李新軍劉興華
1(煙臺大學,煙臺 264005)2(大連理工大學,大連 116024)
供應中斷下雙源采購的供應鏈契約設計
李新軍1,2劉興華1
1(煙臺大學,煙臺 264005)2(大連理工大學,大連 116024)
考慮由一個制造商和兩個供應商構成的兩級供應鏈契約設計問題,將可靠性服從隨機分布的供應商作為主供應商,將完全中斷供應商作為次供應商,建立以利潤最大化為目標的簽約和執(zhí)行兩階段博弈的動態(tài)規(guī)劃模型,得到制造商的最優(yōu)契約設計。制造商根據產品零售價格的變化靈活做出只與一個供應商簽約、與兩個供應商同時簽約或都不簽約的決定,供應商根據契約設計內容決定自己的最優(yōu)生產規(guī)模。研究表明:供應商最優(yōu)生產規(guī)模與產品的單位生產成本呈負相關,與單位變動支付和單位懲罰成本呈正相關;次供應商的訂貨量與其本身的可靠性呈正相關,與主供應商的可靠性呈負相關;供應商的固定支付與其相應的可靠性呈負相關。
供應中斷 契約設計 雙源采購 可靠性 兩級供應鏈
隨著經濟的全球化發(fā)展,企業(yè)規(guī)模的不斷擴大,企業(yè)為降低成本,提升市場競爭力,將大量業(yè)務外包,只保留核心技術,加之市場競爭環(huán)境更加復雜,不確定性因素更多,承受風險更大,使得供應鏈表現(xiàn)出極度的脆弱性。而大部分制造型企業(yè)將一半以上的財力用于采購原材料,一旦供應過程遭受中斷,影響企業(yè)的正常生產,勢必會給企業(yè)帶來極大的損失。造成中斷的因素如:火災、地震、洪澇、罷工等。因此,研究供應鏈的穩(wěn)健性,保持企業(yè)生產的正常運作,就顯得尤為重要。
關于供應商可靠性不確定的兩級供應鏈契約設計問題,不少學者做了相關研究。Yang和Aydin等[1-3]將供應商的可靠性分為高和低兩種類型,分析了可靠性信息不對稱情況下供應鏈的契約設計問題,并指出信息價值由信息租金和渠道價值兩部分組成。Sammi Y.Tang和Haresh Gurnani(2013)[4]分析了供應商可靠性隨著購買商提供的激勵機制而改變,將可靠性作為內生變量來考慮,且需求服從隨機分布的情況下制造商的單源和雙源采購策略。Wang等(2010)[5]也研究了供應商可靠性作為內生變量的情況。Krause等[6-8]使用甄別機制[9]對供應商可靠性進行分類,并通過實證分析指出改善供應商可靠性的有效機制。Ying-Ju Chen(2013)[10]研究了供應商可靠性為私人信息,購買商和供應商分別擁有后補產品兩種情況下的采購契約設計。Tao Li等(2013)[11]研究了供應商的可靠性對制造商采購策略的影響,指出供應商為獲取更大的訂單需要努力提高自己的可靠性水平。黃松等(2014)[12]運用委托——代理理論,研究了需求不確定、制造商生產成本發(fā)生擾動的非對稱信息下供應鏈的最優(yōu)契約設計。王先甲等(2015)[13],Esmaeili等(2010)[14],王新輝等(2013)[15]等也研究了由成本因素導致的不可靠供應問題。鄭志欣等(2013)[16]應用收益共享契約與獎勵懲罰契約分析了在合作、非合作及混合3種競爭博弈下供應鏈的協(xié)調問題。Babich和Burnetas等(2007)[17]引入斯坦克爾博格模型分析了供應商存在違約風險的情況下購買商的采購契約設計。
雙源選擇作為緩解風險的一種工具,被越來越多的研究者所使用。Yang和Aydin等(2011)[2]將雙源采購分為競爭戰(zhàn)略和多元化戰(zhàn)略,并分析了兩種戰(zhàn)略的優(yōu)劣。Babich等(2012)[18],Tomlin(2006)[19],Tomlin 和 Wang (2005)[20],Data(2007)[21]等也研究了多元化戰(zhàn)略對緩解風險的作用。有意思的一種模式是,Qinghua Li和Bo Li等(2015)[22]研究了零售商存在風險厭惡且信息非對稱和制造商參與零售市場的雙渠道供貨策略,屬于一個制造商向兩個零售商供貨的特殊情況。Chaturvedi和Martínez-de-Albéniz(2011)[23]研究了供應商的成本和供應風險為非對稱信息時的多源采購問題,主要側重于刻畫目標函數(shù)的形式。Gümüs等(2011)[24]研究了兩個供應商只有一個存在供應風險的情況下的競爭策略,且供應能力為其私人信息,通過已有供應狀況加以表現(xiàn)。
現(xiàn)有文獻大部分都只研究供應完全中斷的情況,而對部分中斷卻鮮有涉及。本文以一個制造商和兩個供應商構成的兩級供應鏈為研究對象,在Yang和Aydin等(2011)[2]提出的不可靠供應鏈契約設計的基礎上,引入部分中斷和完全中斷兩種類型的供應商,將部分中斷供應商作為主供應商,完全中斷供應商作為次供應商;另外,Yang和Aydin等(2011)[2]的研究只考慮了懲罰成本,本文同時考慮變動支付和懲罰成本,Yang和Aydin等(2011)[2]的研究只是變動支付為0時的一種特殊情況。據此,制定出供應商的最優(yōu)生產規(guī)模和制造商的最優(yōu)契約設計模型。
