齊輝,高春,,周亞東,,潘向南,蔡立明
(1. 哈爾濱工程大學 航天與建筑工程學院,黑龍江 哈爾濱,150001;2. 哈爾濱學院 土木工程系,黑龍江 哈爾濱,150086;3. 濟寧市建筑設(shè)計研究院,山東 濟寧,272000)
下部脫膠界面圓夾雜的彈性動力學反平面分析
齊輝1,高春1,2,周亞東1,3,潘向南1,蔡立明1
(1. 哈爾濱工程大學 航天與建筑工程學院,黑龍江 哈爾濱,150001;2. 哈爾濱學院 土木工程系,黑龍江 哈爾濱,150086;3. 濟寧市建筑設(shè)計研究院,山東 濟寧,272000)
針對下部脫膠的界面圓柱夾雜對SH波的散射問題進行穩(wěn)態(tài)研究。按照“分割”和“契合”思想,采用復變函數(shù)法、Green函數(shù)法與多極坐標法相結(jié)合實現(xiàn)邊值問題的求解。首先,分別求解沿雙相介質(zhì)交界面剖分的上、下半空間的Green函數(shù);其次,在界面上附加未知力系,將上、下半空間契合在一起,按交界面上的位移和應(yīng)力的連續(xù)條件構(gòu)造定解積分方程組;再次,采用直接離散法求解積分方程組,反推得到位移和應(yīng)力場的表達式;最后,按應(yīng)力場的表達式求得界面夾雜邊沿的動應(yīng)力集中因子。數(shù)值研究2個界面脫膠夾雜之間的相互作用,給出夾雜邊沿動應(yīng)力集中因子的分布情況。研究結(jié)果表明,界面脫膠夾雜之間的相互影響十分顯著。
SH波散射;Green函數(shù);界面夾雜;脫膠;動應(yīng)力集中
彈性波的散射問題一直備受科學家和工程師的關(guān)注,隨著在無損檢測、能源勘探、地震工程等領(lǐng)域的廣泛應(yīng)用,關(guān)于彈性波散射的研究也越來越多。早期,對彈性波散射的研究主要集中在全空間中單個簡單異質(zhì)體,例如圓柱空洞或夾雜、橢圓柱孔洞或夾雜、球形孔洞或夾雜等[1]。作為最簡單的彈性波的形式,SH波的傳播和散射問題得到了更系統(tǒng)和全面的研究。劉殿魁等[2]創(chuàng)建了SH波二維散射的復變函數(shù)論方法,將彈性靜力學的保角變換推廣到彈性動力學,從形式上解決了全空間中任意形狀柱體的反平面散射問題??紤]界面的反平面散射問題較全空間更復雜,TRIFUNAC等[3?4]按照波函數(shù)展開法和鏡像法研究了半空間中的散射問題;袁曉銘等[5]研究了半空間中圓柱形的凹陷、夾雜和凸起對SH波的穩(wěn)態(tài)散射;楊在林等[6?7]研究了半空間中橢圓形孔洞、夾雜和裂紋對穩(wěn)態(tài)波的反平面散射。界面夾雜對SH波的散射問題是一類更為復雜的彈性動力學界面問題,劉殿魁等[8]運用Green函數(shù)方法,研究了界面圓柱形孔洞和夾雜的反平面穩(wěn)態(tài)散射;汪越勝等[9]用積分方程的方法討論了局部脫膠情況下的散射問題;齊輝等[10?17]按照“契合”思想結(jié)合Green函數(shù)和積分方程的方法系統(tǒng)地研究了穩(wěn)態(tài)SH波的彈性動力學界面問題。本文作者按“分割”與“契合”的思想,通過Green函數(shù)法、復變函數(shù)法與多極坐標法相結(jié)合的方法,研究全空間中含下部脫膠界面夾雜對平面SH波的穩(wěn)態(tài)響應(yīng),給出圓柱夾雜邊沿的動應(yīng)力集中因子的分布情況。
采用“分割”的思想,將全空間模型分割成上、下2個半空間模型,上半空間為含半圓柱形凸起的半空間,下半空間為含半圓形凹陷的半空間。全空間模型如圖1所示。圖中:介質(zhì)I為下半空間;介質(zhì)Ⅱ為上半空間;介質(zhì)Ⅲ為界面圓柱夾雜;1μ,2μ和3μ分別為3種介質(zhì)的剪切彈性模量;1ρ,2ρ和3ρ分別為3種介質(zhì)的質(zhì)量密度;Oj為圓柱夾雜的圓心;dj為第j個半圓形凹陷的圓心坐標;Rj為半徑,坐標系XjOjYj是以O(shè)j為原點建立的局部坐標系,坐標系XOY是以某個局部坐標系為基準建立的全局坐標系;0α為穩(wěn)態(tài)SH平面波的入射角;S,C為邊界。
圖1 全空間模型Fig. 1 Whole space model
2.1上半空間的Green函數(shù)
圖2 格林函數(shù)的上半空間模型Fig. 2 Upper half space model of green function
圖3 界面圓形夾雜模型Fig. 3 Interfacial circular inclusion model
半空間作用線源荷載δ(z?z0)時,入射波W(i)可以表示為
滿足上半空間界面上應(yīng)力自由的散射波()sG的表達式為
