• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia

    2016-12-07 07:41:08JuanAOandJianqiSUN1NansenZhuInternationalResearchCenterInstituteofAtmosphericPhysicsChineseAcademyofSciencesBeijing100029
    Advances in Atmospheric Sciences 2016年5期

    Juan AOand Jianqi SUN?1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia

    Juan AO1,2and Jianqi SUN?1,2
    1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study.The results show that the SST anomalies(SSTAs)over the South Pacific Ocean(SPO)in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia.The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves.The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter,and then stimulates a meridional teleconnection pattern from the SH to the NH,resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter.As a major influencing factor,this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter.These observed physical processes are further confirmed in this study through numerical simulation.The evidence from this study,showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation,but also provides a potentially useful predictor for precipitation in the region.

    SST,boreal winter precipitation,dipolar pattern,atmospheric circulation,zonal wind

    1.Introduction

    East Asia is a region with a high density of arable agriculture and a large human population.Anomalous precipitation in boreal winter,accompanied by intense snowfall and freezing events,can result in severe disasters in the region. Some studies have shown that,recently,boreal winter precipitation in East Asia has increased,and extreme precipitation is occurring more frequently(Sun et al.,2009a,2010; Sun and Ao,2013;Wang and He,2013;Ao and Sun,2015a, 2015b);and in terms of the future,the IPCC AR5 projection shows increasing winter precipitation in East Asia,with relatively larger magnitude over northern East Asia(Collins et al.,2013).These results indicate that the impact of boreal winter precipitation is enhancing,and will continue to do so. Thus,exploring the factors that influence boreal winter precipitation,and improving our ability to predict it,are both highly relevant research topics.

    In previous research,a number of factors that impact upon the variability of boreal winter precipitation over East Asia havebeenrevealed.Forexample,dominantatmospheric circulation modes,such as the East Asian jet stream(Yang et al.,2002),East Asian boreal winter monsoon(Zhou and Wu,2010),and North Pacific oscillation(Wang et al.,2011), can produce anomalous boreal winter precipitation over East Asia.Snow cover is also considered a vital factor influencing borealwinter atmosphericcirculation and precipitation—revealed by both observation analyses and numerical simulations(Cohen and Entekhabi,1999,2001;Cohen et al.,2002, 2007,2014;Gong et al.,2002;Chen et al.,2003;Chen and Sun,2003).A numberof relativelyrecentstudieshaveshown that the impact of sea ice on boreal winter precipitation has become significant in recent years(Liu et al.,2012;Ma et al.,2012,Li and Wang,2013).In addition,variations in SST anomaly(SSTA)patterns,owing to their persistence and active role in air–sea interactions,have been highlighted as a key factor in diagnosing and predicting the variability in East Asian boreal winter precipitation(Bueh and Ji,1999;Jin and Tao,1999;Li and Bates,2007;Feng et al.,2010;Zhou et al., 2010;Zhou et al.,2010;Wang and He,2012;He et al.,2013; Zhang et al.,2014).

    However,most previous studies focused on the impact of SSTA modes over the tropics and NH;for example, ENSO,Atlantic multi-decadal oscillation,and western Pacific SSTAs.A recent study foundthat a tripole SSTA patternexisting in the South Pacific Ocean(SPO)during boreal winter could affect precipitationduring the followingspring over East China(Li et al.,2014).The result motivates us to ask whether SSTA patterns over the SPO,in particular during the preceding season,influence precipitation patterns over East Asia during boreal winter.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Therefore,this work focuses on the connection between boreal autumn SSTAs and boreal winter precipitation over East Asia,and the possible physical mechanisms involved in the connection.In addressing these issues,the intention is to deepen our understandingof boreal winter precipitation variability and improve its predictability.

    2.Data and methods

    MonthlyprecipitationdataoverEast Asiaona 2.5?×2.5?grid were obtained from the Global Precipitation Climatology Project(GPCP)(Adler et al.,2003).Before the analysis,the data were transformedinto boreal winter(December–February;DJF)average precipitation.The monthly atmospheric circulation reanalysis datasets on a 2.5?×2.5?grid were provided by the NCEP–NCAR(Kalnay et al.,1996). The monthly Extended Reconstructed Sea Surface Temperature(ERSST v3b)dataset,on a 2?×2?grid,was acquired from the NOAA ESRL(Smith and Reynolds,2003).The OLR data,also obtainedfromNOAA ESRL,are usedto infer tropical convection.The OLR data are available from June 1974,with a missing period between March and December 1978.

    According to the period of precipitation data and quality of the reanalysis data over the SH,the analysis period was confined to 1979–2010 in this study.To investigate the influences of the preceding boreal autumn SSTAs,numerical simulations were performed with CAM5,which is the atmospheric component of CESM1 0 5.The“F 2000”component set was selected for CESM1 0 5,which used a prescribed climatology for SST and sea ice and an active land model(CLM),coupled with CAM5.The atmospheric composition was kept constant,at year 2000 values;that is,the CO2concentration was at a constant 367.0 ppm during the simulations.The simulations used a 1.9?(lat)×2.5?(lon)finite volume grid,with 26 hybrid sigma pressure levels and a 30 minute integration time step(Gent et al.,2011).

    3.Results

    3.1.EOF2 of boreal winter precipitation over East Asia

    The EOF calculated by the covariance matrix is firstly used to identify the spatial and temporal patterns of boreal winter precipitation over East Asia.Previous studies have analyzed the variability of the leading mode of winter precipitation over East Asia and the possible mechanisms(Ao and Sun,2015a,2015b).The leading mode of winter precipitation over East Asia exhibits highly consistent variability (figure not shown),and relatively larger values mainly over the southern and middle regions of East Asia.The leading EOF mode explains 19.9%of the total precipitation variance. In this research,the second mode(EOF2)of boreal winter precipitation will be analyzed.

