陳龍飛 萬品俊 王渭霞,* 傅強 朱廷恒,*
(1浙江工業(yè)大學 生物與環(huán)境工程學院, 杭州310014; 2中國水稻研究所 水稻生物學國家重點實驗室, 杭州 310006;*通訊聯(lián)系人, E-mail: weixwang74@126.com;thzhu@zjut.edu.cn)
?
褐飛虱NlTgo基因的克隆及功能研究
陳龍飛1萬品俊2王渭霞2,*傅強2朱廷恒1,*
(1浙江工業(yè)大學 生物與環(huán)境工程學院, 杭州310014;2中國水稻研究所 水稻生物學國家重點實驗室, 杭州 310006;*通訊聯(lián)系人, E-mail: weixwang74@126.com;thzhu@zjut.edu.cn)
CHEN Longfei, WAN Pinjun, WANG Weixia,et al. Molecular cloning and functional analysis ofNlTgoin the rice brown planthopper,Nilaparvatalugens(Hemiptera: Delphacidae). Chin J Rice Sci, 2016, 30(6): 653-660.
轉(zhuǎn)錄因子Tango(Tgo)在昆蟲神經(jīng)元發(fā)生、血細胞生成、性別決定、腸道發(fā)育等過程中發(fā)揮重要作用??寺×撕诛w虱Tango基因(NlTgo),應用熒光定量PCR和RNAi探索了NlTgo在褐飛虱中的表達動態(tài)和生物學功能。結果表明,NlTgo的開放閱讀框為2007 bp,推測編碼669個氨基酸殘基。多序列比對表明NlTgo與已知的Tgo高度同源,其中與人體虱(Pediculushumanuscorporis) Tgo的一致性達68%。系統(tǒng)進化分析表明,NlTgo與豌豆長管蚜(Acyrthosiphonpisum)、始紅蝽(Pyrrhocorisapterus)和臭蟲(Cimexlectularius)的Tgo在系統(tǒng)發(fā)育樹中形成一個類群。時空表達譜表明NlTgo在褐飛虱1齡、2齡時期高表達,在卵期表達量較低;在卵巢中表達量最高,在體壁的表達量較低。RNAi結果表明,注射dsNlTgo后4 d,NlTgo的表達量較空白對照組顯著降低了77%,并導致若蟲不能正常蛻皮而死亡。其中,處理5 d后褐飛虱的存活率僅為23%,顯著低于注射dsGFP的對照組(98%)。結果顯示,NlTgo與褐飛虱的生長發(fā)育有關,可作為防治褐飛虱的潛在靶標。
褐飛虱; Tango; RNA干涉; 蛻皮; 害蟲防治
Tango屬于堿性/螺旋-環(huán)-螺旋(basic/helix-loop-helix, bHLH)家族中bHLH-PAS亞家族蛋白,其廣泛存在于黑腹果蠅(Drosophilamelanogaster)等真核生物中[1]。Tango包含一個典型的bHLH功能域和兩個PAS功能域,其中bHLH功能域由大約60個氨基酸殘基組成[2]。bHLH功能域進一步劃分為堿性區(qū)(basic region, BR)和α螺旋-環(huán)-α螺旋區(qū)(helix-loop-helix, HLH),其中堿性區(qū)與DNA結合,HLH則促進不同bHLH蛋白之間形成同源二聚體或異源二聚體[3]。Tango及其所屬的bHLH蛋白在進化過程中功能較為保守,黑腹果蠅Tango與其哺乳動物中同源物Arnt均與其他bHLH-PAS蛋白形成二聚體[4],參與神經(jīng)元發(fā)生、肌細胞生成、血細胞生成、細胞分化和增殖、性別決定、環(huán)境毒素影響等一系列發(fā)育過程[5, 6]。其中,PAS亞家族主要參與中線與氣管的發(fā)育、晝夜節(jié)律、毒素降解等生理過程[7]。在黑腹果蠅中,Tango與Sim、Sima或Trh等bHLH蛋白形成二聚體,然后通過中樞神經(jīng)系統(tǒng)中線元件(CNS midline element, CME)調(diào)控靶基因的轉(zhuǎn)錄[8]。
