• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    2016-12-07 08:58:52HEGuoqing
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    In this paper,we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection.By using algebraic techniques,we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds,which generalize some of Mihai andzgr’s results.

    Chen-Ricci inequality;k-Ricci curvature;generalized complex space form;semisymmetric metric connection

    2010 MR Subject Classification:53C40

    Document code:AArticle ID:0255-7797(2016)06-1133-09

    1 Introduction

    Since the celebrated theory of Nash[1]of isometric immersion of a Riemannian manifold into a suitable Euclidean space gave very important and effective motivation to view each Riemannian manifold as a submanifold in a Euclidean space,the problem of discovering simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian submanifold becomes one of the most fundamental problems in submanifold theory.The main extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic invariants of a manifold include the Ricci curvature and the scalar curvature.There were also many other important modern intrinsic invariants of(sub)manifolds introduced by Chen such as k-Ricci curvature(see[2-4]).

    In 1999,Chen[5]proved a basic inequality involving the Ricci curvature and the squared mean curvature of submanifolds in a real space form Rm(C).This inequality is now called Chen-Ricci inequality[6].In[5],Chen also defined the k-Ricci curvature of a k-plane section of TxMn,x∈M,where Mnis a submanifold of the real space form Rn+p(C).And he proved a basic inequality involving the k-Ricci curvature and the squared mean curvature of the submanifold Mn.These inequalities described relationships between the intrinsicinvariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of many people.Similar inequalities are studied for different submanifolds in various ambient manifolds(see[7-10]).

    On the other hand,Hayden[11]introduced a notion of a semi-symmetric connection on a Riemannian manifold.Yano[12]studied Riemannaian manifolds endowed with a semisymmetric connection.Nakao[13]studied submanifolds of Riemannian manifolds with a semi-symmetric metric connection.Recently,Mihai andzgr[14,15]studied Chen inequalities for submanifolds of real space forms admitting a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms with a semi-symmetric metric connection,respectively.Motivated by studies of the above authors,in this paper we establish Chen-Ricci inequalities for submanifolds in generalized complex forms with a semi-symmetric metric connection.

    2 Preliminaries

    Let Nn+pbe an(n+p)-dimensional Riemannian manifold with Riemannian metric g and a linear connectionon Nn+p.If the torsion tensordefined by

    for a 1-form φ,then the connectionis called a semi-symmetric connection.Furthermore, ifsatisfies=0,thenis called a semi-symmetric metric connection.Letdenote the Levi-Civita connection with respect to the Riemannian metric g.In[12]Yano gave a semi-symmetric metric connectionwhich can be written as

    Let Mnbe an n-dimensional submanifold of Nn+pwith a semi-symmetric metric connectionand the Levi-Civita connection.On the submanifold Mnwe consider the induced semi-symmetric metric connection denoted by?and the induced Levi-Civita connection denoted by?'.The Gauss formulas with respect to?and?',respectively,can be written as

    for any vector fields X,Y on Mn,where h'is the second fundamental form of Mnin Nn+pand h is a(0,2)-tensor on Mn.According to formula(7)in[13],h is also symmetric.

    for any vector fields X,Y,Z,Won Mn,where α is a(0,2)-tensor field defined by

    Denote by λ the trace of α.The Gauss equation for the submanifold Mnin Nn+pis

    for any vector fields X,Y,Z,Won Mn.In[13],the Gauss equation with respect to the semi-symmetric metric connection is

    In Nn+pwe can choose a local orthonormal frame{e1,···,en,en+1,···,en+p}such that restricting to Mn,e1,···,enare tangent to Mn.Setting=g(h(ei,ej),er),then the squared length of h is

    The mean curvature vector of Mnassociated toh(ei,ei)and the mean curvature vector of Mnassociated to

    Let π?TxMnbe a 2-plane section for any x∈Mnand K(π)be the sectional curvature of π associated to the induced semi-symmetric metric connection?.The scalar curvature τ at x with respect to?is defined by

    The following lemmas will be used in the paper.

    Lemma 2.1(see[13])If U is a tangent vector field on Mn,we have H=H',h=h'.

    Lemma 2.2(see[13])Let Mnbe an n-dimensional submanifold of an(n+p)-dimensional Riemannian manifold Nn+pwith the semi-symmetric metric connectionThen

    (i)Mnis totally geodesic with respect to the Levi-Civita connection and with respect to the semi-symmetric metric connection if and only if U is tangent to Mn.

