• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MoM-based topology optimization method for planar metallic antenna design

    2016-12-05 07:39:59ShutianLiuQiWangRenjingGao
    Acta Mechanica Sinica 2016年6期

    Shutian Liu·Qi Wang·Renjing Gao

    MoM-based topology optimization method for planar metallic antenna design

    Shutian Liu1·Qi Wang1·Renjing Gao1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    The metallic antenna design problem can be treated as a problem to find the optimal distribution of conductive material in a certain domain.Although this problem is well suited for topology optimization method,the volumetric distribution of conductive material based on 3D finite element method(FEM)has been known to cause numerical bottlenecks such as the skin depth issue,meshed“air regions”and other numerical problems.In this paper a topology optimization method based on the method of moments(MoM) for configuration design of planar metallic antenna was proposed.The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance.In this way,the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain.The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities.The conductive material(metal)was assumed to have zero impedance,whereas the non-conductive material was simulated as a material with a finite but large enough impedance.The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function.The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency.The results illustrated the effectiveness of the method.

    ? Shutian Liu stliu@dlut.edu.cn

    1State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024, China

    Metallic antenna design·Topology optimization·Method of moments·Resistance sheet·Impedance boundary condition

    DOI 10.1007/s10409-016-0584-0

    1 Introduction

    As more requirements,such as small size and maximal efficiency are incorporated into antennas,the design for application-specific antenna should be guided by use of advanced design methodology[1,2].The antenna design problem aims to find the optimal distribution of conductive material,which is well suited for the topology optimization method.However,it has been known that the determination of the volumetric distribution of conductive material based on the 3D finite element method(FEM)for electromagnetic analysis will cause numerical bottlenecks such as the skin depth problem[2].The main purpose of this paper is to investigate a design method of planar metallic antenna using gradient-based topology optimization method based on the method of moments(MoM).

    Topology optimization method can be used to find optimal material distributions within a given design domain,such that the desired response of the system can be enhanced corresponding to a general initial configuration.Traditional design methods,such as the shape and size optimization methods, are carried out upon certain initial configurations subjected to the designers’experience and use the shape and size parameters as design variables resulting in no new layout can be generated in the design domain,whereas the topology optimization method has the ability to create new layout in the design domain,that is,the topology of the structure can be evolved automatically.Although topology optimization method was originally developed to design elastic structures[3–5],the method has been extended successfully to solve multidisciplinary structure design problems[6],such as the design problems of photonic crystal structures[7,8],meta-materials[9],radio frequency devices[10],aircraft structures [11],micro-mass sensors[12]and so on.In the topology optimization method,the design domain is divided into a series of small elements,and a design variable associated with each element value range from 0 to 1 to indicate the absence or presence of candidate materials.With this material distribution approach,topology optimization has the ability to change the configuration through creating and merging holes in the design domain,thus can get an optimal design even from a general initial configuration,and is especially well suited for numerical methods such as the FEM or the MoM.In the 3D FEM,the skin depth,which is a measure for the distance through which the current density decreases by a factor e?1in a conductor[2],calls for highly refined meshes to capture the real physics when an electromagnetic wave is propagating through finite-thickness and finite-conductivity metallic patches,and results in the optimization for microwave problems being inefficient[1]. Owing to the skin depth issue boundary conditions,such as the impedance boundary condition(IBC)[1]or the perfect electric condition(PEC)[13],were introduced in the optimization of microwave devices to simplify the numerical modeling and decrease the computational cost.Koulouridis et al.[13]proposed an optimization scheme based on genetic algorithms(GA)using the PEC to model the real conductor where the skin depth issue was eliminated.However,this optimization scheme based on GA and binary handling of the PEC leads to the sensitivities which cannot be determined.Furthermore,the optimization method based on GA requires an extensive analysis for the large scale population and the time-consumption limits its applicability in the design with a large number of independent variables.In order to improve the solving efficiency of metallic antenna design problems,an optimization scheme based on gradient algorithms should be developed.However,to the best of our knowledge,there are only a few articles(for examples Refs. [14–17])using the topology optimization method to design metallic antenna based on gradient algorithms.Erentok and Sigmund[14]used the 3D FEM as their numerical method to design a conductor-based sub-wavelength antenna.However,the extra introduced free space domain to simulate the absorbing boundary conditions results in the optimization being inefficient.Furthermore,the skin depth issue existed in the 3DFEM is difficult to deal with.Hassan et al.[15]realized ultra-wide-band monopole antenna design and dual-band microstrip antenna design based on the finite-difference time domain(FDTD)method,although the FDTD is well suited to simulate antennas operating at wideband frequencies,that method prefers to use large-scale regular meshes and the“airregions”around antennas is also needed to be meshed[18]. Zhou et al.[16]proposed a level-set based topology optimization method for dipole antenna design based on the MoM, and used adaptive meshes to capture the real physics.But the adaptive meshes will reduce the efficiency of optimizations and cause numerical oscillations in the sensitivity analysis. In our previous paper[17],a planar metallic antenna was optimized for miniaturization by minimizing the S11of the antenna at a lower frequency and an exponential interpolation function was used,where the Ohmic loss of the antenna was ignored.But a significant difference was found between the performances of the results before and after post-processing.