褐飛虱[Nilaparvatalugens(St?l)]屬半翅目飛虱科,通過取食水稻韌皮部汁液和傳播水稻病毒侵害水稻[9, 10]。在中國,褐飛虱每年可導致水稻減產(chǎn)10~15萬t,間接造成數(shù)十億元的經(jīng)濟損失[11]。褐飛虱適應性強,繁殖量大。近年來以調(diào)控褐飛虱變態(tài)發(fā)育基因為靶標,應用RNA干擾技術控制褐飛虱的發(fā)生成為可能[12, 13]。由此可見,克隆褐飛虱重要功能基因,明確其生物學功能,對褐飛虱的防治具有重要的指導意義[14]。
Tango等bHLH-PAS家族成員作為調(diào)控中樞神經(jīng)系統(tǒng)中線和氣管發(fā)育的重要轉(zhuǎn)錄因子,其在黑腹果蠅等昆蟲中的研究已取得了一系列的成果[15],而在褐飛虱中尚未見相關研究。此外,近年來,以調(diào)控褐飛虱變態(tài)發(fā)育的基因為靶標,借助于RNA干擾手段成為害蟲控制的一種有效防控策略。因此,迫切需要發(fā)掘更多有效的靶標基因。本研究克隆了褐飛虱Tango基因,分析了其結構域特征及進化關系,明確了其在褐飛虱中的時空表達動態(tài),并通過RNAi技術研究其在褐飛虱生長發(fā)育過程中的作用,以期為褐飛虱的防治提供新的靶標。
1.1 供試蟲源
供試蟲源為中國水稻研究所培育的褐飛虱TN1種群,在水稻TN1上連續(xù)飼養(yǎng)170代以上。飼養(yǎng)濕度為(27±1)℃,相對濕度為80%~85%,光周期為16 h 光照/8 h 黑暗。
1.2 總RNA的提取及第1鏈cDNA的合成
收集褐飛虱卵、1~5齡若蟲和短翅型雌雄蟲(初羽化后48 h內(nèi)),各個處理樣本量(卵質(zhì)量或蟲質(zhì)量)8 mg。此外,選取初羽化(48 h內(nèi))的短翅型雌成蟲,在解剖鏡下分離體壁、頭、卵巢、脂肪體、中腸和足等組織或器官(各組織或器官鮮質(zhì)量約2 mg)。以上樣品置于1.5 mL的Eppendorf管中經(jīng)液氮冷凍后,-80℃冰箱保存?zhèn)溆?。參照總RNA分離試劑盒(Total RNA Isolation Kit,Invitrogen, USA)說明書,用Trizol法提取總RNA。取1 μg總RNA,根據(jù)逆轉(zhuǎn)錄試劑盒(ReverTra Ace qPCR RT Master Mix with gDNA Remover,日本Toyobo) 說明書合成第1鏈cDNA。合成的cDNA貯存于-20℃冰箱中備用。每個處理均設置3個技術重復和3個生物學重復。
1.3 褐飛虱NlTgo的克隆
檢索褐飛虱基因組和轉(zhuǎn)錄組數(shù)據(jù)庫,得到一條編碼Tgo的單拷貝基因NlTgo。用Primer Premier 5.0軟件設計基因特異性引物(表1),利用PCR進行克隆驗證,擴增體系共25 μL,包括rTaqDNA聚合酶(5 U/μL)0.125 μL,10×緩沖液 2.5 μL,dNTP( 2.5 mmol/L) 2.0 μL,引物(10 μmol /L)各1 μL,cDNA模板1 μL,雙蒸水17.375 μL。將擴增產(chǎn)物連接于TOPO2.1載體(Invitrogen)上,轉(zhuǎn)化至DH5α的大腸桿菌感受態(tài)細胞中,隨機挑選4個陽性克隆提取質(zhì)粒,質(zhì)粒DNA在ABI3730測序儀上進行雙端測序。
1.4 序列分析及進化樹的構建
利用Lasergene軟件推導目的核苷酸序列編碼的氨基酸序列,根據(jù)NCBI的CDD(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)分析其保守結構域。利用ClustalW軟件[16]進行多序列比對,MEGA 6.0軟件構建系統(tǒng)發(fā)育樹(Neighbor-Joining法),自展(bootstrap)值為1000[17]。
1.5 實時熒光定量PCR(qRT-PCR)
以提取的各樣本的總RNA為模板,合成cDNA后用于qRT-PCR。反應體系如下:熒光定量PCR檢測試劑(SYBR Green Real time PCR Master Mix, TOYOBO, Japan) 10 μL,上下游引物(10 μmol/L)(表1)各0.6 μL,cDNA模板2 μL,雙蒸水6.8 μL。 qRT-PCR采用兩步法:94℃下預變性1 min;94℃下變性15 s,58℃下退火40 s,40次循環(huán)。采用2-ΔΔCT法分析數(shù)據(jù)[18]。以褐飛虱核糖體蛋白S18基因(rps18)作為內(nèi)參基因[19],3次技術重復和3次生物學重復。
