• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Barotropic Processes Associated with the Development of the Mei-yu Precipitation System

    2016-12-07 07:40:58TingtingLIandXiaofanLI
    Advances in Atmospheric Sciences 2016年5期
    關(guān)鍵詞:維數(shù)導(dǎo)數(shù)增益

    Tingting LI and Xiaofan LI

    School of Earth Sciences,Zhejiang University,Hangzhou 310027

    Barotropic Processes Associated with the Development of the Mei-yu Precipitation System

    Tingting LI and Xiaofan LI?

    School of Earth Sciences,Zhejiang University,Hangzhou 310027

    The barotropic processes associated with the development of a precipitation system are investigated through analysis of cloud-resolving model simulations of Mei-yu torrential rainfall events over eastern China in mid-June 2011.During the model integration period,there were three major heavy rainfall events:9–12,13–16 and 16–20 June.The kinetic energy is converted from perturbation to mean circulations in the first and second period,whereas it is converted from mean to perturbation circulations in the third period.Further analysis shows that kinetic energy conversion is determined by vertical transport of zonal momentum.Thus,the prognostic equation of vertical transport of zonal momentum is derived,in which its tendency is associated with dynamic,pressure gradient and buoyancy processes.The kinetic energy conversion from perturbation to mean circulations in the first period is mainly associated with the dynamic processes.The kinetic energy conversion from mean to perturbation circulations in the third period is generally related to the pressure gradient processes.

    tropical cyclone–trough interaction,upper troposphere,eddy momentum flux convergence

    1.Introduction

    Barotropic processes represent one of the most important physical process types in the development of precipitation systems.They are described by the kinetic energy conversion between the mean background circulations and perturbation(secondary)circulations associated with vapor condensation and deposition for the production of precipitation. Such kinetic energy conversion is primarily determined by vertical transport of horizontal momentum acting on vertical shear of the mean background horizontal winds(e.g.,Pastushkov,1975).Barotropic processes may affect the development of precipitation systems through the vertical wind shear of background circulations(e.g.,Corbosiero and Molinari, 2002;Langet al.,2007;Ueno,2007).The verticalwindshear may have impacts on the timing of convection(Xu et al., 1992),the organization of convection(Robe and Emanuel, 2001)and rainfall(e.g,Wang et al.,2009;Shen et al.,2011).

    Severe floodsand associated naturaldisasters occurin the Mei-yu season as torrential rainfall frequently occurs over the middle and lower reaches of the Yangtze River during the early season of the NH summer.Zhai et al.(2014)conductedacloud-resolvingmodelstudyofa Mei-yuheavyrainfall event that occurred over eastern China in mid-June 2011. During the modeling period,there were three major rainfallevents,and they found differences in rainfall types and horizontal scale between the three periods.Wu and Yanai(1994) revealed the effects of vertical wind shear on the development of a precipitation system through the change in vertical transport of horizontal momentum.But does vertical wind shear determinebarotropickinetic energyconversiondirectly throughthe changein verticaltransportofhorizontalmomentum?And which physicalprocesses controlvertical transport of horizontal momentum?

    The objective of this study is to examine the barotropic processes associated with the Mei-yu precipitation system throughanalysisofthedifferencesinbarotropicprocessesbetween three rainfall events using the Mei-yu simulation data from Zhai et al.(2014).The model,large-scale forcing,and sensitivity experimentsare briefly describedin section 2.The results are presented in section 3.A summary is given in section 4.

    2.Model and experiments

    The experiment analyzed in this study was conducted by Zhai et al.(2014)using the 2D version of a cloud-resolving model(Table 1).The model was integrated with imposed large-scale forcing from 0800 LST 9 June to 0800 LST 20 June 2011.The forcing was averaged in a rectangular box of(30?–31?N,114?–122?E)using NCEP/GDAS data.There are three upward motion centers while westerly winds pre-vail(Zhai et al.,2014,Fig.1).The three torrential rainfall events are forced by the three upward motion centers during the model integration period(Fig.1).The rainbands are better organized in the third rainfall event than in the two previous rainfall events,while the second rainfall event occupies a larger area than the two other rainfall events.Thus, the model integration period is divided into the three subperiods:0800 LST 9 June to 0000 LST 13 June(the first period);0000LST 13Juneto 1200LST 16June(thesecondperiod);and 1200 LST 16 June to 0800 LST 20 June(the third period).Thelarge-scaleforcingis averagedforthethreeperiods and shown in Fig.2.The averaged vertical profiles show that westerly winds generally increase with increasing height (Fig.2a).Near the surface,averaged zonal winds are zero in the first period and weak easterly winds in the two other periods.In the upper troposphere,the westerly winds in the first period are stronger than in the third period,whereas they are weaker in the second period.The averaged upward motions prevail in the troposphere and reach their maxima around 8 km(Fig.2b).Below 10 km,the averaged upward motions in the third period are stronger than in the first period,but they are weaker than in the second period.Above 10 km,the averaged upward motions in the first period are stronger than in the third period,but they are weaker than in the second period.The averaged rain rates are 0.98 mm h-1in the first period,1.38 mm h-1in the second period,and 1.17 mm h-1in the third period.The rainfall is stronger in the second period than in the two other periods due to stronger upward motions in the second period.The rain rate is about 20%higher in the thirdperiodthan in the first period,while the upwardmotions are only slightly stronger in the third period.The difference in vertical wind shear implies barotropic effects on Mei-yu rainfall.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    3.Results