    This paper presents a design methodology for the topology optimization of planar metallic antennas based on the MoM. The design domain of a planar metallic antenna was considered to be composed of a set of resistance sheets.In this way, the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain.Furthermore,the body of conductive material often discretized with 3D finite elements in the FEM is transferred to a sheet with zero thickness,and a design-dependent element impedance boundary condition was introduced to resolve the skin depth issue.The topology of the antenna was depicted with the distribution of the impedance related to the design variables.The conductive material was assumed to have zero impedance,whereas the non-conductive material was simulated as a material with a finite but large enough impedance value.The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function. The design of planar antennas is optimized for maximizing the efficiency at the target frequency.The optimization problem was solved by the method of moving asymptotes(MMA) [19],and binary results can be obtained by setting a threshold value for all design variables meanwhile the responses of the designs before and after post-processing show a good agreement.

    2 Formulations of the optimization problems

    2.1 Optimization formulation

    This section aims to establish the optimization formulation of metallic antenna design problems.The energy balance of an antenna system is illustrated in Fig.1,whererepresents the input energy in the transmission line,represents the reflection energy,is the energy fed in the antenna which equalsWΩrepresents the Ohmic loss of the antenna,and Wradis the radiation energy which equals.Generally,antennas are desired to be designed to match with its transmission line and have no Ohmic loss,which means theand the WΩshould be optimized as small as possible,thus the objective can be

    Fig.1 An illustration of energy balance of a transmitting antenna system,where the input energy Win,transequals the radiation energy Wradplus the reflection energy Wout,transand the Ohmic loss of the antenna WΩ

    taken as maximizing the antenna efficiency,which is given as

    whereηis the antenna efficiency,ρ are the design variables,I represent the state variables(surface currents)of the antenna system.

    Then the optimization formulation can be formulated as find ρ=(ρ1,ρ2,...,ρN)T,

    where N and Nfare the total numbers of design variables and target frequencies respectively.The second constraint is not always necessary in antenna designs,but is added to speed up the convergence[1].viis the volume of each element, Vfis the ratio of the volume occupied by conductor to that of the total design domain.fjs represent a series of target frequencies.

    3 Design parameterization

    Fig.2 An illustration of the design parameterization for patch metallic antenna design problems,where the design domain Ωdes is assumed as a series of resistance sheets

    Topology optimization of metallic antenna design can be treated as an optimization problem to find optimal distribution of conductive materials,so that the desired response (objective)of the antenna can be optimized.An illustration of the proposed design parameterization for patch metallic antenna design problems is shown in Fig.2,where the body of the antenna is transferred to a resistance sheet with zero thickness.The resistance in position r is denoted as ZS(r). When ZS(r)is small or large enough,corresponding to a conductor or non-conductor exists in position r,the layout of the conductive patch can be determined by ZS(r)with a series of design variables ρ∈[0,1].In order to establish an appropriate relationship between conductor and non-conductor, the interpolation function of ZSwith ρ should be developed to have the following properties:the interpolation function has to be monotonous;the change in the objective function caused by design variables could be detected.Besides,a difficulty of the infinite difference between the impedance of conductorand that of non-conductorshould also be resolved.To meet the above requirements and resolve the difficulty,it’s useful to express the sheet impedance ZSin tangential scale,which is given by

    where Zatanis the arctangent of ZS,p is the penalty parameter.The proposed tangential interpolation function guarantees that ZShas the ability to value the total range of[0,+∞)when Zatanvalues the range of[0,π/2]by interpolating with design variables ρ∈[0,1].An appropriate threshold value ofhas been determined in our previous work[17],which is suggested to value the range from 106to 1010Ω/m2.The tangential interpolation function can be seen in Fig.3 with=108Ω/m2and Zmetal=0Ω/m2.

