品第一国产精品| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 曰老女人黄片| 淫秽高清视频在线观看| 国产高清国产精品国产三级| 人人妻,人人澡人人爽秒播| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 午夜福利,免费看| 午夜成年电影在线免费观看| 欧美在线黄色| 欧美一级毛片孕妇| 久久久久亚洲av毛片大全| 欧美日韩视频精品一区| 久久久久国产精品人妻aⅴ院| 91成年电影在线观看| 日本三级黄在线观看| 搡老岳熟女国产| 如日韩欧美国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | www.www免费av| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片 | 中亚洲国语对白在线视频| 男女高潮啪啪啪动态图| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 国产又爽黄色视频| 1024视频免费在线观看| 真人做人爱边吃奶动态| 男女下面进入的视频免费午夜 | 多毛熟女@视频| 欧美成人午夜精品| 涩涩av久久男人的天堂| 亚洲av日韩精品久久久久久密| 高清av免费在线| 欧美日韩瑟瑟在线播放| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| netflix在线观看网站| 妹子高潮喷水视频| 久久久久久久午夜电影 | 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 男人的好看免费观看在线视频 | 亚洲免费av在线视频| 欧美日韩精品网址| 亚洲专区中文字幕在线| 黄片小视频在线播放| 国内毛片毛片毛片毛片毛片| cao死你这个sao货| 高潮久久久久久久久久久不卡| 久久婷婷成人综合色麻豆| 久久久久久久午夜电影 | 久久精品国产清高在天天线| 久久精品亚洲av国产电影网| 999精品在线视频| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 亚洲av美国av| 欧美最黄视频在线播放免费 | 一进一出抽搐动态| 亚洲 欧美 日韩 在线 免费| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美软件| 男女之事视频高清在线观看| www日本在线高清视频| 男女之事视频高清在线观看| 国产精品国产高清国产av| 满18在线观看网站| 一本综合久久免费| 在线看a的网站| 在线十欧美十亚洲十日本专区| 淫秽高清视频在线观看| 咕卡用的链子| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频| 深夜精品福利| 中文字幕av电影在线播放| 亚洲熟妇熟女久久| 亚洲精品国产色婷婷电影| 欧美午夜高清在线| 国产日韩一区二区三区精品不卡| 黄色女人牲交| 最近最新中文字幕大全电影3 | 桃红色精品国产亚洲av| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 黄片小视频在线播放| 高清av免费在线| 精品一品国产午夜福利视频| 99久久综合精品五月天人人| 啦啦啦免费观看视频1| 精品无人区乱码1区二区| 亚洲av成人不卡在线观看播放网| 一区在线观看完整版| 999精品在线视频| a在线观看视频网站| 亚洲三区欧美一区| 高清毛片免费观看视频网站 | 黄色视频不卡| 一级毛片精品| 亚洲精品美女久久久久99蜜臀| 黄片播放在线免费| 亚洲成人国产一区在线观看| 久久青草综合色| 国产一区二区激情短视频| 日日爽夜夜爽网站| 久久香蕉国产精品| 咕卡用的链子| 极品教师在线免费播放| 日韩免费高清中文字幕av| 午夜福利免费观看在线| 一本综合久久免费| 中文字幕另类日韩欧美亚洲嫩草| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女 | 99在线人妻在线中文字幕| 一级毛片精品| 亚洲久久久国产精品| 一级毛片精品| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 99热只有精品国产| 黄色毛片三级朝国网站| 成年人免费黄色播放视频| 久久 成人 亚洲| 国产精品二区激情视频| 50天的宝宝边吃奶边哭怎么回事| 免费av毛片视频| 黑人猛操日本美女一级片| 国产一卡二卡三卡精品| 99精品在免费线老司机午夜| 91成年电影在线观看| 99国产精品99久久久久| 欧美日韩乱码在线| 中文字幕精品免费在线观看视频| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 免费看十八禁软件| 黄色成人免费大全| 久久久国产成人免费| 9热在线视频观看99| 午夜福利在线观看吧| 757午夜福利合集在线观看| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 男人的好看免费观看在线视频 | 天天添夜夜摸| 久久 成人 亚洲| 亚洲精品国产精品久久久不卡| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡| 成人手机av| 