    Following Li et al.(2002b),barotropic conversion between the mean kinetic energy to perturbation kinetic energy can be symbolically expressed by the sum of Cu(K,K′)and Cw(K,K′),where

    and

    in which u and w are the zonal and vertical components of wind,respectively;an overbar indicates the model domain mean;a prime indicates a perturbation from the model domain mean;the subscriptois an imposed value from NCEP/ GDAS;[·]=Rztzbρ·dz andρis height-dependent air density,ztand zbare the heights of the top and the bottom of the model atmosphere,respectively.Cu(K,K′)andCw(K,K′) are the barotropic conversions between the mean domain mean kinetic energy(K)and K′,respectively,through verticaltransportofzonalmomentumactingontheverticalshear of imposed horizontal-mean zonal wind,and vertical transport of vertical momentumacting on the vertical shear of imposed horizontal-mean vertical velocity.Since the calculations from Wang et al.(2009)and Shen et al.(2011)indicate Cw(K,K′)is negligible,the barotropic conversion from the mean kinetic energy to perturbation kinetic energy term can be simplified to

    Fig.1.Time–zonal distributionof simulatedsurfacerainfall rate (mm h-1).

    To examine the contribution from height-dependent kinetic energy conversion to Cu(K,K′),we calculate the vertical profile of barotropic kinetic energy conversion(BKEC), which can be written as:

    Here,BECK1 is the vertical difference in zonal wind,and BKEC2 is the air density weighted covariance between perturbationzonalwindandverticalvelocityorverticaltransport of zonal momentum.Cu(K,K′)is calculated by vertically integrating BKEC or addingBKEC for all vertical layers in our calculations.

    The calculations of BKEC show that the BKEC is generally negative in the troposphere in the first period(Fig.3a). In the second period,the BKEC is positive below 4 km but negative above 4 km(Fig.3b).The BKEC is generally positive from 1 to 9 km(Fig.3c).Since negative and positiveBKEC values indicate kinetic energy conversion from perturbation to mean circulation and from mean to perturbation circulation,respectively,the positive BKEC value denotes a dynamically unstable system and the negative BKEC value represents a dynamically stable system.Thus,the precipitation system is dynamically stable in the first and second periods and dynamically unstable in the third period.

    Fig.2.Vertical profiles of(a)zonal wind(m s-1)and(b)vertical velocity(cm s-1)averaged from 0800 LST 9 June to 0000 LST 13 June(red),from 0000 LST 13 June to 1200 LST 16 June(green)and from 1200 LST 16 June to 0800 LST 20 June(blue).

    The BKEC is associated with the vertical shear of imposedzonalwind(BKEC1)andtheverticaltransportofzonal momentum(BKEC2),which are time-dependent.Thus,the time-mean BKEC(BKEC hereafter)can be decomposedinto the two components

    and

    where BKEC1Mand BKEC2Mare the time averages of BKEC1 and BKEC2,respectively,and BKEC1Tand BKEC2Tare the deviations of BKEC1 and BKEC2 from BKEC1Mand BKEC2M,respectively.In general,BKECMis out of phase with BKECTvertically.BKECMis negative but BKECTis positive through the troposphere in the first period (Fig.3a).BKEC is controlled by BKECM.In the second period,BKECMis negative from 2 to 8 km(Fig.3b).BKECTis negative above 7 km,whereas it is positive below 7 km. The negative BKEC is associated with the negative BKECTabove8 km and BKECMfrom 4 to 8 km.The positive BKEC corresponds to the positive BKECTbelow 4 km.In the third period,BKECMis positive throughout the troposphere(Fig. 3c).BKECTis negative above 5 km but it is positive below 5 km.The positive BKEC is determined by the positive BKECM.

    Fig.3.Vertical profiles of barotropic kinetic energy conversion (BKEC;black)and its components(BKECM,red;BKECT, blue)averaged(a)from 0800 LST 9 June to 0000 LST 13 June, (b)from 0000 LST 13 June to 1200 LST 16 June,and(c)from 1200 LST 16 June to 0800 LST 20 June.Units:105J s-1.