1.6 dsRNA合成和生物測定
根據(jù)目的基因核苷酸序列設計合成雙鏈RNA(double-stranded RNA, dsRNA)的引物(表1)。參考雙鏈RNA合成試劑盒(MEGA script RNAi,Ambion, Austin, TX) 說明書完成dsRNA的體外轉(zhuǎn)錄。分別用瓊脂糖凝膠電泳和Nanodrop 2000 (Thermo) 檢測dsRNA的完整性和濃度。
表1 RT-PCR、qPCR和dsRNA合成引物
Table 1. Primers used for RT-PCR, qPCR and dsRNA synthesis.
引物名稱Primername正向引物(5'-3')Forwardsequence(5'-3')反向引物(5'-3')Reversesequence(5'-3')基因克隆Genecloning NlTgoGGCTGTTGCGCATATGAAGGATGTCGGACAACTCCTGCTG雙鏈RNA合成dsRNAsynthesis dsNlTgoT7-ACCGACGAGGTCGAGTACATT7-GTGTGTAGGTGGGTGACCTG dsGFPT7-AGATTTGTATAGTTCATCCATGCCATGTT7-AGAATGAGTAAAGGAGAAGAACTTTTCA定量PCRqPCR qNlTgoGGAGGAGGATGGTTCACACTGGTCCACAAACGTGAACTTG qNl18sCGCTACTACCGATTGAAGGAAACCTTGTTACGACTT
dsRNA的注射參考Wang等[20-21]的方法。選取4齡若蟲作為試蟲(約120頭),在其胸部節(jié)間膜注射50 ng(約0.06 μL)的dsNlTai或dsGFP(對照組)。注射后的試蟲飼養(yǎng)于TN1水稻苗上,第2天移除死蟲(死亡率僅為1.67%),并將剩下的活蟲分4個重復轉(zhuǎn)移到新的水稻苗上,逐日觀察試蟲的存活數(shù)、若蟲表型等發(fā)育情況。此外,根據(jù)以往實驗室注射經(jīng)驗,在注射后第4天,每個處理組中選取20頭試蟲用于總RNA提取,每個處理4個重復,每個重復5頭若蟲,采用1.5中的qPCR測定基因的相對表達量。
1.7 數(shù)據(jù)分析及統(tǒng)計
本研究數(shù)據(jù)分析采用DPS數(shù)據(jù)處理系統(tǒng)(Data Processing System)[22]軟件,單因素方差分析(One-way ANOVA)采用Duncan新復極差法進行顯著性差異分析,文中所用數(shù)據(jù)皆為平均值±標準差,并用不同的小寫字母代表不同組之間存在顯著差異(P<0.05)。
2.1 NlTgo的克隆及序列分析
通過RT-PCR克隆得到褐飛虱Tango基因,并將其命名為NlTgo。NlTgo的ORF為2007 bp,推測編碼668個氨基酸。NlTgo含有1個bHLH保守域和2個PAS結構域(圖1)。多序列比對表明NlTgo與人體虱(Pediculushumanuscorporis)Tgo的一致性最高,達68%;其次是赤擬谷盜(Triboliumcastaneum),達67%;最低是熱帶切葉蟻(Attacephalotes),為58%。采用MEGA6.0軟件選取來自其他14個物種中的Tgo序列與褐飛虱中Tgo構建系統(tǒng)發(fā)育樹(圖2),結果顯示,褐飛虱屬單獨一支,與豌豆長管蚜(Acyrthosiphonpisum)、始紅蝽(Pyrrhocorisapterus)、臭蟲(Cimexlectularius)進化關系較近。
2.2 NlTgo的時空表達模式
qPCR結果表明,NlTgo在褐飛虱發(fā)育的各階段均表達,并呈現(xiàn)出一定的波動性。其中,NlTgo在褐飛虱1齡、2齡表達較高,在3~5齡和成蟲期的表達量次之,在卵期表達量最低(圖3)。組織或器官表達譜表明NlTgo在褐飛虱卵巢中的表達量最高,在中腸、足、頭中的表達量次之,在脂肪體、體壁中表達量最低(圖4)。
2.3 dsNlTgo對褐飛虱目的基因及其生物學的影響