    The spatial pattern of boreal winter precipitation over East Asia,depicted by the EOF2 mode,exhibits a meridional dipolar pattern,and it explains 16.4%of the total variance in precipitation(Fig.1a).The corresponding time series,of the EOF2 mode,indicates a strong linear trend and also interannual variability of boreal winter precipitation(figure not shown).The detrended and standardized time series of the EOF2 mode(dPC2)eliminates the impact of the linear trend, showing the interannual variability of the second EOF mode of boreal winter precipitation over East Asia(Fig.1b).The dPC2isusedtoanalyzetherelationshipsofborealwinterprecipitation with atmospheric circulation and preceding boreal autumn SSTAs in the following sections.

    Fig.1.The second EOFmode of standardized winter(DJF)precipitation over East Asia:(a)spatial distribution; (b)detrended and standardized time series(dPC2).

    3.2.Boreal winter atmospheric circulation anomaliesand boreal autumn SSTAs associated with the EOF2 mode of boreal winter precipitation over East Asia

    The regressed simultaneous geopotentialheight and wind at 500 hPa,vertical motion at 500 hPa,and vertically integrated water vapor flux,associated with the dPC2 of boreal winter precipitation reveals that there is a meridional dipole circulation pattern over East Asia(Fig.2).An anomalous cyclonic circulation is centered over the Lake Baikal region (Fig.2a),which leads to anomalous ascending motion over northern East Asia(Fig.2b)and also enhances the water vapor transportation to northern East Asia by westerly flow and fromthe Pacific(Fig.2c),ultimately favoringmoreprecipitation over northern East Asia.In contrast,an anomalous anticyclonecovers southernChina,extendingto the Middle East, which results in anomalous descendingmotion over southern East Asia and also weakens the transportation of warm and moist air from the low latitudes,consequently leading to less precipitation over southern East Asia.This dipolar pattern is the most important circulation factor responsible for the variability of the dipole pattern of boreal winter precipitation over East Asia.

    In order to investigate the relationship between the East Asian boreal winter precipitation dipole pattern and the SPO SST variability,the regressed precedingautumn SSTAs associated with the dPC2 of boreal winter precipitation over East Asia is calculated.The significant SSTAs show a tripole pattern over the SPO,with a remarkable negative SSTA present mainly over the southern SPO and significant positive SSTAs over the northeastern and northwestern SPO(Fig.3).Moreover,this boreal autumn SSTA pattern still exists in the following boreal wintertime(figure not shown,similar to Fig. 3).These results show that the tripole pattern of SSTAs overthe SPO has a relationship with the second mode of boreal winter precipitation over East Asia.

    Fig.2.Linear regressions of boreal winter(a)geopotential height(gpm)and wind (m s-1)at 500 hPa,(b)vertical motion(10-3Pa s-1)at 500 hPa,and(c)vertically integrated water vapor flux(kg m-1s-1),against dPC2.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    To further quantify the relationship of the tripole pattern of SSTAs over the SPO and the second mode of boreal winter precipitation over East Asia,an SSTA index(SSTI)is defined as the difference between the standardized averaged SSTs over the positive SSTA regions(P;the black solid rectangle in Fig.3)and the negative SSTA region(N;the black dashed rectangle in Fig.3),based on the formula:SSTI= (1/4Pwest+1/4Peast)–1/2N(Pwest/Peast;the west/east solid rectangle in Fig.3).The correlation coefficient of the detrended boreal autumn SSTI and the dPC2 of boreal winter precipitation is 0.72,significant at the 99%confidence level; this means that the tripolar pattern of boreal autumn SSTAs overthe SPO does have a goodrelationshipwith the variation of the dipolar mode of boreal winter precipitation over East Asia.

    3.3.How dothe borealautumn SSTAs overthe SPO affect the boreal winter atmospheric circulation and precipitation over East Asia?

    3.3.1.Observational analysis

    The previous section showed that the boreal autumn tripole pattern of SSTAs over the SPO is connected to the second mode of boreal winter precipitation over East Asia. Here,the possible mechanismresponsiblefor this connection isexplored.GiventhattheSSTAs generallyhavegoodpersistence,we deduce that the seasonal persistence of the SSTAs could be a possible mechanism to memorize and transport the signal of the boreal autumn SSTAs into the following boreal winter,and then impact upon the atmospheric circulation and precipitation.Therefore,the SSTI in boreal winter is also computed,and the correlation coefficient of the SSTIs in boreal autumn and winter is 0.72,significant at the 99% confidence level.After removing the SSTI trend(Fig.4),the two SSTIs also co-very well,with a correlation coefficient of 0.70.These results indicate that the SSTA signal over the SPO does have good persistence from boreal autumnthrough to boreal winter.

    Fig.3.Linear regressions of boreal autumn SSTAs(?C)against dPC2.Dotted areas are significant at the 95%confidence level.

    To further understand how the SPO SSTAs persist from the boreal autumn to winter,the evolution of the anomalous SSTs andsurfacewindsovertheSPO fromtheborealautumn to winter are analyzed(Fig.5).The anomalousSSTs and surface winds are calculated by compositing the corresponding SST and surface winds in the abnormal years of the boreal winter precipitation dipole pattern;the abnormal years are definedas occurringwhenthe detrendedandnormalizedtime series of the boreal winter precipitation’s second EOF mode are greater than 1,or less than-1.It is found that the SPO SSTAs in boreal autumn correspond to an anomalous anticyclone in the midlatitudes,and a cyclone in the high latitudes, of the SPO.On the one hand,northerly anomalies of the anticyclone can bring warmer water from the low latitudes to the midlatitudes,leading to the SST warming over the northernSPO;whileon theotherhand,the midlatitudeanticyclone correspondsto sunnyweather,which favors more solar radiation being received by the sea surface,and also contributes to the SST warmingoverthe northernSPO.However,thesouthwesterly anomalies between the anticyclone and cyclone will bring colderwater from the high latitudes to the midlatitudes, leading to SST cooling over the southern SPO.Additionally, the distribution of anomalous warm SST over the northern SPO and cold SST over the southern SPO can enlarge the meridional temperature gradient over the SPO region.Accordingtothermalwindtheory,theenhancedmeridionaltemperature gradient can enhance the zonal wind between the warm and cold SSTAs over the SPO.The enhanced west-erly can then enhance the anomalous cyclone over the southern SPO and anticyclone over the northern SPO.Thus,there is a positive feedback mechanism between ocean and atmosphere,which leads to the persistence of the autumn SPO SSTAs to winter.