    Since BKEC is controlled by BKECM,the time-mean BKEC1 and BKEC2 are analyzed(Fig.4).The imposed zonal winds increase with increasing height in the three periods(Fig.4a).The time-mean vertical wind shear(BKEC1) barely changes in the first period.The time-mean vertical wind shear is similar in the second and third period,except that the vertical wind shear is decreased to zero around 12 km in the second period but around10 km in the third period. Inthesecondandthirdperiod,theverticalwindshearreaches its peak near the surface,reduces in magnitude around 4 km, and reaches a sub-peak at around 8 km.Since the timemean vertical wind shear has the same sign in all three periods,the differences in BKECMbetween the three periods are attributable to the differences in BKEC2.The timemean BKEC2 changes from negative values(upward zonalmomentum transport)in the first and second period to positive values(downward zonal-momentum transport)in the thirdperiod,throughasignificantincreaseinpositiveBKEC2 from the first and second period to the third period(Fig.4b). Thus,the dynamic stability(BKECM)of the precipitation system is determined by BKEC2 in this Mei-yu precipitation system.

    TofurtherinvestigateiftheverticalwindsheardirectlyaffectstheBKEC2,orthroughwhichphysicalfactorsifthevertical wind shear indirectly affects the BKEC2,the tendency equation of BKEC2 is derived from the perturbationmomentum equations.Following Li et al.(2002b),the perturbation momentum equations in the 2D cloud-resolving model can be written by:

    Fig.4.Vertical profiles of(a)imposed zonal-wind difference in the vertical layer(duo;BKEC1;m s-1)and(b)air density weightedcovariance between perturbation zonal windandvertical velocity(-ρu′w′;BKEC2;105J m-1;solid lines)averaged from 0800 LST 9 June to 0000 LST 13 June(black),from 0000 LST 13 June to 1200 LST 16 June(red),and from 1200 LST 16 June to 0800 LST 20 June(blue).In(b),BKEC2 is broken into components for u′w′>0(long-dashed line)and u′w′<0 (short-dashed line).

    Here,θis potential temperature,andθ0is initial potential temperature;π=(p/po)κandκ=R/cp;R is the gas constant;cpis the specific heat of dry air at constant pressure p, where po=1000 hPa;qvis specific humidity;and qlis the sum of the mixing ratios of cloud water,raindrops,cloud ice, snow and graupel.

    Multiplying Eq.(5a)by-ρw′and Eq.(5b)by-ρu′, adding the equations nd taking the model domain mean,the tendency equation of BKEC2(BKEC2t)can be expressed by

    where?

    and

    Here,BKEC2d,BKEC2pand BKEC2bare the contributors to BKEC2tfrom the processes related to dynamics,the pressure gradient and buoyancy force,respectively.BKEC2bcan be further partitioned into three terms:

    The tendency budget of BKEC2 is integrated with time and each term in the budget has a contribution to BKEC2. BKEC2pis largelybalancedby BKEC2din the three periods, indicating the dominance of the processes related to dynamics andthe pressuregradientin determiningBKEC2.BKEC2 is at least three orders of magnitude smaller than these dominant terms.Negative values of BKEC2 correspond mainly to those of BKEC2dbelow 8 km and BKEC2pabove 8 km in the first period(Fig.5a),and those of BKEC2dabove 4 km and BKEC2pbelow 4 km in the second period(Fig.5b).The magnitudes of BKEC2dand BKEC2pdecrease from the first and second periods to the third period(Fig.5c).In the third period,positive values of BKEC2 are mainly associated with those of BKEC2pin the lower and upper troposphere and BKEC2din the mid troposphere.BKEC2b1and BECK2b2contribute to negative values of BKEC2 in the first and second periods,whereas BKEC2b2contribute to positive values of BKEC2 in the third period.

    4.Summary

    The barotropic processes associated with the development of a Mei-yu precipitation system are investigated through analysis of conversion between perturbation and mean kinetic energy.The data analyzed are from a 2D cloud-resolving model simulation of three Mei-yu torrential rainfall events that occurred over eastern China in mid-June 2011.The calculations of barotropic kinetic energy conversion show that the precipitation system is dynamically stable (with conversion from perturbation to mean kinetic energy) throughoutthetroposphere,turnsto beweaklyunstableinthe mid and lower troposphere,and eventually becomes dynamically unstable(with conversion from mean to perturbation kinetic energy)throughout the troposphere.

    Fig.5.Vertical profiles of BKEC2(black)and associated contribution from BKEC2d(red),BKEC2p(purple),BKEC2b1(green),BKEC2b2(blue)and BKEC2b3(orange)in the BKEC2 budget averaged(a)from 0800 LST 9 June to 1200 LST 10 June,(b)from 0000 LST 13 June to 0000 LST 15 June,and (c)from 1200 LST 16 June to 1500 LST 18 June.Units:105J m-1.

    The vertical wind shear in the simulation period is increased in imposed zonal winds upward,and the magnitude increases in the mid and lower troposphere from the first period to the second period and barely changes from the second period to the third period.The barotropic conversion is determined by vertical transport of zonal momentum acting on the vertical shear of imposed mean zonal wind.Since the upward increase in zonal winds is imposed during the model integration period,the barotropic conversion is controlled by the vertical transport of zonal momentum(vertical zonal-momentum flux or covariance between perturbation zonal wind and vertical velocity).The zonal-momentum flux is changed from upward in the first and second period to downwardin the thirdperiod,which leads to the changefrom a dynamically stable system in the first and second period to a dynamically unstable system in the third period.