其中:zj=z?dj;W0為位移幅值,一般取1.0;k為半圓形凹陷的數(shù)量。在區(qū)域Ⅱ內(nèi)G2可以表示為
2.2下半空間的Green函數(shù)
下半空間的模型如圖4所示。
按同樣的方法構(gòu)造下半空間的Green函數(shù),
圖4 Green函數(shù)的下半空間模型Fig. 4 Lower half space model of Green function
穩(wěn)態(tài)SH波的全空間模型如圖5所示,穩(wěn)態(tài)SH波以α0角入射,產(chǎn)生的入射波、反射波、折射波和散射波構(gòu)成了介質(zhì)中的總波場。入射波W(i)的表達式為:
其中:k1=ω/c1為入射波數(shù);ω為圓頻率;為入射波的相速度;e?iωt為時間諧和因子。
反射波W(r)和折射波W(f)分別按(20)和(21)式定義:
其中:α4為折射角;為介質(zhì)Ⅱ的剪切波速;k2=ω/c2為介質(zhì)Ⅱ的波數(shù)。
按Y=0界面處的位移和應(yīng)力的連續(xù)條件,得到折射角α4、反射波的位移幅值W2和折射波的位移幅值W4的關(guān)系為
圖5 穩(wěn)態(tài)SH波的全空間模型Fig. 5 Whole space model of steady state SH wave
“契合”模型如圖6所示,利用交界面S上位移和應(yīng)力的連續(xù)條件,在交界面S上附加未知力系f1和f2,按求得的Green函數(shù)構(gòu)造求解未知力系f1和f2的定解積分方程組:
圖6 “契合”模型Fig. 6 Conjunction model
式中:0,π=θ。
取界面圓柱夾雜Oj數(shù)k=2,給出了夾雜Oj邊沿的動應(yīng)力集中因子的分布狀況。按坐標系(或)下的應(yīng)力場來計算。這里,假定兩界面圓柱夾雜的半徑相等,且為1.0,即R=R1=R2=1.0。
圖7 界面夾雜周圍的分布(=1.0,=1.0,α0=90°,=1.0,k1R=0.1)Fig. 7 Distribution ofaround interfacial inclusion
圖9所示為SH波以α0=45°入射時,且入射波數(shù)k1R=0.1,界面2個圓夾雜的距離參數(shù)分別取xl/ R=0.5,1.0,3.0,剪切模量比與波數(shù)比不變的情況下,上半空間介質(zhì)Ⅱ與下半空間介質(zhì)Ⅰ的波數(shù)比對左端界面夾雜動應(yīng)力集中系數(shù)的影響。由圖9可見:在θ=90°,270°時,左端界面夾雜動應(yīng)力集中系數(shù)出現(xiàn)了突增的現(xiàn)象;隨著上半空間介質(zhì)Ⅱ與下半空間介質(zhì)Ⅰ的波數(shù)比的增大,這種突增現(xiàn)象從θ為90°和270°逐漸轉(zhuǎn)變到θ為135°和315°,增大到一定程度的時候趨于穩(wěn)定;在一定的條件下,隨著xl/ R的增大,左端界面圓形夾雜周圍的反而呈減小的趨勢。
圖8 界面夾雜周圍的分布(=1.0,=1.0,α=90°,=1.0) 0Fig. 8 Distribution ofaround interfacial inclusion
圖9 界面夾雜周圍的分布Fig. 9 Distribution ofaround interfacial inclusion
1) 右端界面圓柱夾雜的存在使左端界面圓柱夾雜邊沿的動應(yīng)力集中因子有增大的趨勢。
2) 動應(yīng)力集中因子的最大值點均發(fā)生在脫膠界面上。
3) 右端夾雜對動應(yīng)力集中系數(shù)的影響隨著距離的增大而逐漸消失。
4) 隨著介質(zhì)波數(shù)比的增大,即當介質(zhì)Ⅱ相對較“硬”時,動應(yīng)力集中因子呈現(xiàn)遞增的趨勢,隨著入射波數(shù)的增大,動應(yīng)力集中因子呈現(xiàn)減小的趨勢。這就表明,在工程實踐中,尤其是在界面存在局部脫膠的情況下,需要格外注意多個界面夾雜之間的相互作用,這種作用可能造成較大的應(yīng)力集中。
[1] PAOY H, MOW C C. Diffraction of elastic waves and dynamic stress concentrations[M]. New York: Crane and Russak, 1973: 15?50.
[2] LIU D K, GAI B Z, TAO G Y. Applications of the method of complex functions to dynamic stress concentrations[J]. Wave Motion, 1982(4): 293?304.