    Fig.4.Detrended and standardized SPO SSTIs in boreal autumn(1979–2009)and winter(1980–2010).Theformer year of x-axis corresponds toautumn(SON),and thelatter year corresponds to winter(DJF).

    Fig.5.Evolution of anomalous SSTs(?C)and surface winds(m s-1)over the SPO from September to the following February. Dotted areas are significant at the 95%confidence level.

    Further,the atmospheric circulation patterns associated with the SSTAs over the SPO are investigated.A regression of the boreal winter zonal winds associated with the detrended boreal winter SSTI indicates that the SPO SSTA pattern is related to two meridional teleconnection patterns of zonal wind(Fig.6a).One is over the eastern Pacific,and the other is over the Eastern Hemisphere.The teleconnection pattern of the zonal wind from the SH to the NH over the Eastern Hemisphere leads to a dipole pattern of geopotential height over East Asia(Fig.6b);this pattern is quite similar to the atmosphericpattern associated with the dPC2 of boreal winter precipitation over East Asia(Fig.2a).

    The atmospheric circulation associated with the detrended SSTI in boreal autumn(Fig.7)shows a quite similar but weaker atmospheric circulation pattern to the regression of the boreal winter zonal winds associated with the detrended boreal winter SSTI(Fig.6).Because the variability of the SPO SSTAs in boreal autumn and winter is highlyconsistent,the two SSTIs are related to a similar atmospheric circulation pattern in boreal winter.

    From an observational analysis viewpoint,the above results providegood evidenceof the persistence of SPO SSTAs as the connection between the boreal autumn SPO SSTA pattern and the East Asian winter precipitation.

    3.3.2.Numerical simulation

    The observational data indicate that interhemispheric meridional teleconnection patterns could be responsible for the connection between the SPO SSTAs and the East Asian winter circulation and precipitation.In this section,a numerical simulation is used to investigate whether or not these interhemispheric meridional teleconnection patterns are induced by the SPO SSTAs.

    Fig.6.Linear regressions of boreal winter(a)zonal wind(m s-1)and(b)geopotential height (gpm)and wind(m s-1)at 500 hPa,against the detrended and standardized boreal winter SSTI over the SPO.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.7.As in Fig.6 but for boreal autumn SSTI.

    Fig.8.SSTAs(?C)over the SPO in boreal(a)autumn and(b)winter,imposed in the numerical simulation.

    To simulate SSTs as realistically as possible,we impose observed boreal autumn SSTAs(Fig.8a)from August to November(August as the spin-up time),and boreal winter SSTAs(Fig.8b)from December to February,over the SPO in the numerical simulations.The boreal autumn and boreal winter SSTAs are calculated separately by compositing the corresponding SSTAs in the abnormal years of the boreal winter precipitation dipole pattern;the abnormal years are definedas occurringwhen thedetrendedandnormalizedtime series of the boreal winter precipitation’s second EOF mode are greater than 1,or less than-1.To eliminate the strong SST gradients over the four borders of the SSTA regions,the SSTAs are linearly decreased to 0?C across five points.A 30-year run with the model’s climatological SST and sea-ice boundary conditions is performed;the average for the last 20 years is defined as the control run(EXP0).The sensitivityexperiment(EXP1)is similar to EXP0,but with the SSTAs imposed over the SPO region in boreal autumn and boreal winter;the averagefor the last 20 years of EXP1 is compared with EXP0.

    Fig.9.Differences of boreal winter(a)zonal wind at 500 hPa(m s-1),(b)geopotential height(gpm)and wind(m s-1)at 500 hPa,and(c)precipitation(mm month-1) over East Asia,between EXP1 and EXP0.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.10.Differences of the boreal winter geopotential height(gpm)at 500 hPa between EXP1 and EXP0 and the related wave activity flux(m2s-2).The dark(light)shaded areas are significant at the 95%(90%)level.

    Anomalies of 500 hPa zonal wind(Fig.9a),geopotential height and winds over Eurasia(Fig.9b),and total precipitation over East Asia(Fig.9c)in the simulation forced by the SPO SSTA pattern are similar to the observation.These results provide a possible mechanism for the SPO SSTAs affectingatmosphericcirculationsandwinterprecipitationover East Asia.The distribution of anomalous warm SST over the northern SPO and cold SST over the southern SPO can enlarge the meridional temperature gradient over the SPO region.Accordingto thermalwind theory,the enhancedmeridional temperature gradient can enhance the zonal wind between the warm and cold SSTA over the SPO.The enhanced westerly can then lead to an anomalous cyclone over the southern SPO and anticyclone over the northern SPO.Such changes of the atmospheric circulation enhance the eastward Rossby wave propagation reflected by the Rossby wave activity flux(Fig.10),which further causes anomalous atmospheric circulations over the Eastern Hemisphere.The study of Ambrizzi et al.(1995)indicated that the southern Indian Ocean is an arc-like route of equatorward Rossby wave propagation.Thus,along this route,the SPO SSTA-related wave train propagates equatorward over the southern Indian Ocean,resulting in anomalous tropical climate.Accordingly, in the anomalous SPO SST years,the tropical convectionhas changed(Fig.11).The simulated OLR features are similar to the observation,although the observed signal is stronger than the simulated.As shown in Fig.12,in response to the SPO SSTA,the convection is enhanced over the western tropical Pacific Ocean and depressed over the western tropical Indian Ocean.Such a dipole convective pattern indicates changes in the Walker-like zonal circulation over the tropical Indian Ocean.An OLR index is defined as the difference between the regional means of OLR over the two rectangular regions in Fig.12.Table 1 shows the quantitative relationship between the SPO SSTI and the OLR index.The table suggests that there is a close relationship between the SPO SSTA and tropical convection.Figure 12 also implies a strong ENSO signal in the tropical convection.To further investigate the relationship between the SPO SSTA and tropical convection, the ENSO signal is removed from the OLR index based on the linear regression method using the Ni?no3.4 index,and the new correlation coefficient is also listed in Table 1.The result still shows a close relationship between the SPO SSTA and tropical convection.