热re99久久精品国产66热6| 欧美日韩一级在线毛片| 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 欧美性长视频在线观看| 免费搜索国产男女视频| 麻豆久久精品国产亚洲av | 女人被躁到高潮嗷嗷叫费观| 一夜夜www| 国产乱人伦免费视频| 18禁美女被吸乳视频| www日本在线高清视频| 丝袜在线中文字幕| 精品人妻在线不人妻| 成人亚洲精品av一区二区 | 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 亚洲男人的天堂狠狠| 日韩欧美三级三区| 伦理电影免费视频| 深夜精品福利| 午夜91福利影院| 俄罗斯特黄特色一大片| 手机成人av网站| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利在线观看吧| 身体一侧抽搐| 久久香蕉激情| 搡老岳熟女国产| 精品午夜福利视频在线观看一区| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面| 午夜福利,免费看| 久久热在线av| 淫秽高清视频在线观看| 亚洲午夜精品一区,二区,三区| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 国产欧美日韩一区二区三| 免费一级毛片在线播放高清视频 | 中亚洲国语对白在线视频| 久久婷婷成人综合色麻豆| 亚洲色图 男人天堂 中文字幕| 久久欧美精品欧美久久欧美| 女人精品久久久久毛片| 亚洲精品一二三| xxx96com| 色综合站精品国产| 岛国在线观看网站| 午夜福利在线观看吧| 亚洲中文字幕日韩| 久99久视频精品免费| 999久久久国产精品视频| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 88av欧美| 热re99久久国产66热| 最近最新中文字幕大全免费视频| 欧美精品亚洲一区二区| 99久久国产精品久久久| av中文乱码字幕在线| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 男人的好看免费观看在线视频 | 在线观看日韩欧美| 丝袜在线中文字幕| 精品日产1卡2卡| 人人妻人人爽人人添夜夜欢视频| 国产亚洲精品一区二区www| www.www免费av| 一二三四在线观看免费中文在| 欧美色视频一区免费| 一级a爱片免费观看的视频| 久久伊人香网站| 亚洲av日韩精品久久久久久密| 欧美日韩国产mv在线观看视频| 久久精品91无色码中文字幕| 一区二区三区激情视频| 女人被狂操c到高潮| 日韩欧美三级三区| 精品高清国产在线一区| 亚洲一区二区三区欧美精品| 麻豆久久精品国产亚洲av | 波多野结衣高清无吗| 亚洲男人的天堂狠狠| av天堂在线播放| 国产精品一区二区在线不卡| 国产一区二区三区在线臀色熟女 | www.www免费av| 妹子高潮喷水视频| 欧美成人免费av一区二区三区| 国产精品影院久久| 成人影院久久| 成在线人永久免费视频| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 国产一区在线观看成人免费| av国产精品久久久久影院| 淫秽高清视频在线观看| 国产亚洲精品久久久久久毛片| 精品国产一区二区久久| 亚洲第一av免费看| 一级毛片精品| 免费女性裸体啪啪无遮挡网站| 成人特级黄色片久久久久久久| 99精品久久久久人妻精品| 久久亚洲精品不卡| 色综合婷婷激情| 亚洲av熟女| 18禁观看日本| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成av片中文字幕在线观看| 国产精品乱码一区二三区的特点 | 美女 人体艺术 gogo| 另类亚洲欧美激情| 人妻久久中文字幕网| 99精品欧美一区二区三区四区| 老司机亚洲免费影院| 在线观看午夜福利视频| 亚洲自拍偷在线| 日韩大尺度精品在线看网址 | 国产精品偷伦视频观看了| 欧美亚洲日本最大视频资源| 在线观看午夜福利视频| 身体一侧抽搐| 成人手机av| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 新久久久久国产一级毛片| 无人区码免费观看不卡| 亚洲精品一区av在线观看| e午夜精品久久久久久久| 在线免费观看的www视频| 在线国产一区二区在线| 午夜免费激情av| 99久久人妻综合| 人人澡人人妻人| а√天堂www在线а√下载| 精品国产超薄肉色丝袜足j| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 一本大道久久a久久精品| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣av一区二区av| 可以在线观看毛片的网站| 久久人妻熟女aⅴ| 99久久久亚洲精品蜜臀av| 国产av一区在线观看免费| 国产三级黄色录像| 一级黄色大片毛片| 欧美人与性动交α欧美精品济南到| av天堂在线播放| 国产麻豆69| 中文字幕av电影在线播放| 国产成人系列免费观看| 麻豆国产av国片精品| 男女午夜视频在线观看| 操美女的视频在线观看| 国产欧美日韩一区二区三| 国产精品一区二区在线不卡| 色综合站精品国产| 久久人人爽av亚洲精品天堂| 最好的美女福利视频网| 久久久国产成人免费|