本文考慮由一個制造商和兩個不可靠供應商構成的兩級供應鏈契約設計問題。其中,供應商包括一個部分中斷供應商和一個完全中斷供應商,完全中斷是指一旦中斷發(fā)生,供應商交貨量為0;而部分中斷則指中斷比例隨機發(fā)生,完全中斷只是部分中斷的一種特殊情況。由于制造商大多是風險厭惡的,本文將部分中斷供應商作為主供應商,完全中斷供應商作為次供應商來考慮。制造商向供應商提供一組契約,供應商根據自己的可靠性水平及契約內容決定最優(yōu)生產規(guī)模,供應鏈契約設計及執(zhí)行過程如圖1所示。
對于上述雙階段決策過程,需建立相應的動態(tài)規(guī)劃模型,先從執(zhí)行階段開始分析,然后再分析簽約階段,這將在第2小節(jié)進行。
1.1 模型參數(shù)
本模型主要涉及參數(shù)如下:
ρi:供應商i的可靠性水平,為供應商交付量占其生產規(guī)模的比例,i=1,2。且ρ1服從連續(xù)的隨機分布,其概率密度函數(shù)為f1(x),累積分布函數(shù)為F1(x),0≤ρ1≤1,其中,ρ1=0表示供應完全中斷,ρ1=1表示供應完全可靠;。表示供應商i的平均可靠性水平,反映供應商長期總的可靠性狀況,:供應商i的初始單位生產成本,由于供應中斷的存在,供應商的實際單位生產成本為(高可靠性供應商的實際單位生產成本小于低可靠性供應商的實際單位生產成本),其中,第一個供應商的實際單位生產成本為,第二個供應商的實際單位生產成本為。K:制造商的交易費用,此成本對兩個供應商無差異。r:產品的零售價格。D:產品的市場需求量。zi:供應商i的生產規(guī)模。(Xi,qi,pi,vi):制造商提供給供應商 i的契約,Xi:制造商給供應商i的固定支付,qi:制造商給供應商i的訂貨量,pi:制造商給供應商i的單位缺貨懲罰,vi:制造商給供應商i的單位變動支付。
1.2 基本假設
模型描述做出如下假設:
(1)市場需求在制造商訂貨前可知,為一常量;(2)由于制造商只是對所購零件進行組裝,制造商的生產成本忽略不計;(3)當供應商交付量不能滿足訂貨量時,將付出懲罰成本;(4)兩個供應商相互獨立,且不考慮供應商供貨提前期;(5)供應商交付原材料剩余及制造商銷售產品剩余的殘值均為0;(6)制造商優(yōu)先考慮部分中斷供應商,只有當從部分中斷供應商處不能取得正的利潤時,才考慮是否把完全中斷供應商作為唯一供應商。
假定制造商和供應商都以利潤最大化為目標。下面用逆序解法先從供應商執(zhí)行階段開始分析,然后再分析簽約階段。
2.1 供應商生產決策
為了簡化符號,本小節(jié)不在用下標i表示供應商i。在執(zhí)行階段,制造商給定契約(X,q,p,v),供應商選擇生產規(guī)模z來最大化其期望利潤。由于供應中斷的存在,最終交付量為min(q,ρz),其中q表示訂貨量,并接受變動支付vmin(q,ρz)及懲罰成本pE(q-ρz)+。(符號 “+”定義為:當x>0時,x+=x;當x≤0時,x+=0。)供應商利潤函數(shù)為:
供應商完全可靠時,供應商利潤為πs(X,q,p,v)=X-cz+vz,為保證制造商給供應商的固定支付X≥0,變動支付v應滿足v≤c。下面對部分中斷和完全中斷兩種不可靠供應商進行討論。
(1)對于部分中斷的不可靠供應商,供應商的可靠性水平ρ服從連續(xù)的隨機分布,其概率密度函數(shù)為f(x),0≤x≤1。部分中斷供應商最優(yōu)利潤函數(shù)轉化為:
供應商需決定最優(yōu)生產規(guī)模z以使其利潤達到最大化。定理1給出了部分中斷供應商的最優(yōu)生產規(guī)模及最優(yōu)利潤。
定理1:給定契約(X,q,p,v),對于部分中斷的供應商,其最優(yōu)生產規(guī)模z*(q,p,v)和最優(yōu)利潤如表1所示。
表1 完全中斷供應商最優(yōu)生產規(guī)模及最優(yōu)利潤
注意:z*只與q、p、v有關,而與X無關,故用z*(q,p,v)表示供應商的最優(yōu)生產規(guī)模。假定,否則供應商將不進行生產,而寧愿失去變動支付,接受懲罰。
由定理1可知,由于0≤ρ≤1,因此z*≥q。當ρ=1,即供應商完全可靠時,z*=q,供應商生產規(guī)模應等于訂貨量;當ρ<1,即供應商不完全可靠時,z*>q,供應商生產規(guī)模應大于訂貨量。并且可靠性越高,即ˉρ越大,生產量越接近訂貨量,相同訂貨量對應的利潤也就越大。
分析定理1,可得推論1。
推論1:供應商最優(yōu)生產規(guī)模與產品的單位生產成本呈負相關,與單位變動支付和單位懲罰成本呈正相關。
理論意義:如果單位生產成本很大,供應商就會生產比較少的產品以免交貨時過剩造成不必要的浪費;而如果單位變動支付和單位懲罰成本很大,供應商就會生產更多的產品以防發(fā)生供應中斷造成缺貨損失。
注意:z*只與q、p、v有關,而與X無關,用z*(q,p,v)表示供應商的最優(yōu)生產規(guī)模??疾炖麧櫤瘮?shù)中z的系數(shù),得出定理2。
定理2:給定契約(X,q,p,v),對于完全中斷供應商,其最優(yōu)生產規(guī)模z*(q,p,v)和最優(yōu)利潤如表2所示。
表2 完全中斷供應商最優(yōu)生產規(guī)模及最優(yōu)利潤
由定理2可知,供應商的最優(yōu)利潤與其平均可靠性水平正相關,平均可靠性越高,則供應商獲得的利潤越大。所以,供應商為了獲取更高的利潤,或得到更多的訂單,必須不斷努力提高自己的可靠性水平。
2.2 制造商契約設計