    According to traditional wave theories,Rossby waves cannot move across the equator to the other hemispheredue to prevailing easterlies(e.g.,Ambrizzi et al.,1995); meanwhile,the tropical climate associated with the Rossby wave can connect the climate overthe other hemisphere(e.g., Matthews and Kiladis,2000;Sun et al.,2009b).Thus in this study,the SPO SSTA-related tropical convection can transport the SPO SSTA influence to East Asia.The regression of geopotential height at 500 hPa against the OLR index after removing the ENSO signal is shown in Fig.13.Over the SH, the anomalous circulation shows a wave train pattern,propagating equatorward over the southern Indian Ocean,similar to the SPO SSTA-related circulation over the region(Figs. 6a and 9a).Over East Asia,the atmospheric circulation pattern is similar to the regressed pattern against dPC2(Fig.2a), with anomalous cyclonic circulation centered over the northern part of East Asia and an anticyclone covering southern China and extending to the Middle East,showing a meridional dipole circulation pattern over East Asia.Some previous studies have shown that the tropical convection can stimulate a wave train pattern over East Asia(Nitta,1987;Huang and Sun,1994).Thus,the tropical convection can excite the atmospheric circulation over East Asia,which further results in anomalous winter precipitation over the region.Table 1 also confirms the relationship between the tropical convection and East Asian winter precipitation,showing significant correlations between the two indices.

    Table 1.Correlation coefficients of the detrended and standardized OLR index with the SPO SSTI and dPC2 in boreal winter are shown in first row.Correlation coefficients after removing the ENSOsignal are shown in second row.

    Fig.11.Differences of OLR(W m-2)between EXP1 and EXP0 in boreal winter.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.12.Linear regressions of OLR(W m-2)against the detrended and standardized SSTI over SPO in boreal winter.The dark(light)shaded areas are significant at the 95%(90%)confidence level.The rectangles indicate the two key OLR regions.

    Fig.13.Linear regressions of 500 hPa geopotential height(gpm)against the detrended and standardized OLR index after removing ENSO signal in boreal winter.The dark (light)shaded areas are significant at the 95%(90%)confidence level.The rectangles indicate the two key OLR regions.

    There are similarities over the Eastern Hemisphere between observations and simulations(see Figs.6a and 9a);but incontrast,therearelargedifferencesovertheWesternHemisphere.There is an interhemispheric teleconnection pattern over the Western Hemisphere accordingto observations(Fig. 6a);however,in the simulation(Fig.9a),the meridional teleconnection is confined to the tropical and southern areas of the East Pacific.This difference could be related to the absence of the ENSO signal in the simulation.In the observation,there is a high correlation between the SPO SSTIs and the ENSO index,and the ENSO-related circulation pattern shows a similar interhemisphericteleconnectionoverthe East Pacific.However,in the numericalsimulation,the atmospheric circulation pattern is only related to the SPO SSTAs. Thus,compared to the observational analysis,the existence of the interhemispheric teleconnection pattern over the Eastern Hemisphere and absence of the interhemispherictelecon-nection pattern over the Western Hemisphere(i.e.,the East Pacific)in the numerical simulation,indicates that the interhemispheric teleconnection pattern over the Eastern Hemisphere is a physical way to transport the influence of the SPO SSTAs to East Asia.

    Our study indicates that the signal of boreal autumn SSTAs over the SPO can be kept to the following winter owing to the persistence of the SSTA,and then the boreal winter SSTAs over the SPO can stimulate the interhemispheric teleconnectionpattern to affect winter precipitationover East Asia.On the other hand,the SPO SSTAs exist in the boreal autumn.The sole impact of the SPO SSTA should therefore also be investigated,to improve our understanding of the influencing mechanism.Thus,we also ran the experiments usingonlytheSSTAs inborealautumn.Theresultsshowedthat the anomalies of atmospheric circulation and precipitation still appear in the numerical simulation(figure not shown); however,the signals are much weaker compared with the simulation including both autumn and winter SSTAs.These results indicate that the circulation anomalies induced solely by the SPO SSTAs in boreal autumn contribute weakly to the winter precipitation over East Asia.The persistence of the SSTA signal from boreal autumn to winter could play a more important role in the connection between the boreal autumn SPO SSTA and winter East Asian precipitation.

    The numerical simulation further confirms that the SPO SSTA mode is an influencing factor for boreal winter precipitation over East Asia;within this process,the seasonal persistence of the SPO SSTAs and the interhemispheric teleconnection pattern play an important role.

    4.Summary and conclusions

    This paper investigates the spatial and temporal features of the second EOF mode of boreal winter precipitation over East Asia during the period 1979–2010,and further explores the possible influencing factors.The second EOF mode shows a meridional dipole pattern,which explains 16.4%of the totalvarianceandexhibitsa stronginterannualvariability. Circulationanalysisindicatesthattheatmosphericcirculation associatedwith the EOF2 modeof borealwinterprecipitation over East Asia is a dipole pattern:there is one center over the Lake Baikal region and another over southern China.This meridional dipole pattern is the dominant pattern impacting upon the dipole pattern of precipitation over East Asia.

    After diagnosing the relationship between the East Asian winter precipitation EOF2 mode and SST variability,the influence of the SPO SSTAs in boreal autumn on the boreal winter precipitation dipole mode over East Asia was revealed.The possible main mechanism,through which the SPO SSTAs in the boreal autumnaffect the East Asian boreal winter precipitation,is considered to be the SSTA’s seasonal persistence.The persistence of the SPO SSTAs means that the signal is memorized and transported from boreal autumn through to winter,and then stimulates the interhemispheric teleconnectionpatternovertheEast Hemisphere.Thismeridional teleconnection pattern plays an important role in the influence of the SPO SSTAs on the atmospheric circulation over East Asia,resulting in a dipole pattern.This dipole pattern is the dominant factor influencing the variability of the dipole pattern of boreal winter precipitation over East Asia.These results were further confirmed through a numerical simulation.Therefore,the SPO SSTA pattern revealed in this study is valuable in terms of our understanding of the variability in East Asian winter precipitation and improving predictions in the future.