注射dsNlTgo后4 d,同對照組相比,處理組中試蟲的NlTgo表達量顯著下降了77%,且兩組間存在極顯著差異,表明dsNlTgo使NlTgo的表達量下降(圖5-A)。
與對照組相比,注射dsNlTgo后3 d,10%的褐飛虱死亡。此外,注射后4、5 d,處理組分別有40%、77%的若蟲死亡,存活率分別為60%、23%,均顯著低于對照組(分別為98%、98%)(P<0.05)(圖5-B)。注射后,若蟲發(fā)育至成蟲的歷期(2.8 d)與對照組(3.0 d)無顯著差異(P>0.05)。
注射dsNlTgo后5 d,若蟲在進入5齡時發(fā)育受阻,中胸背板處舊表皮可以裂開但不能完全蛻去,依然粘附在蟲體體表,不能完全蛻下而死亡(死亡若蟲中98%表現(xiàn)蛻皮不正常),而對照組則正常進入5齡,可見蛻下的舊表皮(圖6)。
昆蟲名稱及Tango的GenBank登錄號:Ph-人體虱(XP_002430960.1); Cl-溫帶臭蟲(XP_014259945.1); Cm-四紋豆象(AFL70632.1); Ld-馬鈴薯甲蟲(AKG92750.1); Pa-始紅蝽(AGI17574.1); Tc-赤擬谷盜(XP_008190739.1); Ac-豌豆長管蚜(XP_008180102.1)。
Insect species and GenBank accession numbers of Tango: Ph,Pediculushumanuscorporis(XP_002430960.1); Cl,Cimexlectularius(XP_014259945.1); Cm,Callosobruchusmaculatus(AFL70632.1); Ld,Leptinotarsadecemlineata(AKG92750.1); Pa,Pyrrhocorisapterus(AGI17574.1); Tc,Triboliumcastaneum(TC004710); Ac,Acyrthosiphonpisum(XP_008180102.1).
圖1 褐飛虱與其他物種Tgo氨基酸序列比對
Fig. 1. Alignment of amino acid residues of Tgo in Nilaparvata lugens and other insects.
昆蟲名稱及Tango的GenBank登錄號:Ph-人體虱(XP_002430960.1); Cl-溫帶臭蟲(XP_014259945.1); Cm-四紋豆象(AFL70632.1); Ld-馬鈴薯甲蟲(AKG92750.1); Pa-始紅蝽(AGI17574.1); Tc-赤擬谷盜(XP_008190739.1); Ac-豌豆長管蚜(XP_008180102.1); Dm-果蠅(FBgn0264075); Nv-蠅蛹金小蜂(Nasvi2EG004242); Bm-家蠶(BGIBMGA003472); Hs-印度跳蟻(HSAL22140); Ag-岡比亞按蚊(AGAP009748); Am-西方蜜蜂(GB44259); Aa-埃及伊蚊(AAEL010343)。
Insect species and GenBank accession numbers of Tango: Ph,Pediculushumanuscorporis(XP_002430960.1); Cl,Cimexlectularius(XP_014259945.1); Cm,Callosobruchusmaculatus(AFL70632.1); Ld,Leptinotarsadecemlineata(AKG92750.1); Pa,Pyrrhocorisapterus(AGI17574.1); Tc,Triboliumcastaneum(TC004710); Ac,Acyrthosiphonpisum(XP_008180102.1); Dm,Drosophilamelanogaster(FBgn0264075); Nv,Nasoniavitripennis(Nasvi2EG004242); Bm,Bombyxmori(BGIBMGA003472); Hs,Harpegnathossaltator(HSAL22140); Ag,Anophelesgambiae(AGAP009748); Am,Apismellifera(GB44259); Aa,Aedesaegypti(AAEL010343).