    An equation for predicting the vertical transport of zonal momentum is derived based on prognostic equations of perturbation zonal wind and vertical velocity.The tendency of vertical momentum flux is associated with the processes related to dynamics,the pressure gradient and buoyancy force. The budget analysis of vertical momentum flux reveals that the buoyancyterm and pressure gradientterm are largely balanced and barotropic stability is mainly related to dynamic processes,whereas barotropic instability is generally associated with the processes related to the pressure gradient.

    Since only one torrential rainfall event is analyzed and the cloud-resolving model used is 2D,a 3D model is neededto study different torrential rainfall cases in various climate regimes to validate the results of this study.

    Acknowledgements.The authors thank W.-K.TAO at NASA/ GSFC for his cloud-resolving model,and the two anonymous reviewers for their constructive comments.This work was supported by the National Natural Science Foundation of China(Grant No. 41475039)and National Key Basic Research and Development Project of China(Grant No.2015CB953601).

    REFERENCES

    Chou,M.-D.,and M.J.Suarez,1994:An efficient thermal infrared radiation parameterization for use in general circulation model.Vol.3,NASA Tech.Memo.104606,85 pp. [Available online at NASA/Goddard Space Flight Center, Code 913,Greenbelt,MD 20771.]

    Chou,M.-D.,D.P.Kratz,and W.Ridgway,1991:Infrared radiation parameterizations in numerical climate models.J.Climate,4,424–437.

    Chou,M.-D.,M.J.Suarez,C.-H.Ho,M.M.-H.Yan,and K.-T.Lee,1998:Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulationand cloudensemble models.J.Climate,11,202–214.

    Corbosiero,K.L.,and J.Molinari,2002:The effects of vertical wind shear on the distribution of convection in tropical cyclones.Mon.Wea.Rev.,130,2110–2123.

    Gao,S.T.,and X.F.Li,2008:Cloud-Resolving Modeling of Convective Processes.Springer,206 pp.

    Krueger,S.K.,Q.Fu,K.N.Liou,and H.-N.S.Chin,1995:Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection.J. Appl.Meteor.,34,281–287.

    Lang,S.,W.-K.Tao,J.Simpson,R.Cifelli,S.Rutledge,W.Olson, and J.Halverson,2007:Improving simulations of convective systems from TRMM LBA:Easterly and westerly regimes.J. Atmos.Sci.,64,1141–1164.

    Li,X.F.,and S.T.Gao,2012:Precipitation Modeling and Quantitative Analysis.Springer,Dordrecht,240 pp.

    Li,X.F.,C.-H.Sui,K.-M.Lau,and M.-D.Chou,1999:Largescale forcing and cloud-radiation interaction in the tropical deep convective regime.J.Atmos.Sci.,56,3028–3042.

    Li,X.F.,C.-H.Sui,and K.-M.Lau,2002a:Dominant cloud microphysical processes in atropical oceanic convective system: A 2D cloud resolving modeling study.Mon.Wea.Rev.,130, 2481–2491.

    Li,X.F.,C.-H.Sui,and K.-M.Lau,2002b:Interactions between tropical convection and its embedding environment:an energetics analysis of a 2D cloud resolving simulation.J.Atmos. Sci.,59,1712–1722.

    Lin,Y.-L.,R.D.Farley,and H.D.Orville,1983:Bulk parameterization of the snow field in a cloud model.J.Climate Appl. Meteor.,22,1065–1092.

    Pastushkov,R.S.,1975:The effects of vertical wind shear on the evolution of convective clouds.Quart.J.Roy.Meteor.Soc., 101,281–291.

    Robe,F.R.,and K.A.Emanuel,2001:The effect of vertical wind shear on radiative-convective equilibrium states.J.Atmos.Sci.,58,1427–1445.

    Rutledge,S.A.,and P.Hobbs,1983:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones.VIII:A model for the“seederfeeder”process in warm-frontal rainbands.J.Atmos.Sci.,40, 1185–1206.

    Rutledge,S.A.,and P.V.Hobbs,1984:The mesoscale and microscalestructureandorganizationof cloudsandprecipitation in midlatitude cyclones.XII:A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J.Atmos.Sci.,41,2949–2972.

    Shen,X.Y.,Y.Wang,and X.F.Li,2011:Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China.Quart.J.Roy.Meteor.Soc.,137,236–249.

    Soong,S.-T.,and Y.Ogura,1980:Response of tradewind cumuli to large-scale processes.J.Atmos.Sci.,37,2035–2050.