    (ii)Mnis totally umbilical with respect to the Levi-Civita connection if and only if Mnis totally umbilical with respect to the semi-symmetric metric connection.

    Lemma 2.3(see[10])Let f(x1,x2,···,xn)be a function on Rndefined by

    If x1+x2+···+xn=2ε,then we have

    with the equality holding if and only if x1=x2+xn+···+xn=ε.

    A 2m-dimensional almost Hermitian manifold(N,J,g)is said to be a generalized complex space form(see[16,17])if there exists two functions F1and F2on N such that

    for X,Y,Z,W on M,where M is a submanifold of N.

    Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2).We set JX=PX+FX for any vector field X tangent to M,where PX and FX are tangential and normal components of JX,respectively.

    3 Chen-Ricci Inequality

    In this section,we establish a sharp relation between the Ricci curvature along the direction of an unit tangent vector X and the mean curvature||H||with respect to the semi-symmetric metric connect

    Theorem 3.1 Let Mn,n≥2,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with the semi-symmetric metric connectionFor each unit vector X∈TxM,we have

    (1)

    (2)If H(x)=0,then a unit tangent vector X at x satisfies the equality case of(3.1)if and only if X∈N(x)={X∈TxM:h(X,Y)=0,?Y∈TxM}.

    (3)The equality of inequality(3.1)holds identically for all unit tangent vectors at x if and only if in the case of n=0,i,j=1,2···,n;r=n+1,···,2m,or in the case of n=2,

    Proof (1)Let X∈TxM be an unit tangent vector at x.We choose an orthonormal basis e1,···,en,en+1···,e2msuch that e1,···,enare tangent to M at x and e1=X.

    When we set X=W=ei,Y=Z=ej,i,j=1,···,n,ij in(2.5)and(2.8),we have

    Using(3.2),we get

    We consider the maximum of the function

    From Lemma 2.3 we know the solution()of this problem must satisfy

    So it follows that

    From(3.3)and(3.5)we have

    (2)For the unit vector X at x,if the equality case of inequality(3.1)holds,using(3.3), (3.4)and(3.5)we have

    The converse is obvious.

    (3)For all unit vector X at x,the equality case of inequality(3.1)holds.Let X= ei,i=1,2···n,as in(2),we have

    We can distinguish two cases:

    (b)in the case of n=2,we have

    The converse is trivial.

    Corollary 3.2 If the equality case of inequality(3.1)holds for all unit tangent vector X of Mn,then we have

    (1)the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if Mnis a totally umbilical submanifold;

    (2)if U is a tangent field on Mnand n≥3,Mnis a totally geodesic submanifold.

    Proof (1)For n=2,from Theorem 3.1 we know the equality case of inequality(3.1) holds for all unit tangent vector X of M2if and only if M2is a totally umbilical submanifold with respect to the semi-symmetric metric connection.Then from Lemma 2.2,M2is a totally umbilical submanifold with respect to the Levi-Civita connection.

    For n≥3,from Theorem 3.1 we know the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only=0,?i,j,r.According to formula(7)from [13],we have+krgij,where krare real-valued functions on M.Thus we have=krgij.So Mnis a totally umbilical submanifold.

    (2)If U is a tangent vector field on Mn,from Lemma 2.1 we have h'=h.For n≥3, from Theorem 3.1 the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if=0,?i,j,r.Thus we have=0,?i,j,r.So Mnis a totally geodesic submanifold.

    4 k-Ricci Curvature

    In this section,we establish a sharp relation between the k-Ricci curvature and the mean curvature||H||with respect to the semi-symmetric metric connect

    Let L be a k-plane section of TxMn,x∈Mn,and X be a unit vector in L.We choose an orthonormal frame e1,···,ekof L such that e1=X.In[5]the k-Ricci curvature of L at X is defined by

    The scalar curvature of a k-plane section L is given by

    For an integer k,2≤k≤n,the Riemannian invariant Θkon Mnat x∈Mndefined by

    where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.From (2.6),(4.1)and(4.2)for any k-plane section Li1···ikspanned by{ei1,···,eik},it follows that

    and

    From(4.3),(4.4)and(4.5),we have

    Theorem 4.1 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen we have

    Proof For x∈Mn,let{e1,···,en}and{en+1,···,e2m}be an orthonormal basis ofandM,respectively,where en+1is parallel to the mean curvature vector H.