圖2 褐飛虱與其他昆蟲的Tango的進化樹
Fig. 2. Phylogenetic relationship of Nilaparvata lugens Tgo and insect homologues.
樣本量n=3。不同小寫字母代表不同組之間存在顯著差異(P<0.05)。
Different lowercase letters indicate significant difference at the 0.05 level between different groups.n=3
圖3 褐飛虱不同發(fā)育階段NlTgo的相對表達量
Fig. 3. Relative expression level of NlTgo in different development stages of Nilaparvata lugens.
樣本量n=3。不同小寫字母代表不同組之間存在顯著差異(P<0.05)。
Different lowercase letters indicate significant difference at the 0.05 level between different groups.n=3.
圖4 褐飛虱不同組織間NlTgo的相對表達量
Fig. 4. Relative expression level of NlTgo in different tissues of Nilaparvata lugens.
樣本量(n=3)。不同小寫字母代表不同組之間存在顯著差異(P<0.05)。
n=3. Different lowercase letters indicate significant difference at the 0.05 level between different groups.
圖5 注射dsRNA后第4天NlTgo相對表達量的變化(A)和干擾NlTgo后對褐飛虱存活率的影響(B)
Fig. 5. Relative expression level of NlTgo at 4thday injection with dsRNA(A) and survival rate of Nilaparvata lugens after injection dsRNA of NlTgo(B).
紅色箭頭表示背板裂開的邊緣。
Red arrow shows the edges of the split notum.
圖6 干擾NlTgo后褐飛虱表型變化
Fig. 6. Phenotypic types of Nilaparvata lugens nymph after injection with dsNlTgo.
本研究克隆的褐飛虱NlTgo屬于典型的bHLH-PAS亞家族[23],其包含1個bHLH保守結構域和2個PAS保守結構域,其中PAS結構域負責與其他PAS家族成員(如Sim和Trh)的結合,形成的二聚體共同調(diào)控生物體內(nèi)一系列的生命活動[15]。NlTgo與已知的Tgo高度同源,表明Tgo在物種進化過程中高度保守,預示其可能有相同的功能,與Probst等[24]的研究結果相似。從系統(tǒng)進化關系來看,褐飛虱Tgo與始紅蝽Tgo和臭蟲Tgo進化關系較近。由此可見,本研究克隆的NlTgo所編碼的bHLH和PAS保守結構域,可能作為功能蛋白參與二聚體形成等過程。
NlTgo在褐飛虱的生長發(fā)育過程中發(fā)揮重要作用。NlTgo在褐飛虱各發(fā)育階段和各組織或器官中的表達模式表明,NlTgo在褐飛虱的各個生長階段均表達,其中在第1、2齡表達量最高,在卵、第3~5齡和成蟲中表達較低,且呈現(xiàn)出一定的波動性,表明該基因的表達可能與褐飛虱的發(fā)育相關。此外,NlTgo在褐飛虱的各個組織或器官中均表達,其中NlTgo在卵巢的表達量最高,在中腸、足、頭、脂肪體、體壁等組織中表達量較低,這表明NlTgo也可能與雌蟲的產(chǎn)卵有關。
RNAi是一種轉(zhuǎn)錄后水平的沉默機制,是通過內(nèi)源或外源性雙鏈RNA(double-strands RNA,dsRNA)介導的細胞內(nèi)mRNA發(fā)生特異性降解,從而導致靶基因沉默,繼而引起相應的功能缺失的現(xiàn)象[25]。Subba發(fā)現(xiàn)在赤擬谷盜中沉默Tango會導致顯著的致死效應,赤擬谷盜幼蟲在沉默后3 d開始有死蟲出現(xiàn),并在7 d后全部死亡。這些死蟲體型變小,胸部褶皺,并變成深褐色[26]。在褐飛虱中,我們通過統(tǒng)計注射dsNlTgo后存活率、表型及轉(zhuǎn)錄水平的定量驗證分析表明,NlTgo可以在褐飛虱中通過注射dsRNA的方法有效沉默。該基因沉默后5 d褐飛虱的存活率僅為23%,顯著低于對照組98%的存活率。顯微鏡下觀察死亡褐飛虱發(fā)現(xiàn),注射dsNlTgo的若蟲98%的褐飛虱表現(xiàn)為舊表皮裂開但不能完整的蛻下,并死亡。保幼激素、蛻皮激素、胰島素等信號通路互相協(xié)調(diào)共同調(diào)控昆蟲的變態(tài)發(fā)育,這些信號通路的紊亂會不同程度造成昆蟲發(fā)育的受阻,我們推測NlTgo作為轉(zhuǎn)錄因子可能調(diào)控這些信號通路中某一基因的轉(zhuǎn)錄,從而影響褐飛虱的蛻皮發(fā)育。先前的研究表明,在果蠅中,Tango與一些組織特異性bHLH-PAS蛋白結合,隨后通過CME位點調(diào)控靶基因的表達[27]并參與毒素代謝過程[28]。此外,Trh/Tgo bHLH-PAS蛋白還共同參與果蠅和人的后腸的發(fā)育[29]。