    Acknowledgements.This work was jointly supported by the Special Fund for Public Welfare Industry(meteorology)(Grant No. GYHY201306026)and the National Natural Science Foundation of China(Grant Nos.41421004 and 41522503).

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The Version-2 global precipitation climatology project(GPCP)monthly precipitation analysis(1979–Present).Journal of Hydrometeorology,4,1147–1167.

    Ambrizzi,T.,B.J.Hoskins,and H.H.Hsu,1995:Rossby wave propagation and teleconnection patterns in the austral winter. J.Atmos.Sci.,52,3661–3672.

    Ao,J.,and J.Q.Sun,2015a:Decadal change in factors affecting winter precipitation over eastern China.Climate Dyn.,doi: 10.1007/s00382-015-2572-7.

    Ao,J.,and J.Q.Sun,2015b:Connection between November snow cover over Eastern Europe and winter precipitation over East Asia.Int.J.Climatol.,doi:10.1002/joc.4484.

    Bueh,C.,and L.R.Ji,1999:Anomalous activity of East Asian winter monsoon and the tropical Pacific SSTA.Chinese Science Bulletin,44,890–898.

    Cohen,J.,and D.Entekhabi,1999:Eurasian snow cover variability and northern hemisphere climate predictability.Geophys. Res.Lett.,26,345–348.

    Cohen,J.,and D.Entekhabi,2001:The influence of snow cover on northern hemisphere climate variability.Atmos.–Ocean,39, 35–53.

    Cohen,J.,D.Salstein,and K.Saito,2002:A dynamical framework to understand and predict the major Northern Hemisphere mode.Geophys.Res.Lett.,29(10),51–54.

    Chen,H.S.,and Z.B.Sun,2003:The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part I.observational studies.Chinese J.Atmos.Sci.,27,304–316. (in Chinese)

    Chen,H.S.,Z.B.Sun,and W.J.Zhu,2003:The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part II.Model simulation.Chinese J.Atmos.Sci., 27,847–860.(in Chinese)

    Cohen,J.,M.Barlow,P.J.Kushner,and K.Saito,2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability.J.Climate,20,5335–5343.

    Cohen,J.,J.C.Furtado,J.Jones,M.Barlow,D.Whittleston,and D.Entekhabi,2014:Linking Siberian snow cover to precursors of stratospheric variability.J.Climate,27,5422–5432.

    Collins,M.,and Coauthors,2013:Long-term climate change: projections,commitments and irreversibility.ClimateChange 2013:The Physical Science Basis.Contribution of WorkingGroup I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T.F.Stocker et al.,Eds., Cambridge University Press,1029–1136.

    Feng,J.,L.Wang,W.Chen,S.K.Fong,and K.C.Leong,2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter.J.Geophys. Res.,115,D24122.

    Gent,P.R.,and Coauthors,2011:The community climate system model Version 4.J.Climate,24,4973–4991.

    Gong,G.,D.Entekhabi,and J.Cohen,2002:A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations.J.Climate,15,3488–3499.

    He,S.P.,H.J.Wang,and J.P.Liu,2013:Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation.J.Climate,26,3377–3393.

    Huang,R.H.,and F.Y.Sun,1994:Impacts of the thermal state and the convective activities in the tropical western warm pool on thesummer climateanomalies inEast Asia.Chinese J.Atmos. Sci.,18,141–151.(in Chinese)

    Jin,Z.H.,and S.Y.Tao,1999:A study on the relationships between ENSO cycle and rainfalls during summer and winter in Eastern China.Chinese J.Atmos.Sci.,23,663–672.(in Chinese)

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–470.

    Li,S.L.,and G.T.Bates,2007:Influence of the Atlantic multi–decadal oscillation on the winter climate of East China.Adv. Atmos.Sci.,24,126–135,doi:10.1007/s00376-007-0126-6.

    Li,F.,and H.J.Wang,2013:Autumn Sea Ice cover,winter northern hemisphere annular mode,and winter precipitation in Eurasia.J.Climate,26,3968–3981.

    Li,G.,C.Y.Li,Y.K.Tan,and X.Wang,2014:Observed relationship of boreal winter South PacificTripoleSSTAwithEastern China rainfall during the following boreal spring.J.Climate, 27,8094–8106.

    Liu,J.P.,J.A.Curry,H.J.Wang,M.R.Song,and R.M.Horton, 2012:Impact of declining Arctic sea ice on winter snowfall. Proc.Natl.Acad.Sci.,109,4074–4079.

    Ma,J.H.,H.J.Wang,and Y.Zhang,2012:Will boreal winter precipitation over China increase in the future?An AGCM simulation under summer“ice-free Arctic”conditions.Chinese Science Bulletin,57,921–926.

    Matthews,A.J.,and G.N.Kiladis,2000:A model of Rossby waves linked to submonthly convection over the eastern Tropical Pacific.J.Atmos.Sci.,57,3785–3798.

    Nitta,T.,1987:Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation.J.Meteor.Soc.Japan,65,373–390.

    Smith,T.M.,and R.W.Reynolds,2003:Extended reconstructionof global Seasurface temperatures based on COADSdata (1854–1997).J.Climate,16,1495–1510.

    Sun,J.Q.,and J.Ao,2013:Changes in precipitation and extreme precipitation in a warming environment in China.Chinese Science Bulletin,58,1395–1401.

    Sun,J.Q.,H.J.Wang,and W.Yuan,2009a:A preliminary investigation on causes of the catastrophic snowstorm in March, 2007 in the northeastern parts of China.Acta Meteorologica Sinica,67,469–477.(in Chinese)

    Sun,J.Q.,H.J.Wang,and W.Yuan,2009b:A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall.Int.J. Climatol.,29,1276–1284,doi:10.1002/joc.1773.