    From(3.2),we have

    Setting||P||2=(Jei,ej).From(2.6),it follows that

    Then equation(4.8)can be also written as

    We choose an orthonormal basis{e1,···,en,en+1,···,e2m}such that e1,···,endiagonalize the shape operator Aen+1,i.e.,

    and Aer=(),i,j=1······n;r=n+2,···,2m,traceAer=0.So(4.9)turns into

    On the other hand,we get

    which implies

    From(4.10)and(4.11),it follows that

    which means

    Using Theorem 4.1 and(4.6)we can obtain the following theorem.

    Theorem 4.2 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen for any integer k,2≤k≤n,and for any point x∈M,we have

    Proof Let{e1,···,en}be an orthonormal basis of TxMnat x∈Mn.The k-plane section spanned by ei1,···,eikis denoted by Li1···ik.

    Then from(4.6)and(4.12),we have

    Remark 4.3 For F1=F2=C(C is constant)in Theorem 3.1,we obtain a Chen-Ricci inequality for submanifolds of complex space forms with a semi-symmetric metric connection.

    For F1=F2=C(C is constant)in Theorem 4.1 and Theorem 4.2,the results can be found in[15].

    References

    [1]Nash J F.The imbedding problem for Riemannian manifolds[J].Ann.Math.,1956,63:20-63.

    [2]Chen B Y.Some pinching and classification theorems for minimal submanifolds[J].Arch.Math. (Basel),1993,60(6):568-578.

    [3]Chen B Y.Strings of Riemannian invariants,inequalities,ideal immersions and their applications[J]. Third Pacific Rim Geom.Conf.(Seoul),1996:7-60.

    [4]Chen B Y.Riemannian submanifolds[M].North-Holland,Amsterdam:Handbook Diff.Geom.,2000, 1:187-418.

    [5]Chen B Y.Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions[J].Glasg.Math.J.,1999,41(1):33-41.

    [6]Tripathi M M.Chen-Ricci inequality for submanifolds of contact metric manifolds[J].J.Adv.Math. Studies,2008,1(1-2):111-135.

    [7]Chen B Y.On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms[J]. Arch.Math.(Basel),2000,74:154-160.

    [8]Matsumoto K,Mihai I,Oiaga A.Ricci curvature of submanifolds in complex space forms[J].Rev. Roumaine Math.Pures Appl.,2001,46:775-782.

    [9]Mihai I.Ricci curvature of submanifolds in Sasakian space forms[J].J.Aust.Math.Soc.,2002, 72(2):247-256.

    [10]Zhang Pan,Zhang Liang,Song Wei-dong.Some remarks on geometric inequalities for submanifolds of a riemannian manifold of quasi-constant curvature[J].J.Math.,2016,36(3):445-457.

    [11]Haydan H A.Subspaces of a space with torsion[J].Proc.London Math.Soc.,1932,34:27-50.

    [12]Yano K.On semi-symmetric metric connection[J].Rev.Roumaine Math.Pures Appl.,1970,15: 1579-1586.

    [13]Nakao Z.Submanifolds of a Riemanian with semi-symmetric metric connections[J].Proc.Amer. Math.Soc.,1976,54:261-266.

    [16]Tricerri F,Vanhecke L.Curvature tensors on almost Hermitian manifolds[J].Trans.Amer.Math. Soc.,1981,267(2):365-397.

    [17]Vanhecke L.Almost Hermitian manifolds with J-invariant Riemann curvature tensor[J].Rend.Sem. Mat.Univ.Politec.Torino,1975,34:487-498.

    容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中子流形上的Chen-Ricci不等式

    何國(guó)慶

    (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽蕪湖241000)

    本文研究了容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中的子流形上的Chen-Ricci不等式.利用代數(shù)技巧,建立了子流形上的Chen-Ricci不等式.這些不等式給出了子流形的外在幾何量―關(guān)于半對(duì)稱聯(lián)絡(luò)的平均曲率與內(nèi)在幾何量―Ricci曲率及k-Ricci曲率之間的關(guān)系,推廣了Mihai和zgr的一些結(jié)果.