    常規(guī)CKF算法采樣點(diǎn)均是系統(tǒng)狀態(tài)向量維數(shù)的2倍。對(duì)于導(dǎo)航、目標(biāo)跟蹤等特殊非線性模型,可以發(fā)現(xiàn),影響系統(tǒng)非線性的只是其狀態(tài)向量的部分元素,引起線性Kalman濾波算法無(wú)法使用,而只能使用非線性濾波算法。例如針對(duì)式(1)的EKF算法中,其量測(cè)矩陣H中,只有1,4,7列針對(duì)位置的偏導(dǎo)數(shù)不為零,而2,3,5,6,8,9列針對(duì)速度、加速度的偏導(dǎo)數(shù)均為零。因此在增益計(jì)算中:

    Soong,S.-T.,and W.-K.Tao,1980:Response of deep tropical cumulus clouds to mesoscale processes.J.Atmos.Sci.,37, 2016–2034.

    Sui,C.H.,K.M.Lau,W.K.Tao,and J.Simpson,1994:The tropical water and energy cycles in a cumulus ensemble model. Part I:equilibrium climate.J.Atmos.Sci.,51,711–728.

    Sui,C.-H.,X.Li,and K.-M.Lau,1998:Radiative-convective processes insimulated diurnal variations of tropical Oceanic convection.J.Atmos.Sci.,55,2345–2357.

    Tao,W.-K.,and J.Simpson,1993:The Goddard cumulus ensemble model.Part I:model description.Terrestrial Atmospheric and Oceanic Sciences,4,35–72.

    Tao,W.-K,J.Simpson,and M.McCumber,1989:An ice-water saturation adjustment.Mon.Wea.Rev.,117,231–235.

    Ueno,M.,2007:Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region.J.Meteor.Soc.Japan,85, 115–136.

    Wu,X.Q.,and M.Yanai,1994:Effects of vertical wind shear on the cumulus transport of momentum:Observations and parameterization.J.Atmos.Sci.,51,1640–1660.

    Xu,K.-M.,A.Arakawa,and S.K.Krueger,1992:The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model.J.Atmos.Sci.,49,2402–2420.

    Zhai,G.Q.,X.F.Li,P.J.Zhu,H.F.Shen,and Y.Z.Zhang,2014: Surface rainfall and cloud budgets associated withmei-yu torrential rainfall over eastern China during June 2011.Adv.Atmos.Sci.,31,1435–1444,doi:10.1007/s00376-014-3256-7.

    Li,T.T.,and X.F.Li,2016:Barotropic processes associated with the development of the Mei-yu precipitation system.Adv.Atmos.Sci.,33(5),593–598,

    10.1007/s00376-015-5146-z.