    Fig.3 (Color online)Plots of the tangential interpolation function with Z non-metal=108Ω/m2 and Z metal=0Ω/m2.a Z S(ρ)with p=0. b Ztan(ρ)with p=1,10,40

    Fig.4 Models used to evaluate the properties of candidate interpolation functions.a The antenna with impedance values Z S(r,ρ),for r∈ΩC,and ZS(r)=0,for r∈Ω/ΩC.b The standard fractal antenna without modeling ΩC

    A fractal antenna is selected to evaluate the property of the proposed tangential interpolation function and determine an appropriate value of the penalty parameter p.The antenna is simulated based on its transmitting mode,where a delta gap voltage generator is set at the central position of the antenna. As shown in Fig.4a,the green regionΩCis filled with a series of resistance sheets where the impedance values ZS(ρ). The frequency is set to 400 MHz,Znon-metal=108Ω/m2and Zmetal=0Ω/m2.Because the exponential interpolation function cannot get to exact zero(i.e.,ex→ 0 when x→?∞),the impedance of metal is set to a small enough value(10?6Ω/m2)instead for that case.

    The comparisons are shown in Fig.5.As stated before, there are two requirements for an appropriate interpolation function,one is the interpolation function has to be monotonous,the other is the change in the objective caused by the design variables must be detectable.As can be seen from Fig.5,for the linear interpolation function case,the antenna efficiency appears so insensitive with the change of ρ within a large range of ρ∈[0,1]that the change in the objective(η) cannot be detected;for the exponential interpolation function case,the sensitivities of the objective with design variables approach to zero in a large range when ρ closes to 0 and 1,which leads to difficulties in converging the ρ to 0 or 1; the proposed tangential interpolation function with p=40 has the ability to satisfy the above two requirements,which shows smoothing change within the range of ρ from 0 to 1.

    Fig.5 Comparisons of the linear,exponential and tangential interpolation functions,the responses of the bowtie antenna and the fractal antenna are used as the reference solutions

    4 Solutions of the optimization problems

    4.1 Governing equations

    Using the electric field integral equation(EFIE),the MoM develops a simple and efficient numerical procedure for treating electromagnetic problems of scattering by arbitrarily shaped objects.The scattered field at position r caused by any source at position r′is given by

    When the conductivity of the conductive patch is finite,the total electric field on the conductive patch equals the product of the sheet impedance and the surface current.This IBC can be represented by the following equation

    where ZS(ρ)is the design-dependent impedance of the resistance sheets with design variables ρ.When ZS(ρ)=0,the right-hand side of Eq.(5)disappears and the IBC becomes the standard PEC where the skin depth equals zero;when ZS(ρ)→+∞,the resistance sheet no longer presents and the surface current J will be calculated to be approximately zero,then the skin depth issue is no longer involved.Thus,if the design methodology is devised such that the final design is fully black and white,the skin depth is resolved.This is a commonly used trick in topology optimization and will also be used in the work presented here.

    The MoM[20,21]begins by expressing the unknown J in terms of a set of basis functions Bns as

    where the Ins are the unknown coefficients needed to be determined.One of the most frequently used sub-domain basis functions is the RWG basis function proposed by Rao et al.[22]in 1982.

    Thus the governing equations of an antenna system described by Eq.(5)can be calculated by using the standard Galerkin method[18]as

    where

    where Eincrepresents the source of the antenna system,ZRand V represent the impedance matrix and the source matrix occupied by ZSand Eincrespectively.It is worth mentioning that Z is fixed during the optimization process and only needed to be calculated once when the optimization begins.

    4.2 Objective function and sensitivity analysis

    Based on the linear system described by Eq.(7),the antenna efficiency can be calculated as

    where? represents the real part operator.?Iis a vector where the number in the position corresponded to the input terminal of the antenna system equals the length of the feeding edge linand all others equal zero.represents the characteristic impedance of the transmission line,which is set to 50 Ω.

    In order to update the design variables through a gradient-based algorithm,the sensitivities of the antenna efficiency with the design variables must be evaluated.According to the chain rule,the derivative of η with ρ can be expressed as

    Then the sensitivity analysis can be done by the adjoint method as

    where

    Fig.6 The flowchart of the proposed design method for patch metallic antenna design

    The optimization problem is solved by the MMA algorithm with the maximum change in ρ less than 1%as the stopping criteria if nothing else is stated.The flowchart of the proposed design method for patch metallic antenna design can be seen in Fig.6.

    5 Numerical examples

    In this section,the planar metallic antenna is designed based on its transmitting mode,and Fig.7 gives the design model. Parameter Vf=0.25,parameter p is set to 40 according to the above numerical tests,and the target frequencies are set to 370 and 420 MHz,Zmetalis set to 0 Ω/m2and Znon-metal is set to 108Ω/m2.A uniform distribution with ρi=0.25 for all ρi∈Ωdesis used as the initial configuration.The total number of design variables is 1680.The optimization problem is solved by a computer with four 2.80 GHz cores CPU and 4 GB RAM.