    Chen-Ricci不等式;k-Ricci曲率;廣義復(fù)空間;半對(duì)稱度量聯(lián)絡(luò)

    MR(2010)主題分類號(hào):53C40O186.12

    ?date:2014-09-13Accepted date:2015-11-09

    Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province(2011SQRL021ZD).

    Biography:He Guoqing(1979-),female,born at Chaohu,Anhui,lecturer,major in differential geometry.

    猜你喜歡
    安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)
    緊流形上的Schr?dinger算子的譜間隙估計(jì)
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    迷向表示分為6個(gè)不可約直和的旗流形上不變愛因斯坦度量
    探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    Hemingway’s Marriage in Cat in the Rain
    淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)簡(jiǎn)介
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    基于多故障流形的旋轉(zhuǎn)機(jī)械故障診斷
    www.色视频.com| 国产又色又爽无遮挡免| 久久久久久久久久成人| 母亲3免费完整高清在线观看 | 看非洲黑人一级黄片| 一级a做视频免费观看| 黄色毛片三级朝国网站| 超碰97精品在线观看| 少妇的逼水好多| 亚洲av日韩在线播放| 国产欧美日韩综合在线一区二区| 亚洲,一卡二卡三卡| 国产精品一二三区在线看| 国产色婷婷99| 亚洲欧美一区二区三区黑人 | videossex国产| 亚洲精品国产av蜜桃| 午夜福利,免费看| 1024视频免费在线观看| 美女xxoo啪啪120秒动态图| 久久久久精品性色| 久久久精品免费免费高清| 久久久久久久久久人人人人人人| av免费在线看不卡| 色婷婷久久久亚洲欧美| 国产又爽黄色视频| 国产免费一级a男人的天堂| 国产成人91sexporn| 男男h啪啪无遮挡| 亚洲精品456在线播放app| 国产毛片在线视频| 制服诱惑二区| 午夜免费鲁丝| 国产亚洲一区二区精品| 不卡视频在线观看欧美| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 国产 精品1| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看 | 免费播放大片免费观看视频在线观看| 热re99久久国产66热| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 久久99蜜桃精品久久| 伦理电影免费视频| 少妇熟女欧美另类| 考比视频在线观看| 欧美精品一区二区免费开放| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 日本-黄色视频高清免费观看| 亚洲国产av影院在线观看| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 国产探花极品一区二区| 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美| 九草在线视频观看| 亚洲av.av天堂| 一级毛片我不卡| 十八禁高潮呻吟视频| 大陆偷拍与自拍| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 久热这里只有精品99| 22中文网久久字幕| 天堂8中文在线网| 婷婷色av中文字幕| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕 | 久久久精品免费免费高清| 亚洲av中文av极速乱| 中国国产av一级| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 亚洲天堂av无毛| 国产av国产精品国产| 国产成人欧美| 国产成人精品在线电影| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 国产xxxxx性猛交| 美女大奶头黄色视频| 一级毛片电影观看| 99热这里只有是精品在线观看| 在线精品无人区一区二区三| 国产麻豆69| 午夜91福利影院| 国产高清三级在线| 丝袜人妻中文字幕| 久久久久久久精品精品| 极品少妇高潮喷水抽搐| 成人毛片60女人毛片免费| 日日撸夜夜添| 免费黄色在线免费观看| 在线天堂中文资源库| 日韩不卡一区二区三区视频在线| 我要看黄色一级片免费的| 乱码一卡2卡4卡精品| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 国产一级毛片在线| 99精国产麻豆久久婷婷| www.