    Sun,J.Q.,H.J.Wang,W.Yuan,and H.P.Chen,2010:Spatialtemporal featuresofintensesnowfall eventsinChinaandtheir possible change.J.Geophys.Res.,115,D16110.

    Wang,H.J.,and S.P.He,2012:Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s.Chinese Science Bulletin,57,3535–3540.

    Wang,H.J.,and S.P.He,2013:The increase of snowfall in Northeast China after the mid-1980s.Chinese Science Bulletin,58, 1350–1354.

    Wang,L.,W.Chen,R.Q.Feng,andJ.J.Liang,2011:Theseasonal march of the North PacificOscillationand itsassociation with the interannual variations of China’s climate in boreal winter and spring.Chinese J.Atmos.Sci.,35,393–402.(in Chinese)

    Yang,S.,K.-M.Lau,and K.-M.Kim,2002:Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies.J.Climate,15,306–325.

    Zhang,L.,X.H.Zhu,K.Fraedrich,F.Sielmann,and X.F. Zhi,2014:Interdecadal variability of winter precipitation in Southeast China.Climate Dyn.,43,2239–2248.

    Zhou,L.T.,and R.G.Wu,2010:Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China. J.Geophys.Res.,115,D02107.

    Zhou,L.T.,C.Y.Tam,W.Zhou,and J.C.L.Chan,2010:Influence of South China Sea SST and the ENSO on winter rainfall over South China.Adv.Atmos.Sci.,27(4),832–844,doi: 10.1007/s00376-009-9102-7.

    Ao,J.,and J.Q.Sun,2016:The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia.Adv.Atmos.Sci.,33(5),644–655,

    10.1007/s00376-015-5067-x.