    15 June 2015;revised 3 November;accepted 9 November 2015)

    ?Xiaofan LI

    Email:xiaofanli@zju.edu.cn

    猜你喜歡
    維數(shù)導(dǎo)數(shù)增益
    β-變換中一致丟番圖逼近問(wèn)題的維數(shù)理論
    基于增益調(diào)度與光滑切換的傾轉(zhuǎn)旋翼機(jī)最優(yōu)控制
    解導(dǎo)數(shù)題的幾種構(gòu)造妙招
    一類齊次Moran集的上盒維數(shù)
    基于單片機(jī)的程控增益放大器設(shè)計(jì)
    電子制作(2019年19期)2019-11-23 08:41:36
    基于Multisim10和AD603的程控增益放大器仿真研究
    電子制作(2018年19期)2018-11-14 02:37:02
    關(guān)于導(dǎo)數(shù)解法
    關(guān)于齊次Moran集的packing維數(shù)結(jié)果
    導(dǎo)數(shù)在圓錐曲線中的應(yīng)用
    涉及相變問(wèn)題Julia集的Hausdorff維數(shù)
    黄片wwwwww| 久久久久久大精品| 狂野欧美激情性xxxx在线观看| 精品久久久久久久末码| 桃色一区二区三区在线观看| av在线亚洲专区| 夫妻性生交免费视频一级片| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 亚洲国产色片| 可以在线观看毛片的网站| 搞女人的毛片| av在线观看视频网站免费| 床上黄色一级片| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 九草在线视频观看| 免费观看a级毛片全部| 中国国产av一级| 精品欧美国产一区二区三| 成年av动漫网址| 大又大粗又爽又黄少妇毛片口| 欧美激情国产日韩精品一区| 国产精品麻豆人妻色哟哟久久 | 美女被艹到高潮喷水动态| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡免费网站照片| 97热精品久久久久久| а√天堂www在线а√下载| a级毛片免费高清观看在线播放| 亚洲成人精品中文字幕电影| 亚洲电影在线观看av| 亚洲无线观看免费| 午夜视频国产福利| av专区在线播放| 国内精品久久久久精免费| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久黄片| 亚洲无线在线观看| 丝袜美腿在线中文| 久久久午夜欧美精品| 国产一区二区三区av在线 | 国产久久久一区二区三区| 亚洲三级黄色毛片| 大香蕉久久网| 麻豆久久精品国产亚洲av| 欧美又色又爽又黄视频| 看非洲黑人一级黄片| 在线免费观看的www视频| 男人舔女人下体高潮全视频| 亚洲无线观看免费| 午夜精品一区二区三区免费看| 久久热精品热| 亚洲精品456在线播放app| 美女内射精品一级片tv| 亚洲五月天丁香| 亚洲欧美清纯卡通| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 日韩一本色道免费dvd| 久久人妻av系列| 亚洲三级黄色毛片| 国产精华一区二区三区| 只有这里有精品99| www.色视频.com| 又粗又硬又长又爽又黄的视频 | 人妻少妇偷人精品九色| 中文在线观看免费www的网站| av在线亚洲专区| 边亲边吃奶的免费视频| 久久99热这里只有精品18| 亚洲精品国产成人久久av| 亚洲av一区综合| 天天躁日日操中文字幕| 国产黄色视频一区二区在线观看 | 人体艺术视频欧美日本| 国产午夜精品一二区理论片| 午夜亚洲福利在线播放| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 午夜精品国产一区二区电影 | 日本撒尿小便嘘嘘汇集6| 亚洲图色成人| 亚洲在线自拍视频| 亚洲国产日韩欧美精品在线观看| 一个人看视频在线观看www免费| 成年版毛片免费区| 夫妻性生交免费视频一级片| 人妻夜夜爽99麻豆av| 天天躁夜夜躁狠狠久久av| 国产亚洲5aaaaa淫片| 99久久精品热视频| 51国产日韩欧美| 免费人成视频x8x8入口观看| 熟女人妻精品中文字幕| 国产又黄又爽又无遮挡在线| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 国产男人的电影天堂91| 深爱激情五月婷婷| 亚洲高清免费不卡视频| 国产精品一区www在线观看| 久久草成人影院| 日韩一区二区三区影片| 久久精品国产亚洲av香蕉五月| 亚洲国产欧洲综合997久久,| 色哟哟·www| 国产黄色小视频在线观看| 插阴视频在线观看视频| 青春草国产在线视频 | 国产av麻豆久久久久久久| 成年版毛片免费区| 两个人的视频大全免费| 亚洲成a人片在线一区二区| 韩国av在线不卡| 啦啦啦啦在线视频资源| 国产久久久一区二区三区| 亚洲人成网站高清观看| 国产日韩欧美在线精品| 欧美日韩国产亚洲二区| 午夜福利高清视频| 少妇被粗大猛烈的视频| 成年女人永久免费观看视频| av卡一久久| 美女 人体艺术 gogo| 日本欧美国产在线视频| 亚洲在线观看片| 99在线视频只有这里精品首页| 一进一出抽搐动态| 精品无人区乱码1区二区| 在线播放国产精品三级| 久久这里有精品视频免费| 国产精品一区二区三区四区免费观看| 男人舔奶头视频| 亚洲一区高清亚洲精品| 国内久久婷婷六月综合欲色啪| 99热精品在线国产| 国产熟女欧美一区二区| 国产精品久久久久久亚洲av鲁大| 91av网一区二区| 色噜噜av男人的天堂激情| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 极品教师在线视频| 美女被艹到高潮喷水动态| 国内精品一区二区在线观看| 欧美一区二区精品小视频在线| 国产精品福利在线免费观看| 看非洲黑人一级黄片| 偷拍熟女少妇极品色| 国产69精品久久久久777片| 久久草成人影院| 老师上课跳d突然被开到最大视频| 91久久精品国产一区二区三区| 少妇丰满av| 一级二级三级毛片免费看| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 久久综合国产亚洲精品| 麻豆av噜噜一区二区三区| 91狼人影院| 欧美+亚洲+日韩+国产| 国产精品久久久久久精品电影| 亚洲国产欧美人成| 麻豆国产97在线/欧美| 国产成人午夜福利电影在线观看| 日韩国内少妇激情av| 亚洲激情五月婷婷啪啪| 我的女老师完整版在线观看| 国产黄色小视频在线观看| 久久久国产成人免费| 精品人妻熟女av久视频| 在现免费观看毛片| 永久网站在线| 日本五十路高清| 99热网站在线观看| 亚洲高清免费不卡视频| 国产在视频线在精品| 国产成人精品久久久久久| 在线免费观看的www视频| 插阴视频在线观看视频| 一本精品99久久精品77| 全区人妻精品视频| www.