熟女人妻精品国产 | 亚洲伊人久久精品综合| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 中文字幕最新亚洲高清| 18禁观看日本| 男女免费视频国产| 青春草亚洲视频在线观看| 三级国产精品片| 日韩一区二区视频免费看| 欧美成人精品欧美一级黄| 美女中出高潮动态图| 午夜福利,免费看| 寂寞人妻少妇视频99o| 欧美日韩视频精品一区| 亚洲国产精品专区欧美| 一级毛片电影观看| 午夜福利影视在线免费观看| 日韩一区二区三区影片| 免费黄频网站在线观看国产| 国产精品不卡视频一区二区| 亚洲一码二码三码区别大吗| 亚洲av成人精品一二三区| 欧美日韩视频高清一区二区三区二| 2021少妇久久久久久久久久久| 欧美亚洲日本最大视频资源| 亚洲三级黄色毛片| 母亲3免费完整高清在线观看 | 美女福利国产在线| 人妻 亚洲 视频| 国产精品偷伦视频观看了| 高清不卡的av网站| 男女无遮挡免费网站观看| 只有这里有精品99| 一本大道久久a久久精品| 精品国产一区二区三区四区第35| 国产精品成人在线| 久久精品国产综合久久久 | 久久久久久久精品精品| 一个人免费看片子| 国产一区二区三区av在线| 嫩草影院入口| 18+在线观看网站| 少妇被粗大猛烈的视频| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码 | 国产精品久久久久久久电影| 天堂8中文在线网| 精品亚洲乱码少妇综合久久| 最新的欧美精品一区二区| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 一区二区三区精品91| 国产成人免费无遮挡视频| 一级爰片在线观看| 中文字幕人妻熟女乱码| 又黄又粗又硬又大视频| 在线天堂中文资源库| 一本色道久久久久久精品综合| 国产成人aa在线观看| 国产在线视频一区二区| 日韩三级伦理在线观看| 女人被躁到高潮嗷嗷叫费观| 纵有疾风起免费观看全集完整版| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 国产老妇伦熟女老妇高清| 色5月婷婷丁香| 国产麻豆69| 水蜜桃什么品种好| 大陆偷拍与自拍| 欧美精品av麻豆av| 少妇精品久久久久久久| 免费观看a级毛片全部| 春色校园在线视频观看| 在线天堂中文资源库| av又黄又爽大尺度在线免费看| 一边摸一边做爽爽视频免费| 久久女婷五月综合色啪小说| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 日本wwww免费看| 九色亚洲精品在线播放| 九草在线视频观看| 欧美另类一区| 久久久久久久亚洲中文字幕| 视频区图区小说| 精品一区二区三区视频在线| 老司机影院毛片| 欧美少妇被猛烈插入视频| 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 美女内射精品一级片tv| 欧美人与善性xxx| 各种免费的搞黄视频| 国产精品一二三区在线看| 国产熟女欧美一区二区| 久久热在线av| 国产成人精品一,二区| 香蕉国产在线看| 亚洲av免费高清在线观看| 国产在线视频一区二区| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 满18在线观看网站| 99九九在线精品视频| 97超碰精品成人国产| 女人精品久久久久毛片| 18禁动态无遮挡网站| 欧美精品人与动牲交sv欧美| 亚洲精品国产av成人精品| 亚洲成av片中文字幕在线观看 | 精品第一国产精品| 国产淫语在线视频| 中国三级夫妇交换| 丝袜在线中文字幕| 人妻一区二区av| 五月伊人婷婷丁香| 最近最新中文字幕大全免费视频 | 国产 精品1| 人人妻人人爽人人添夜夜欢视频| 在线观看免费日韩欧美大片| 狂野欧美激情性xxxx在线观看| 久久99热6这里只有精品| 国产在线视频一区二区| 亚洲国产av新网站| 亚洲欧美清纯卡通| 日本欧美视频一区| 永久免费av网站大全| 看免费av毛片| 亚洲精华国产精华液的使用体验| 久久久国产一区二区| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 亚洲在久久综合| 啦啦啦在线观看免费高清www| 天天躁夜夜躁狠狠躁躁| 如日韩欧美国产精品一区二区三区| 99久久精品国产国产毛片| 亚洲国产日韩一区二区| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 又大又黄又爽视频免费| 999精品在线视频| 精品福利永久在线观看| 亚洲精品国产av成人精品| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 如何舔出高潮| 国产欧美亚洲国产| 日本黄色日本黄色录像| 精品99又大又爽又粗少妇毛片| 国产毛片在线视频| av播播在线观看一区| √禁漫天堂资源中文www| 在线 av 中文字幕| 欧美97在线视频| 永久网站在线| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 国产精品不卡视频一区二区| 男人操女人黄网站| 美女内射精品一级片tv| 亚洲少妇的诱惑av| 高清黄色对白视频在线免费看| 亚洲欧洲精品一区二区精品久久久 | 日韩中文字幕视频在线看片| 五月天丁香电影| 尾随美女入室| 成人国语在线视频| 老熟女久久久| 街头女战士在线观看网站| 亚洲精品日本国产第一区| 国产男女超爽视频在线观看| 亚洲成人手机| 精品少妇黑人巨大在线播放| 精品第一国产精品| 中国美白少妇内射xxxbb| 国产男人的电影天堂91| 天天影视国产精品| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 视频区图区小说| 婷婷色av中文字幕| 午夜av观看不卡| 一级黄片播放器| 欧美精品一区二区大全| 夜夜骑夜夜射夜夜干| videosex国产| 久久国产亚洲av麻豆专区| 熟女av电影| 国国产精品蜜臀av免费| 午夜视频国产福利| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 久久99精品国语久久久| a 毛片基地| 性高湖久久久久久久久免费观看| 国产成人精品婷婷| 免费黄网站久久成人精品| 男女边摸边吃奶| xxxhd国产人妻xxx| 日韩成人伦理影院| 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| av线在线观看网站| 久久这里只有精品19| 香蕉精品网在线| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区国产| 一级,二级,三级黄色视频| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 成人亚洲精品一区在线观看| 丝袜美足系列| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 看免费成人av毛片| 视频中文字幕在线观看| 在线精品无人区一区二区三| 观看美女的网站| 人人妻人人爽人人添夜夜欢视频| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 9色porny在线观看| 亚洲性久久影院| 久久影院123| 亚洲精华国产精华液的使用体验| 丰满迷人的少妇在线观看| 18+在线观看网站| 精品一区在线观看国产| 考比视频在线观看| 成人漫画全彩无遮挡| 97超碰精品成人国产| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 97在线视频观看| 精品一品国产午夜福利视频| 91久久精品国产一区二区三区| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 国产午夜精品一二区理论片| 国产精品女同一区二区软件| 伦精品一区二区三区| 成人漫画全彩无遮挡| 免费在线观看完整版高清| 久久ye,这里只有精品| 国产av一区二区精品久久| √禁漫天堂资源中文www| 精品人妻在线不人妻| 国产精品免费大片| 久久毛片免费看一区二区三区| 欧美少妇被猛烈插入视频| 少妇被粗大的猛进出69影院 | 亚洲第一av免费看| 亚洲内射少妇av| 久热这里只有精品99| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀 | 肉色欧美久久久久久久蜜桃| 老司机亚洲免费影院| 国产福利在线免费观看视频| 水蜜桃什么品种好| 婷婷色麻豆天堂久久| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 久久精品国产a三级三级三级| 国产成人91sexporn| 久久久久久人妻| 色婷婷av一区二区三区视频| 夜夜爽夜夜爽视频| www.熟女人妻精品国产 | 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 国产精品99久久99久久久不卡 | 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 欧美精品一区二区大全| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片 | 欧美日韩成人在线一区二区| 亚洲国产欧美日韩在线播放| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 亚洲在久久综合| 国产成人免费无遮挡视频| 老司机影院毛片| 我要看黄色一级片免费的| 日本-黄色视频高清免费观看| 免费日韩欧美在线观看| a级毛片在线看网站| 一边摸一边做爽爽视频免费| av福利片在线| 午夜精品国产一区二区电影| 成人国语在线视频| 久久久精品免费免费高清| 中国国产av一级| 欧美+日韩+精品| 啦啦啦中文免费视频观看日本| 久久久久久久久久久免费av| av不卡在线播放| 国产精品 国内视频| 99热这里只有是精品在线观看| 免费观看a级毛片全部| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 久久ye,这里只有精品| 十八禁网站网址无遮挡| 9191精品国产免费久久| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 丝袜人妻中文字幕| 国产 精品1| 插逼视频在线观看| 成人18禁高潮啪啪吃奶动态图| av在线app专区| 欧美亚洲 丝袜 人妻 