    12 March 2015;revised 21 September 2015;accepted 5 November 2015)

    ?Jianqi SUN

    Email:sunjq@mail.iap.ac.cn

    国产真实伦视频高清在线观看| 国产麻豆成人av免费视频| 午夜精品国产一区二区电影 | 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区| 观看美女的网站| 婷婷色综合www| 亚洲久久久久久中文字幕| kizo精华| 2021天堂中文幕一二区在线观| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 欧美xxxx性猛交bbbb| 国产免费又黄又爽又色| 我的老师免费观看完整版| 97超视频在线观看视频| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 97超视频在线观看视频| 亚洲四区av| 国产在线一区二区三区精| 久久久久国产网址| 久久精品久久久久久噜噜老黄| 视频中文字幕在线观看| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 1000部很黄的大片| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 永久免费av网站大全| 亚洲av免费在线观看| 午夜老司机福利剧场| 精品亚洲乱码少妇综合久久| av.在线天堂| 久久这里只有精品中国| 日韩av在线大香蕉| av线在线观看网站| 国产老妇女一区| 菩萨蛮人人尽说江南好唐韦庄| av卡一久久| 午夜精品国产一区二区电影 | 国产精品熟女久久久久浪| 在线免费观看不下载黄p国产| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 日韩大片免费观看网站| 一级毛片我不卡| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| eeuss影院久久| 女人十人毛片免费观看3o分钟| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 久久99蜜桃精品久久| 舔av片在线| 99热全是精品| 黄色配什么色好看| 亚洲综合色惰| 午夜福利视频1000在线观看| 秋霞伦理黄片| 日本与韩国留学比较| 成人漫画全彩无遮挡| 国产视频内射| 欧美不卡视频在线免费观看| 七月丁香在线播放| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂 | av在线播放精品| 91精品国产九色| 黄色一级大片看看| 免费av毛片视频| 精品久久久精品久久久| 午夜久久久久精精品| 大陆偷拍与自拍| 免费av毛片视频| 国产亚洲av嫩草精品影院| 亚洲在线观看片| 国产免费福利视频在线观看| 淫秽高清视频在线观看| 国产精品蜜桃在线观看| 九九在线视频观看精品| 九色成人免费人妻av| 水蜜桃什么品种好| 久久精品国产亚洲av涩爱| 97人妻精品一区二区三区麻豆| 亚洲精品久久午夜乱码| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 色综合站精品国产| 晚上一个人看的免费电影| 看十八女毛片水多多多| 亚洲av成人av| 麻豆av噜噜一区二区三区| 国产精品99久久久久久久久| eeuss影院久久| 性插视频无遮挡在线免费观看| 亚洲精品一区蜜桃| 国产永久视频网站| 日韩强制内射视频| 免费看av在线观看网站| 国产老妇女一区| 亚洲av福利一区| av女优亚洲男人天堂| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 成人一区二区视频在线观看| 国产真实伦视频高清在线观看| 69av精品久久久久久| 直男gayav资源| 国产成人精品久久久久久| 久久久国产一区二区| 三级毛片av免费| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 亚洲在久久综合| 亚洲怡红院男人天堂| 高清欧美精品videossex| 成人一区二区视频在线观看| 国产一区二区在线观看日韩| 五月天丁香电影| 免费av观看视频| 亚洲自拍偷在线| 国产成人a∨麻豆精品| 老女人水多毛片| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 免费看日本二区| 国产黄片美女视频| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 七月丁香在线播放| 少妇熟女欧美另类| 在现免费观看毛片| 午夜视频国产福利| 99久久精品热视频| 人妻系列 视频| 久久鲁丝午夜福利片| 亚洲怡红院男人天堂| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 国产精品无大码| 啦啦啦中文免费视频观看日本| 国产久久久一区二区三区| 免费观看在线日韩| 69人妻影院| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 91精品国产九色| 在线天堂最新版资源| 亚洲国产欧美人成| 高清在线视频一区二区三区| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 亚洲欧美成人精品一区二区| 99热网站在线观看| 亚洲精品第二区| 国产一区二区三区综合在线观看 | 日本wwww免费看| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| av国产免费在线观看| 97热精品久久久久久| 联通29元200g的流量卡| 哪个播放器可以免费观看大片| 色播亚洲综合网| 一级爰片在线观看| 国产不卡一卡二| 国产精品熟女久久久久浪| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品 | 最近的中文字幕免费完整| 免费大片黄手机在线观看| 黑人高潮一二区| 日韩一区二区三区影片| 国产av码专区亚洲av| 色综合站精品国产| 国产大屁股一区二区在线视频| ponron亚洲| 日韩成人av中文字幕在线观看| 久久久a久久爽久久v久久| 国产极品天堂在线| 亚洲四区av| 亚洲,欧美,日韩| av免费在线看不卡| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 成人漫画全彩无遮挡| 日韩欧美国产在线观看| 美女大奶头视频| 男插女下体视频免费在线播放| 国产精品人妻久久久久久| 99久久精品热视频| 男人狂女人下面高潮的视频| 日本免费在线观看一区| 久久97久久精品| 国产成人a区在线观看| av播播在线观看一区| 久久午夜福利片| 成人午夜精彩视频在线观看| 久久久成人免费电影| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 淫秽高清视频在线观看| 夜夜爽夜夜爽视频| 亚洲怡红院男人天堂| 免费黄色在线免费观看| av.在线天堂| 观看美女的网站| 午夜精品一区二区三区免费看| 亚洲自拍偷在线| 99久国产av精品国产电影| 十八禁网站网址无遮挡 | 欧美激情国产日韩精品一区| 亚洲精品乱久久久久久| 99久国产av精品| 国内精品美女久久久久久| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 欧美3d第一页| 在线观看av片永久免费下载| 欧美成人a在线观看| 免费av观看视频| 日韩大片免费观看网站| 日本三级黄在线观看| 日日啪夜夜撸| 久久久久网色| 欧美日韩综合久久久久久| 久久久久久久午夜电影| 成人美女网站在线观看视频| 国产成人91sexporn| 国产视频内射| 久久精品人妻少妇| 国产亚洲av嫩草精品影院| 免费看光身美女| 日本猛色少妇xxxxx猛交久久| 九九爱精品视频在线观看| 日韩一本色道免费dvd| 精品久久久久久久末码| 大香蕉久久网| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 日韩制服骚丝袜av| 如何舔出高潮| 2021天堂中文幕一二区在线观| 久久国内精品自在自线图片| 免费av不卡在线播放| 听说在线观看完整版免费高清| 日本一本二区三区精品| 国产精品av视频在线免费观看| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 高清视频免费观看一区二区 | 熟妇人妻久久中文字幕3abv| 精品一区在线观看国产| 联通29元200g的流量卡| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久久久按摩| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 日韩中字成人| 国产单亲对白刺激| 中文欧美无线码| 乱系列少妇在线播放| 精品国产露脸久久av麻豆 | 免费人成在线观看视频色| 99久久精品热视频| 成年av动漫网址| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线| av天堂中文字幕网| 少妇猛男粗大的猛烈进出视频 | 婷婷色综合大香蕉| 成人二区视频| 午夜福利在线在线| 午夜爱爱视频在线播放| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久久久免| 2021天堂中文幕一二区在线观| 一级黄片播放器| 一级毛片黄色毛片免费观看视频| 午夜福利在线观看吧| 亚洲最大成人中文| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 国产精品国产三级国产av玫瑰| 欧美 日韩 精品 