制造商利潤由收益和成本兩大部分組成,其收益包括銷售商品所獲得的收入和供應商交付量不能滿足訂貨時的罰金;成本包括給供應商的固定支付、變動支付及交易費用。制造商同時向兩個供應商訂貨,其中第一個供應商為部分中斷供應商,作為主供應商;第二個供應商為完全中斷供應商,作為次供應商。令,制造商的最優(yōu)利潤函數(shù)模型為:
約束條件:
因為制造商追求自身利潤最大化,而供應商的決策變量即生產規(guī)模與固定支付無關,所以制造商總可以改變固定支付而使供應商的利潤為0,即πsi(Xi,qi,pi,vi)=0,i=1,2。據此對模型 (4)進行轉化,得到制造商的最優(yōu)利潤函數(shù)為:
將式(5)分解為兩個獨立問題,利用KT條件進行求解,可得定理3。
定理3:針對一個部分中斷的主供應商和一個完全中斷的次供應商,制造商的最優(yōu)契約設計如表3所示。
表3 制造商最優(yōu)契約設計
表4 ρ1~U[0,m]時制造商的最優(yōu)契約設計
從表4可以看出,供應商的固定支付與其自身的可靠性呈負相關。從制造商的角度看,供應商越可靠,提前支付的就越少,制造商也越愿意向其訂貨;相反,供應商越不可靠,就需要制定越大的懲罰成本,以盡量保證其交貨量滿足需求。當時,主供應商的訂貨量與需求量呈一定倍數(shù)關系;次供應商的訂貨量與其本身的可靠性呈正相關,與主供應商的可靠性呈負相關,即主供應商的可靠性越高,次供應商的可靠性越低,則次供應商的訂貨量越小,反之次供應商的訂貨量越大。事實上,主供應商可靠性越高,則其交貨量越接近需求量,次供應商的訂貨量自然就越少;而次供應商的可靠性越低,制造商為使次供應商的交貨量盡量滿足需求,就需要更大的訂貨量。
下面用一個算例對制造商的最優(yōu)契約設計和供應商的最優(yōu)生產規(guī)模進行模擬分析。由于第2小節(jié)所述情景并非都會出現(xiàn),這不僅取決于零售價格的取值范圍,還取決于限定的兩個供應商的可靠性水平。受篇幅所限,本算例僅對零售商的可靠性水平做一種設定。
根據以上給定的數(shù)據,設定r變動范圍為4~15,計算兩個供應商的最優(yōu)生產規(guī)模以及制造商的最優(yōu)契約設計,結果如表5所示。
表5 供應商生產規(guī)模及制造商契約設計決策
圖2 零售價格與制造商從兩個供應商處獲得的利潤之間的關系
從圖2可知,制造商應根據產品零售價格的變化靈活地向供應商提供契約。D1部分表示制造商不與任何供應商簽約,D2部分表示制造商只與主供應商簽約,D3部分表示制造商與兩個供應商同時簽約。
已有的關于不可靠供應鏈契約設計的文獻大都將供應商的可靠性分為高和低兩種,本文引入可靠性服從隨機分布的供應商,建立兩階段博弈的動態(tài)規(guī)劃模型,以利潤最大化為目標,運用逆序解法,得到供應商的最優(yōu)生產規(guī)模以及制造商的最優(yōu)契約設計。其中契約設計內容包括制造商給供應商的固定支付、訂貨量、變動支付及懲罰成本。制造商根據產品零售價格的變化靈活做出只與一個供應商簽約、與兩個供應商同時簽約或都不簽約的決定。研究還得出:供應商最優(yōu)生產規(guī)模與產品的單位生產成本呈負相關,與單位變動支付和單位懲罰成本呈正相關;當主供應商的可靠性服從均勻分布時,主供應商的訂貨量與需求量呈一定的倍數(shù)關系;次供應商的訂貨量與其本身的可靠性呈正相關,與主供應商的可靠性呈負相關;供應商的固定支付與其相應的可靠性呈負相關;供應商的可靠性越低,懲罰成本應越高。
另外,本文只研究了需求確定的情況,下一步可以研究隨機需求下的契約設計問題,還可以研究兩個供應商的可靠性均服從連續(xù)的隨機分布的情況,以及供應商的可靠性信息不對稱時制造商的契約決策。
[1]Yang Z,Aydin G,Babich V,et al.Supply Disruptions,Asymmetric Information,and a Dual Sourcing Option[R].Working Paper.Industrial and Operations Engineering,University of Michigan,2008
[2]Yang Z,Aydin G,Babich V,et al.Supply Disruptions,Asymmetric Information,and a Backup Production Option[J].Management Science,2009,55(2):192~209
[3]Yang Z,Aydin G,Babich V,et al.Using a Dual-sourcing Option in the Presence of Asymmetric Information About Supplier Reliability:Competition vs.Diversification[J].Manufacturing&Service Operations Management,2012,14(2):202~217
[4]Sammi Y.Tang,Haresh Gurnani,Gupta D.Managing Disruptions in Decentralized Supply Chains With Endogenous Supply Process Reliability[J].Production and Operations Management,2014,23(7):1198~1211