本研究初步表明NlTgo基因與褐飛虱的蛻皮過程相關。該基因在褐飛虱中的作用尚屬首次報道,且在褐飛虱體內(nèi)本身的作用機制還不是很明確,因此,對褐飛虱NlTgo可能參與的通路與調(diào)控機制的深入研究將有助于篩選新的靶標來防治褐飛虱。
[1] Atchley W R, Fitch W M. A natural classification of the basic helix-loop-helix class of transcription factors.ProcNatlAcadSciUSA, 1997, 94(10): 5172-5176.
[2] Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms.MolCellBiol, 2000, 20(2): 429-440.
[3] Kadesch T. Consequences of heteromeric interactions among helix-loop-helix proteins.CellGrowthDiffer, 1993, 4(1): 49-55.
[4] Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor.Science, 1992, 256(5060): 1193-1195.
[5] Jan Y N, Jan L Y. HLH proteins, fly neurogenesis, and vertebrate myogenesis.Cell, 1993, 75(5): 827-830.
[6] Weintraub H. The MyoD family and myogenesis: Redundancy, networks, and thresholds.Cell, 1993, 75(7): 1241-1244.
[7] Crews S. Control of cell lineage-specific development and transcription by bHLH-PAS proteins.Genes&Dev, 1998, 12(5): 607-620.
[8] Sonnenfeld M, Ward M, Nystrom G, et al. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development.Development, 1997, 124(22): 4571-4582.
[9] Ghaffar M B, Pritchard J, Ford-Lloyd B. Brown planthopper (N.lugensSt?l) feeding behaviour on rice germplasm as an indicator of resistance.PLoSOne, 2011, 6(7): e22137.
[10]李進波, 萬丙良, 夏明元, 等. 抗褐飛虱水稻品種的培育及其抗性表現(xiàn). 應用昆蟲學報, 2011, 48(5): 1348-1353.
Li J B, Wan B L, Xia M Y, et al. Breeding of the brown planthopper resistant rice varieties.ChinBullEntomol, 2011, 48(5): 1348-1353. (in Chinese with English abstract)
[11]Cheng X, Zhu L, He G. Towards understanding of molecular interactions between rice and the brown planthopper.MolPlant, 2013, 6(3): 621-634.
[12]Yu R, Xu X, Liang Y, et al. The insect ecdysone receptor is a good potential target for RNAi-based pest control.IntJBiolSci, 2014, 10(10): 1171-1180.
[13]Li K L, Wan P J, Wang W X, et al. Ran involved in the development and reproduction is a potential target for RNA-interference-based pest management inNilaparvatalugens.PlosOne, 2015, 10(11): e0142142.
[14]王彥華, 王鳴華. 近年來我國水稻褐飛虱暴發(fā)原因及治理對策. 農(nóng)藥科學與管理, 2007, 25(2): 49-54.
Wang Y H, Wang M H. Factors affecting the outbreak and management tactics of brownplanthopper in China recent years.PestSci&Admin, 2007, 25(2): 49-54. (in Chinese)
[15]Long S K, Fulkerson E, Breese R, et al. A comparison of midline and tracheal gene regulation during drosophila development.PLoSOne, 2014, 9(1): e85518.
[16]Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0.Bioinformatics, 2007, 23(21): 2947-2948.