色视频.com| 国模一区二区三区四区视频| 国产成人a区在线观看| 成人特级黄色片久久久久久久| 精品久久久久久久久亚洲| 亚洲18禁久久av| 91久久精品国产一区二区成人| 99在线视频只有这里精品首页| 蜜桃亚洲精品一区二区三区| 国产成人a∨麻豆精品| 黑人高潮一二区| av在线天堂中文字幕| 久久久色成人| 精品日产1卡2卡| 看黄色毛片网站| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| 男人狂女人下面高潮的视频| 真实男女啪啪啪动态图| 亚洲最大成人中文| 午夜福利高清视频| 久久中文看片网| 男人的好看免费观看在线视频| 精品久久久久久久久久久久久| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 日本爱情动作片www.在线观看| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 免费一级毛片在线播放高清视频| 99热全是精品| 黄色视频,在线免费观看| 国国产精品蜜臀av免费| 久久午夜亚洲精品久久| 国产高清三级在线| 九九在线视频观看精品| 3wmmmm亚洲av在线观看| 欧美日韩在线观看h| 久久久久久久久久久免费av| 中文字幕av成人在线电影| 欧美精品国产亚洲| 性色avwww在线观看| 日本在线视频免费播放| 成年版毛片免费区| 91av网一区二区| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 亚洲电影在线观看av| 久久精品国产清高在天天线| 哪里可以看免费的av片| 国产白丝娇喘喷水9色精品| 午夜福利在线观看免费完整高清在 | 99热这里只有是精品50| 岛国毛片在线播放| 亚洲精品自拍成人| 天堂√8在线中文| 久久人人爽人人片av| 18+在线观看网站| av.在线天堂| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 亚洲,欧美,日韩| 深夜a级毛片| 欧美激情在线99| 午夜精品国产一区二区电影 | 精品熟女少妇av免费看| 国内精品美女久久久久久| 26uuu在线亚洲综合色| 中国国产av一级| ponron亚洲| 国产午夜福利久久久久久| 日韩一区二区视频免费看| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 99久久久亚洲精品蜜臀av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩高清在线视频| 三级经典国产精品| 国内少妇人妻偷人精品xxx网站| 色综合站精品国产| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 婷婷精品国产亚洲av| 亚洲成人精品中文字幕电影| 成年女人永久免费观看视频| 国产中年淑女户外野战色| 99热这里只有是精品50| 亚洲一区二区三区色噜噜| 国产精品av视频在线免费观看| av在线蜜桃| 久久人人精品亚洲av| 日本五十路高清| 黄色一级大片看看| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| 天堂影院成人在线观看| 91久久精品电影网| 国产一区二区激情短视频| 午夜爱爱视频在线播放| 亚洲最大成人手机在线| 一级二级三级毛片免费看| 简卡轻食公司| 小蜜桃在线观看免费完整版高清| 国内精品美女久久久久久| 国产精品日韩av在线免费观看| 久99久视频精品免费| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 91久久精品电影网| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 亚洲无线观看免费| av免费观看日本| 欧美日韩乱码在线| 特大巨黑吊av在线直播| 中文字幕av在线有码专区| 中文字幕精品亚洲无线码一区| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| a级一级毛片免费在线观看| 99国产极品粉嫩在线观看| 一边亲一边摸免费视频| 亚洲五月天丁香| 国产黄a三级三级三级人| 国产一区二区在线av高清观看| 婷婷六月久久综合丁香| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 亚洲人成网站在线播放欧美日韩| 精品人妻视频免费看| 夜夜看夜夜爽夜夜摸| 婷婷色综合大香蕉| 成年女人永久免费观看视频| 桃色一区二区三区在线观看| 中国美白少妇内射xxxbb| eeuss影院久久| 成年版毛片免费区| 亚洲自拍偷在线| 国产一区二区激情短视频| 麻豆乱淫一区二区| 国产精品国产高清国产av| 99热只有精品国产| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 欧美日韩在线观看h| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| 国产老妇女一区| 精品午夜福利在线看| 久久久久九九精品影院| 亚洲av男天堂| 色哟哟·www| 秋霞在线观看毛片| 久久久久久久久中文| eeuss影院久久| 色播亚洲综合网| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 欧美变态另类bdsm刘玥| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 国产v大片淫在线免费观看| 亚洲中文字幕日韩| 亚洲精品国产成人久久av| 成年免费大片在线观看| 在线观看66精品国产| 精品午夜福利在线看| 国产精品伦人一区二区| kizo精华| 一个人看视频在线观看www免费| 久久久久久久久久久免费av| 国产伦一二天堂av在线观看| www.色视频.com| 国产片特级美女逼逼视频| 国产免费男女视频| 国产精品av视频在线免费观看| 国内精品宾馆在线| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 欧美xxxx黑人xx丫x性爽| 国产又黄又爽又无遮挡在线| 欧美另类亚洲清纯唯美| 免费看av在线观看网站| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 1024手机看黄色片| av在线亚洲专区| 亚洲美女视频黄频| 一区二区三区免费毛片| 男女那种视频在线观看| 免费看a级黄色片| 毛片一级片免费看久久久久| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 亚洲av中文字字幕乱码综合| 久久精品夜夜夜夜夜久久蜜豆| 三级毛片av免费| 三级经典国产精品| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 嫩草影院新地址| a级毛色黄片| 日韩av在线大香蕉| 又爽又黄a免费视频| 蜜臀久久99精品久久宅男| 