在线| www日本在线高清视频| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 99热6这里只有精品| 欧美人与性动交α欧美精品济南到 | 人妻少妇偷人精品九色| 亚洲熟女精品中文字幕| videos熟女内射| 国产成人精品婷婷| 久久av网站| 中文字幕av电影在线播放| 插逼视频在线观看| 欧美国产精品va在线观看不卡| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线| 亚洲精品色激情综合| 欧美变态另类bdsm刘玥| 高清不卡的av网站| 你懂的网址亚洲精品在线观看| 9191精品国产免费久久| 免费观看在线日韩| 国产日韩欧美视频二区| 精品国产一区二区久久| 精品视频人人做人人爽| 日本av手机在线免费观看| 久久久国产精品麻豆| 欧美人与性动交α欧美软件 | 天堂俺去俺来也www色官网| 免费在线观看黄色视频的| 精品亚洲成a人片在线观看| 大片电影免费在线观看免费| 欧美激情国产日韩精品一区| 久久午夜福利片| 成人毛片a级毛片在线播放| 妹子高潮喷水视频| 色吧在线观看| 蜜桃在线观看..| 日日爽夜夜爽网站| 精品国产露脸久久av麻豆| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 97在线人人人人妻| 欧美国产精品一级二级三级| 久久鲁丝午夜福利片| 成人无遮挡网站| 22中文网久久字幕| 国产精品久久久久久久久免| 亚洲精品色激情综合| 亚洲国产精品999| 9191精品国产免费久久| 男女边摸边吃奶| 天天躁夜夜躁狠狠躁躁| 少妇的逼好多水| 精品人妻熟女毛片av久久网站| av电影中文网址| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区 | 欧美日本中文国产一区发布| 99久国产av精品国产电影| 久久99精品国语久久久| 新久久久久国产一级毛片| 男女国产视频网站| 亚洲av电影在线进入| 国产精品99久久99久久久不卡 | 久久99蜜桃精品久久| 极品少妇高潮喷水抽搐| av天堂久久9| 免费高清在线观看日韩| 日韩 亚洲 欧美在线| 99热国产这里只有精品6| 成人综合一区亚洲| 91在线精品国自产拍蜜月| 制服丝袜香蕉在线| 黄色 视频免费看| 在线观看三级黄色| 欧美+日韩+精品| 欧美人与性动交α欧美软件 | 老女人水多毛片| 成人漫画全彩无遮挡| 熟女电影av网| 超碰97精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久久成人| 欧美国产精品va在线观看不卡| 制服诱惑二区| 巨乳人妻的诱惑在线观看| 青青草视频在线视频观看| 肉色欧美久久久久久久蜜桃| 国产无遮挡羞羞视频在线观看| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| 成年人午夜在线观看视频| av福利片在线| 久热这里只有精品99| 99久久综合免费| 亚洲精品视频女| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 99热6这里只有精品| 日日撸夜夜添| 久久久久久久久久成人| 色婷婷久久久亚洲欧美| 久久精品国产自在天天线| 久久狼人影院| 中文字幕av电影在线播放| 22中文网久久字幕| 亚洲精品一区蜜桃| 两个人看的免费小视频| 国产免费福利视频在线观看| 婷婷成人精品国产| 国产成人精品婷婷| 日韩熟女老妇一区二区性免费视频| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 国产成人午夜福利电影在线观看| 国语对白做爰xxxⅹ性视频网站| av播播在线观看一区| 国产又爽黄色视频| 啦啦啦视频在线资源免费观看| 永久免费av网站大全| 久久久久久人人人人人| 欧美另类一区| 插逼视频在线观看| 黄色 视频免费看| 色哟哟·www| 亚洲人成77777在线视频| 侵犯人妻中文字幕一二三四区| 桃花免费在线播放| 不卡视频在线观看欧美| 黄色视频在线播放观看不卡| 亚洲国产精品专区欧美| 亚洲成av片中文字幕在线观看 | 亚洲精品456在线播放app| 少妇的逼好多水| 久久女婷五月综合色啪小说| 久久人人爽人人片av| 国产欧美另类精品又又久久亚洲欧美| 欧美激情极品国产一区二区三区 | 久久精品久久久久久噜噜老黄| 少妇的逼水好多| 一本大道久久a久久精品| 婷婷色综合大香蕉| 两个人免费观看高清视频| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区av在线| h视频一区二区三区| 热re99久久国产66热| 日本与韩国留学比较| 国产淫语在线视频| 咕卡用的链子| 69精品国产乱码久久久| 赤兔流量卡办理| 又黄又粗又硬又大视频| 看非洲黑人一级黄片| 97超碰精品成人国产| 老司机影院成人| 极品人妻少妇av视频| 久久精品国产亚洲av涩爱| 9热在线视频观看99| 亚洲av.av天堂| 久久久久国产网址| 韩国av在线不卡| 在线观看三级黄色| 波野结衣二区三区在线| 国产亚洲一区二区精品| 一级a做视频免费观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品国产一区二区电影| 亚洲av电影在线观看一区二区三区|