国产| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 成年人午夜在线观看视频 | 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 欧美极品一区二区三区四区| 少妇丰满av| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 国产美女午夜福利| 久久久久久九九精品二区国产| 春色校园在线视频观看| 全区人妻精品视频| 六月丁香七月| 在线a可以看的网站| 久久精品久久精品一区二区三区| 免费看光身美女| 欧美性感艳星| 欧美激情国产日韩精品一区| 亚洲av电影在线观看一区二区三区 | 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 久久久精品免费免费高清| 午夜激情久久久久久久| 精品国内亚洲2022精品成人| 又粗又硬又长又爽又黄的视频| av黄色大香蕉| 国产精品国产三级国产av玫瑰| 日日啪夜夜爽| 久久久久久久久大av| 免费黄网站久久成人精品| 久久99蜜桃精品久久| 一级黄片播放器| 久久精品人妻少妇| 免费在线观看成人毛片| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 插逼视频在线观看| 最近手机中文字幕大全| 国产成人精品久久久久久| 免费观看的影片在线观看| 夫妻性生交免费视频一级片| 精品久久久久久久末码| 熟女电影av网| 在现免费观看毛片| 国产精品综合久久久久久久免费| 最近的中文字幕免费完整| 国产永久视频网站| 一级黄片播放器| 中文字幕av成人在线电影| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 在线 av 中文字幕| 国产乱人视频| 久久久久性生活片| 自拍偷自拍亚洲精品老妇| 人妻系列 视频| 国产极品天堂在线| 婷婷色av中文字幕| av国产免费在线观看| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 中文字幕亚洲精品专区| 搡女人真爽免费视频火全软件| 午夜福利成人在线免费观看| 草草在线视频免费看| 久久久久久久国产电影| 亚洲国产精品专区欧美| 一级爰片在线观看| av又黄又爽大尺度在线免费看| 一级爰片在线观看| 国产亚洲午夜精品一区二区久久 | 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 午夜福利高清视频| 国产视频内射| 精品久久久久久久久亚洲| 久久草成人影院| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 少妇被粗大猛烈的视频| 色尼玛亚洲综合影院| 亚洲伊人久久精品综合| 丝袜喷水一区| 床上黄色一级片| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 国产午夜精品论理片| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 午夜福利视频1000在线观看| 国产精品综合久久久久久久免费| 麻豆精品久久久久久蜜桃| 国产精品无大码| 18禁动态无遮挡网站| 欧美日韩精品成人综合77777| 精品久久久久久成人av| 免费电影在线观看免费观看| 国产免费又黄又爽又色| 91久久精品国产一区二区三区| 在线播放无遮挡| 欧美性感艳星| 女人久久www免费人成看片| 男女视频在线观看网站免费| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 国产精品国产三级专区第一集| 人妻系列 视频| 国产真实伦视频高清在线观看| 特大巨黑吊av在线直播| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 国产黄a三级三级三级人| 国产在线男女| 欧美日韩视频高清一区二区三区二| 人妻制服诱惑在线中文字幕| 丰满少妇做爰视频| 1000部很黄的大片| 天堂俺去俺来也www色官网 | 免费在线观看成人毛片| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 丰满人妻一区二区三区视频av| 精品一区二区三卡| 成人漫画全彩无遮挡| 人妻制服诱惑在线中文字幕| 一本久久精品| 日韩av不卡免费在线播放| 久久99热6这里只有精品| 精品人妻视频免费看| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 亚洲人成网站在线观看播放| 日本爱情动作片www.在线观看| 久久久久久久久久久免费av| 春色校园在线视频观看| 午夜日本视频在线| 亚洲av电影不卡..在线观看| 最近最新中文字幕免费大全7| 欧美97在线视频| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影| 最后的刺客免费高清国语| 亚洲欧美一区二区三区黑人 | 人人妻人人澡欧美一区二区| 狠狠精品人妻久久久久久综合| 精品一区二区免费观看| 欧美潮喷喷水| 综合色丁香网| 国产精品一区二区性色av| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 成年av动漫网址| 亚洲精品色激情综合| 美女被艹到高潮喷水动态| 成人漫画全彩无遮挡| 成年版毛片免费区| 久久久久网色| 国产一区二区三区av在线| 99久久人妻综合| 亚洲自偷自拍三级| 久久亚洲国产成人精品v| 日韩av在线大香蕉| 麻豆久久精品国产亚洲av| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 又黄又爽又刺激的免费视频.| a级毛片免费高清观看在线播放| 免费看光身美女| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频 | 国产永久视频网站| 18禁动态无遮挡网站| 日韩欧美三级三区| 国产精品不卡视频一区二区| 黑人高潮一二区| 亚洲人成网站在线观看播放| 亚洲av一区综合| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 国模一区二区三区四区视频| 久久精品人妻少妇| 免费黄网站久久成人精品| 亚洲av福利一区| 91狼人影院| 性插视频无遮挡在线免费观看| 成人毛片60女人毛片免费| 国产美女午夜福利| 欧美xxⅹ黑人| 春色校园在线视频观看| 插逼视频在线观看| 久久精品夜色国产| 久久这里只有精品中国| 久久久精品免费免费高清| 亚洲欧美日韩卡通动漫| 午夜福利网站1000一区二区三区| 免费看av在线观看网站| 草草在线视频免费看| 国产色婷婷99| 99九九线精品视频在线观看视频| h日本视频在线播放| 亚洲精品日本国产第一区| 中文欧美无线码| videos熟女内射| 国产成人福利小说| 日本熟妇午夜| 性色avwww在线观看| 麻豆久久精品国产亚洲av| 亚洲精品中文字幕在线视频 | 美女国产视频在线观看| 晚上一个人看的免费电影| 国产 一区精品| 国产精品一二三区在线看| 蜜臀久久99精品久久宅男| 午夜激情欧美在线| 看非洲黑人一级黄片| 亚洲av成人精品一区久久| 美女xxoo啪啪120秒动态图| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的 | 国产高清三级在线| 欧美日韩视频高清一区二区三区二| 高清午夜精品一区二区三区| 青春草国产在线视频| 高清日韩中文字幕在线| 亚洲国产日韩欧美精品在线观看| 插阴视频在线观看视频| 国产精品福利在线免费观看| 男女那种视频在线观看| 国产黄色小视频在线观看| 国产一级毛片七仙女欲春2| 成人二区视频| 欧美精品国产亚洲| 岛国毛片在线播放| 国产美女午夜福利| 精品久久久久久电影网| 欧美日本视频| 插阴视频在线观看视频| 亚洲成人精品中文字幕电影| 亚洲在线自拍视频| 一区二区三区四区激情视频| 麻豆久久精品国产亚洲av| 欧美 日韩 精品 国产| 久久久国产一区二区| 大香蕉久久网| 午夜激情欧美在线| 亚洲av.av天堂| 国产午夜精品论理片| 亚洲最大成人手机在线| av国产免费在线观看| 久久精品熟女亚洲av麻豆精品 | 国产成人一区二区在线| 在现免费观看毛片| 又大又黄又爽视频免费| 国产激情偷乱视频一区二区| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 中文天堂在线官网| 久久精品国产鲁丝片午夜精品| av在线天堂中文字幕| 欧美xxⅹ黑人| 国产91av在线免费观看| 精品一区在线观看国产| 全区人妻精品视频| 91精品国产九色| 国产精品三级大全| 欧美日韩综合久久久久久| 亚洲一区高清亚洲精品| 国产国拍精品亚洲av在线观看| 国产黄片美女视频| 久久99热6这里只有精品| 亚洲18禁久久av| 人妻制服诱惑在线中文字幕| 国产麻豆成人av免费视频| 国产成人免费观看mmmm| 搞女人的毛片| 乱系列少妇在线播放| 免费av毛片视频| 国产精品99久久久久久久久| 国产精品久久久久久精品电影小说 | 亚洲成色77777| 建设人人有责人人尽责人人享有的 | kizo精华| 亚洲最大成人手机在线| 最新中文字幕久久久久| 国产亚洲精品av在线| 久久久色成人| 久久久久精品久久久久真实原创| kizo精华| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,欧美,日韩| 国产人妻一区二区三区在| 精品一区二区免费观看| 熟妇人妻久久中文字幕3abv| 乱系列少妇在线播放| 免费电影在线观看免费观看| 久久久久国产网址| 99热全是精品| 又粗又硬又长又爽又黄的视频| 黄色日韩在线| 美女高潮的动态| 男女边吃奶边做爰视频| 精品不卡国产一区二区三区| 嘟嘟电影网在线观看| 激情五月婷婷亚洲| 欧美xxⅹ黑人| 99久久人妻综合| 亚洲精品久久午夜乱码|