[3] TRIFUNAC M D. Scattering of plane SH waves by a semi-cylindrical canyon[J]. Earth Engineering and Structural Dynamics, 1973(1): 267?281.
[4] LEE V W, TRIFUNAC M D. Response of tunnels to incident SH-waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105: 643?659.
[5] 袁曉銘. 地表下圓形夾塞區(qū)出平面散射對地面運動的影響[J].地球物理學報, 1996, 39(3): 373?381. YUAN Xianming. Effect of a circular underground inclusion on surface motion under incident plane SH waves[J]. Chinese Journal of Geophysics, 1996, 39(3): 373?381.
[6] 楊在林, 許華南, 黑寶平. 半空間橢圓夾雜與裂紋對SH波的散射[J]. 振動與沖擊, 2013, 32(11): 56?61. YANG Zailin, XU Huanan, HEI Baoping. Interaction of elliptical inclusion and crack under incident SH-wave in a half-space[J]. Journal of Vibration and Shock, 2013, 32(11): 56?61.
[7] 楊在林, 許華南, 黑寶平. SH波上方垂直入射時界面附近橢圓夾雜與裂紋的動態(tài)響應(yīng)[J]. 巖土力學, 2013, 34(8): 2378?2384. YANG Zailin, XU Huanan, HEI Baoping. Dynamic response of elliptical inclusion and crack near interface under vertically incident SH-wave from above[J]. Rock and Soil Mechanics, 2013, 34(8): 2378?2384.
[8] 劉殿魁, 劉宏偉. SH波散射與界面圓孔附近的動應(yīng)力集中[J].力學學報, 1998, 30(5): 597?604. LIU Diankui, LIU Hongwei. Scattering and dynamic stress concentration of SH wave by interface circular hole[J]. Acta Mechanica Sinica, 1998, 30(5): 597?604.
[9] 汪越勝, 王鐸, 馬興瑞, 等. 奇異積分方程在裂紋體彈性波散射問題中的應(yīng)用[J]. 力學進展, 1997, 27(1): 39?55. WANG Yuesheng, WANG Duo, MA Xingrui, et al. On the application of singular integral equation to the scattering problems of elastic waves by cracks[J]. Advances in Mechanics, 1997, 27(1): 39?55.
[10] 齊輝, 楊杰. SH波入射雙相介質(zhì)半空間淺埋任意位置圓形夾雜的動力分析[J]. 工程力學, 2012, 29(7): 320?327. QI Hui, YANG Jie. Dynamic analysis for shallowly buried circular inclusions of arbitrary positions impacted by SH-wave in bi-material half space[J]. Engineering Mechanics, 2012, 29(7): 320?327.
[11] QI H, YANG J, SHI Y, TIAN J Y. Dynamic analysis for circular inclusion near interfacial crack impacted by SH wave in half space[J]. Journal of Mechanics, 2012, 28(1): 143?151.