日日干狠狠操夜夜爽| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 精品久久久噜噜| 久久99精品国语久久久| 我要搜黄色片| 欧美成人免费av一区二区三区| 成人一区二区视频在线观看| 亚洲不卡免费看| 久久久久国产网址| 长腿黑丝高跟| 亚洲av不卡在线观看| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 晚上一个人看的免费电影| 不卡视频在线观看欧美| 黄色日韩在线| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 国产精品美女特级片免费视频播放器| 一级黄色大片毛片| 97在线视频观看| 午夜久久久久精精品| 婷婷色综合大香蕉| 久久久国产成人免费| 国产高清不卡午夜福利| a级毛片a级免费在线| 最近最新中文字幕大全电影3| 亚洲精品自拍成人| 好男人视频免费观看在线| 国产精品国产高清国产av| 最近视频中文字幕2019在线8| 成人综合一区亚洲| 99热网站在线观看| 最近2019中文字幕mv第一页| 少妇高潮的动态图| avwww免费| 99久国产av精品| 男女啪啪激烈高潮av片| 毛片女人毛片| 欧美+日韩+精品| 淫秽高清视频在线观看| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 人妻系列 视频| 亚洲欧美精品自产自拍| av在线天堂中文字幕| 亚洲在线自拍视频| 久久精品人妻少妇| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 床上黄色一级片| 成年av动漫网址| 久久欧美精品欧美久久欧美| 最近视频中文字幕2019在线8| 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 岛国在线免费视频观看| 午夜免费男女啪啪视频观看| 国产精品久久久久久精品电影| 啦啦啦啦在线视频资源| 你懂的网址亚洲精品在线观看 | 亚洲中文字幕日韩| 听说在线观看完整版免费高清| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 成人av在线播放网站| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性xxxx在线观看| 国产精品久久电影中文字幕| 国产精品一区二区性色av| 日日干狠狠操夜夜爽| 天堂影院成人在线观看| 免费av不卡在线播放| 97超视频在线观看视频| 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 国产真实乱freesex| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧洲日产国产| 能在线免费观看的黄片| 久久久久久九九精品二区国产| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 日本熟妇午夜| 69av精品久久久久久| 中国美白少妇内射xxxbb| 有码 亚洲区| 久久这里有精品视频免费| 亚洲av男天堂| 亚洲av不卡在线观看| 免费看a级黄色片| 一级黄片播放器| 老熟妇乱子伦视频在线观看| 深夜精品福利| 性欧美人与动物交配| 国产爱豆传媒在线观看| av在线天堂中文字幕| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 婷婷色av中文字幕| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 在线观看66精品国产| 天天躁日日操中文字幕| 看免费成人av毛片| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 亚洲欧美清纯卡通| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| av国产免费在线观看| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 天美传媒精品一区二区| 日韩欧美在线乱码| 少妇的逼好多水| 精品国内亚洲2022精品成人| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 欧美日韩精品成人综合77777| 国内精品宾馆在线| 免费搜索国产男女视频| 精品国内亚洲2022精品成人| 99热网站在线观看| 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 中文字幕制服av| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 99久久精品国产国产毛片| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 久久久精品大字幕| 国产精品麻豆人妻色哟哟久久 | 成熟少妇高潮喷水视频| 免费观看a级毛片全部| 日本撒尿小便嘘嘘汇集6| 亚洲精品自拍成人| 国产成人aa在线观看| av天堂在线播放| 久久精品久久久久久久性| 99国产极品粉嫩在线观看| a级毛色黄片| 亚洲一区二区三区色噜噜| 日韩成人av中文字幕在线观看| 国产一区亚洲一区在线观看| 男人狂女人下面高潮的视频| 成人三级黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 精华霜和精华液先用哪个| 免费看av在线观看网站| 免费看a级黄色片| 久久人人爽人人片av| 中文字幕av成人在线电影| 国产精品久久久久久精品电影小说 | 免费av毛片视频| 老司机福利观看| 日韩制服骚丝袜av| 九九爱精品视频在线观看| 美女大奶头视频| 免费看日本二区| 亚洲自拍偷在线| 国产老妇伦熟女老妇高清| 国产精品嫩草影院av在线观看| 久久久久久久久久久免费av| 亚洲国产精品成人综合色| 免费看光身美女| 一夜夜www| 国产探花极品一区二区| 我要搜黄色片| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 欧美+日韩+精品| 一夜夜www| 亚洲最大成人中文| 白带黄色成豆腐渣| 亚洲av免费在线观看| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 亚洲无线在线观看| 中文资源天堂在线| 我要搜黄色片| 久久久久久久久久久免费av| 久久6这里有精品| 国语自产精品视频在线第100页| videossex国产| 亚洲第一区二区三区不卡| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 国内精品宾馆在线| 久久久久网色| h日本视频在线播放| 免费观看的影片在线观看| 日本黄大片高清| 能在线免费观看的黄片| 国产av在哪里看| 精品日产1卡2卡| 久久精品国产亚洲av香蕉五月| 亚洲不卡免费看| 色综合亚洲欧美另类图片|