[5]Wang Y,Gilland W,Tomlin B.Mitigating Supply Risk:Dual Sourcing or Process Improvement?[J].Manufacturing&Service Operations Management,2010,12(3):489~510
[6]Krause D R.Supplier Development:Current Practices and Outcomes[J].International Journal of Purchasing and Materials Management,1997,33(1):12~19
[7]Krause D R.The Antecedents of Buying Firms’Efforts to Improve Suppliers[J].Journal of Operations Management,1999,17(2):205~224
[8]Krause D R,Handfield R B,Tyler B B.The Relationships Between Supplier Development,Commitment,Social Capital Accumulation and Performance Improvement[J].Journal of Operations Management,2007,25(2):528~545
[9]Avinash Dixit,Susan Skeath,David Reiley.策略博弈 [M].第3版.北京:中國人民大學出版社,2012:263~267
[10]Ying-Ju Chen.Supply Disruptions,Heterogeneous Beliefs,and Production Efficiencies[J].Production and Operations Management,2014,23(1):127~137
[11]Tao Li,Sethi S P,Zhang J.How Does Pricing Power Affect a Firm’s Sourcing Decisions From Unreliable Suppliers?[J].International Journal of Production Research,2013,51(23-24):6990~7005
[12]黃松,楊超 .非對稱成本擾動信息非線性需求函數(shù)下的供應鏈契約設計 [J].中國管理科學,2014,22(7):81~82
[13]王先甲,肖露,關旭 .非對稱供應成本信息下裝配系統(tǒng)定價與供貨策略研究[J].系統(tǒng)工程理論與實踐,2014,35(7):1689~1697
[14]Esmaeili M,Zeephongsekul P.Seller-buyer Models of Supply Chain Management With an Asymmetric Information Structure[J]. International Journal of Production Economics,2010,123(1):146~154
[15]王新輝,汪賢裕,蘇應生 .雙邊成本信息不對稱的供應鏈協(xié)調機制 [J].管理工程學報,2013,(4):196~204
[16]鄭志欣,何波 .供應中斷風險下鏈與鏈競爭的博弈分析[J].科技管理研究,2013,33(16):198~201
[17]Babich V,Burnetas A N,Ritchken P H.Competition and Diversification Effects in Supply Chains With Supplier Default Risk[J]. Manufacturing&Service Operations Management,2007,9(2):123~146
[18]Babich,Volodymyr,et al.Risk,F(xiàn)inancing and the Optimal Number of Suppliers.Supply Chain Disruptions.Springer London,2012: 195~240
[19]Tomlin B.On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks[J].Management Science,2006,52(5):639~657
[20]Tomlin B,Wang Y.On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks[J].Manufacturing& Service Operations Management,2005,7(1):37~57
[21]Dada M,Petruzzi N C,Schwarz L B.A Newsvendor’s Procurement Problem When Suppliers are Unreliable[J].Manufacturing&Service Operations Management,2007,9(1):9~32