[17]Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.MolBiolEvol, 2011, 28(10): 2731-2739.
[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.RNA, 2001, 9(3): 299-308.
[19]Yuan M , Lu Y , Zhu X, et al. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper,Nilaparvatalugens(Hemiptera: Delphacidae) using reverse-transcription quantitative PCR.PLoSOne, 2014, 9(1): e86503.
[20]Wang W X, Li K L, Chen Y, et al. Identification and function analysis of enolase geneNlEno1 fromNilaparvatalugens(Stal) (Hemiptera:Delphacidae).JInsectSci, 2015, 15(1): 66.
[21]Li K L, Wan P J, Wang W X, et al. Ran involved in the development and reproduction is a potential target for RNA-interference-based pest management inNilaparvatalugens.PLoSOne, 2015, 10(11): e0142142.
[22]Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.InsectSci, 2013, 20(2): 254-260.
[23] Peyrefitte S, Kahn D, Haenlin M. New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes.MechDev, 2001, 104(1/2): 99-104.
[24]Probst M R, Fan C M, Tessier-Lavigne M. Two murine homologs of the Drosophila single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein.JBiolChem, 1997, 272(7): 4451-4457.
[25]Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA inCaenorhabditiselegans.Nature, 1998, 391(6669): 806-811.
[26]Bitra K, Tan A, Dowling A, et al. Functional characterization of PAS and HES family bHLH transcription factors during the metamorphosis of the red flour beetle,Triboliumcastaneum.Gene, 2009, 448(1): 74-87.
[27]Ohshiro T, Saigo K. Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea.Development, 1997, 124(20): 3975-3986.
[28]Crews S T, Fan C M. Remembrance of things PAS: regulation of development by bHLH-PAS proteins.CurrOpinGenetDev, 1999, 9(5): 580-587.
[29]Choi Y J, Kwon E J, Park J S, et al. Transcriptional regulation of theDrosophilacaudalhomeobox gene by bHLH-PAS proteins.BiochimBiophysActa, 2007, 1769(1): 41-48.
Molecular Cloning and Functional Analysis ofNlTgoin the Rice Brown Planthopper,Nilaparvatalugens(Hemiptera: Delphacidae)
CHEN Long-fei1, WAN Pin-jun2, WANG Wei-xia2,*, FU Qiang2, ZHU Ting-heng1,*
(1College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;2China Rice Research Institute, Hangzhou 310006, China;*Corresponding author, E-mail: thzhu@zjut.edu.cn)
Transcriptional regulator Tango (Tgo) plays crucial roles in insect development, including neurogenesis, hematopoiesis, sex determination and gut development. In this study, a full-length cDNA ofTangowas cloned inNilaparvatalugens. qRT-PCR and RNA interference (RNAi) were further used to analyze the expression pattern and function role, respectively. Our results showed thatNlTgocontained a 2007-bp open reading frame (ORF), encoding 669 amino acid residues. Sequence alignment showed that NlTgo shared an identity of 68% withPediculushumanus. Phylogenetic analysis suggested that NlTgo was closely related to the Tango proteins fromAcyrthosiphonpisum,PyrrhocorisapterusandCimexlectularius. Expression profile revealed thatNlTgoexpression was higher in the first- and second-instar larvae than that in eggs. Furthermore, the expression level ofNlTgowas higher in ovary than that in integument. Knocking down ofNlTgo, in the 4th-instar nymph, was performed by double-stranded RNA (dsRNA) targetingNlTgo. It was found that the expression level ofNlTgo, 4 days after injection, was significantly decreased by 77%, compared with control. Furthermore, nymphs died due to the abnormal molting, and the survival rate was only 23%, significantly lower than control group (98%). The results suggest thatNlTgois involved in the development ofN.lugensand can serve as a potential target for controlling the brown planthopper.
Nilaparvatalugens; Tango; RNAi; molting; pest control
2016-03-01; 修改稿收到日期: 2016-04-21。
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系專項(CARS-1-18); 國家自然科學基金資助項目(31201512)。
Q785; S435.112+.3
A
1001-7216(2016)06-0653-08
陳龍飛, 萬品俊, 王渭霞, 等. 褐飛虱NlTgo基因的克隆及功能研究. 中國水稻科學, 2016, 30(6): 653-660.