[12] QI H, YANG J. Dynamic analysis for circular inclusions of arbitrary positions near interfacial crack impacted by SH-wave in half-space[J]. European Journal of Mechanics-A/Solids, 2012, 36: 18?24.
[13] 齊輝, 趙春香, 黃敏. 出平面線源荷載作用下半空間內(nèi)淺埋圓孔對半圓形凸起的圓柱形彈性夾雜的動力影響[J]. 振動與沖擊, 2013, 32(17): 109?112. QI Hui, ZHAO Chunxiang, HUANG Min. Dynamic effect of a subsurface cavity in half space under out-of-plane line source load on a cylindrical elastic inclusion with a semi-cylindrical hill[J]. Journal of Vibration and Shock, 2013, 32(17): 109?112.
[14] 齊輝, 蔡立明, 潘向南, 等. 直角域中凸起和孔洞對SH波的散射與地震動[J]. 巖土力學, 2015, 36(2): 347?353. QI Hui, CAI Liming, PAN Xiangnan, et al. Scattering and seismic ground motion of circular cavity and semi-circular hill with SH wave in a quarter space[J]. Rock and Soil Mechanics, 2015, 36(2): 347?353.
[15] 齊輝, 蔡立明, 潘向南, 等. 含半圓形凸起的直角域?qū)ζ矫鍿H波的地震動[J]. 巖土工程學報, 2015, 37(7): 1294?1299. QI Hui, CAI Liming, PAN Xiangnan, et al. Seismic ground motion of an elastic quarter space subjected by plane SH wave with a semi-circular cylindrical hill[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1294?1299.
[16] 齊輝, 蔡立明, 羅廣龍, 等. 雙相介質(zhì)半空間中圓孔對透射SH波的穩(wěn)態(tài)分析[J]. 爆炸與沖擊, 2015, 35(4): 591?598. QI Hui, CAI Liming, LUO Guanglong, et al. Steady state analysis for circular cavity impacted by transmitted SH wave in a bi-material half space[J]. Explosion and Shock Waves, 2015, 35(4): 591?598.
[17] 高春, 齊輝, 潘向南, 等. 界面點源和半圓柱在直角域中的反平面散射[J]. 哈爾濱工業(yè)大學學報, 2015, 47(10): 94?99. GAO Chun, QI Hui, PAN Xiangnan, et al. Anti-plane scattering of interfacial point source load and semi-circular cylinder in an elastic quarter space[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 94?99.
(編輯 趙俊)
Anti-plane analysis for steady state elastodynamics of interfacial debonding-bottomed circular inclusions
QI Hui1, GAO Chun1,2, ZHOU Yadong1,3, PAN Xiangnan1, CAI Liming1
(1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China; 2. Department of Civil Engineering, Harbin University, Harbin 150086, China; 3. Jining Institute of Building Design and Research, Jining 272000, China)
SH wave scattering problem of interfacial debonding-bottomed circular inclusions was steadily analyzed, by using “split” and “conjunction”, with complex function method, Green function method, and multi-polar coordinate method. Firstly, Green functions of two split half spaces were constructed, respectively. Secondly, the determined integral equations of unknown forces along conjunctive interface were expressed through the "conjunction" condition which claims displacement and stress continuous on the conjunctive interface. Thirdly, displacement and stress fields were presented by using solved integral equations with direct discrete method. Lastly, dynamic stress concentrations factor around the interfacial inclusion was formulated with expressions of stress fields. Numerical examples were calculated to study the interaction of two interfacial debonding-bottomed circular inclusions, and distributions of dynamic stress concentrations factor around inclusion were displayed. The results show that there are significant effects between interfacial debonding inclusions.
SH wave scattering; Green function; interfacial inclusion; debond; dynamic stress concentration
O343.1;P315.3
A
1672?7207(2016)03?0959?08
10.11817/j.issn.1672-7207.2016.03.032
2015?03?26;
2015?06?09
國家自然科學基金資助項目(51379048) (Project(51379048) supported by the National Natural Science Foundation of China)
齊輝,博士,教授,從事彈性波動理論及應(yīng)用研究;E-mail: qihui205@sina.com