[22]Li Q,Li B,Chen P,et al.Dual-channel Supply Chain Decisions Under Asymmetric Information With a Risk-averse Retailer[J].Annals of Operations Research,2015:1~25
[23]Chaturvedi A,Martínez-de-Albéniz V.Optimal Procurement Design in the Presence of Supply Risk[J].Manufacturing&Service Operations Management,2011,13(2):227~243
[24]Gümüs,M,Ray S,Gurnani H.Supply-side Story:Risks,Guarantees,Competition,and Information Asymmetry[J].Management Science,2012,58(9):1694~1714
Contracts Design of Dual Sourcing under Supply Disruption
Li Xinjun1,2Liu Xinghua1
(1.Yantai University,Yantai 264005,China;2.Dalian University of Technology,Dalian 116024,China)
This paper considers contracts designing for a two-stage chain consisting of a manufacturer and two suppliers.We treat the supplier of whose reliability obedient to random distribution as a main supplier,and treat the supplier of zero or all as a secondary supplier.Based on the profit maximization as the goal,establishing a dynamic programming model of a two-stage game-signing contracts stage and execution stage,we get the manufacturer’s optimal contract design.The manufacture makes a decision of signing contracts with only one supplier,both suppliers or neither according to the retail price of products,and the suppliers decide the optimal production scale based on the content of contracts.The research indicates that the optimal production scale shows as a negative correlation with per unit of the cost of production,and a positive correlation with per unit of variable payment and punishment cost.The order quantity of the secondary supplier presents a positive correlation with its own reliability,and a negative correlation with the reliability of the main supplier. The mixed payment has a negative correlation with its corresponding reliability.
supply disruption;contracts designing;dual sourcing option;reliability;two-stage supply chain
10.3969/j.issn.1004-910X.2016.12.005
F224.3
A
(責任編輯:王 平)
2016—03—19
國家社會科學基金項目 “基于供應商產能的供應應急策略與設計研究” (項目編號:12CGL042);國家自然科學基金項目“基于行為運作的加工系統(tǒng)干擾管理研究”(項目編號 :71271039);國家自然科學基金項目 “考慮有限理性的供應鏈中斷風險管理模型研究”(項目編號:71272122)。
李新軍,煙臺大學經濟管理學院副教授,大連理工大學管理與經濟學部博士后。研究方向:應急管理,運作管理,物流與供應鏈管理。劉興華,煙臺大學經濟管理學院碩士研究生。研究方向:物流與供應鏈管理、運營管理與應急管理的交叉學科。