    The design result is obtained after40 iterations with about 7.3 minutes running time which is shown in Fig.8a,as can be seen,there are some of gray scale elements remaining in the design result which should be removed.By setting a threshold value ρ0for all the design variables with ρi≥ρ0equal one and all others equal zero,fully black and white design can be obtained.The post-processed result with ρ0=0.2 is shown in Fig.8b.The efficiency of the designs before and after post-processing show a good agreement as shown in Fig.9.

    Fig.7 The design model of a transmitting antenna

    Fig.8 Topology optimization of planar metallic antenna design based on the tangential interpolation function.a The design result.b The post-processed design result with ρ0=0.2

    Fig.9 Comparisons of the efficiency of the designed antennas before and after post-processing

    Fig.10 (Color online)Comparisons of the performances(η and S11) of the design result simulated by MoM and Ansoft HFSS

    It is necessary to claim that some corners of triangles (discretization elements)in Fig.8b touch sides of other triangles.In MoM analysis,there is no current flowing through these points,but in practice,there will be electrical contact.This point-connection feature is equivalent to that the relevant points are not connected in practice,which could be probably avoided by using an appropriate regularization method.In order to verify the effectiveness of the design result,the designed antenna is cross-verified by a commercial software(Ansoft HFSS)as shown in Fig.10,and the difference between the responses simulated by MoM and Ansoft HFSS is acceptable.

    6 Conclusions and future work

    In this paper,a methodology based on topology optimization for the design of planar metallic antennas through a gradient based optimization method is presented.A design parameterization associated with conductors and non-conductors suited for electromagnetic optimization problems involving MoM analysis has been built.The designs of planar metallic antennas are optimized for antenna efficiency improvement at the target frequency,and binary results can be obtained by setting a threshold value for all design variables meanwhile the responses of the designs before and after post-processing show a good agreement.In the future work,an appropriate regularization method(filtering method,perimeter constraint,or other methods)should be developed to ensure that solutions without point-connection feature can be obtained,and the efficiency improvement within a wide frequency sweep will be more actual.

    Acknowledgments This project was supported by the National Natural Science Foundation of China(Grants 11332004,11372063,and 11572073),111 Project(Grant B14013),and the Fundamental Research Funds for the Central Universities(Grant DUT15ZD101).

    References

    1.Aage,N.,Mortensen,N.,Sigmund,O.:Topology optimization of metallic devices for microwave applications.Int.J.Numer.Methods Eng.83,228–248(2010)

    2.Balanis,C.A.:Antenna Theory:Analysis and Design.Wiley,New York(2005)

    3.Bends?e,M.P.,Kikuchi,N.:Generating optimal topologies in structural design using a homogenization method.Comput.Methods Appl.Mech.Eng.71,197–224(1988)

    4.Bends?e,M.P.,Sigmund,O.:Topology Optimization:Theory, Methods and Applications.Springer,Berlin(2003)

    5.Gao,X.,Ma,H.:A modified model for concurrent topology optimization of structures and materials.Acta Mechanica Sinica 31, 890–898(2015)

    6.Deaton,J.D.,Grandhi,R.V.:A survey of structural and multidisciplinary continuum topology optimization:post 2000.Struct. Multidiscipl.Optim.49,1–38(2014)

    7.Borel,P.,Harp?th,A.,Frandsen,L.,et al.:Topology optimization and fabrication of photonic crystal structures.Optics Exp.12, 1996–2001(2004)

    8.Jensen,J.S.,Sigmund,O.:Systematic design of photonic crystal structures using topology optimization:low-loss waveguide bends. Appl.Phys.Lett.84,2022–2024(2004)

    9.Diaz,A.R.,Sigmund,O.:A topology optimization method for design of negative permeability metamaterials.Struct.Multidiscipl.Optim.41,163–177(2010)

    10.Kiziltas,G.,Kikuchi,N.,Volakis,J.,et al.:Topology optimization of dielectric substrates for filters and antennas using SIMP.Arch. Comput.Methods Eng.11,355–388(2004)

    11.Zhu,J.H.,Zhang,W.H.,Xia,L.:Topology optimization in aircraft and aerospace structures design.Arch.Comput.Methods Eng.(in press).doi:10.1007/s11831-015-9151-2

    12.Lin,Z.,Wang,X.,Ren,Y.:Topology optimization design of micromass sensors for maximizing detection sensitivity.Acta Mechanica Sinica 31,536–544(2015)

    13.Koulouridis,S.,Psychoudakis,D.,Volakis,J.L.:Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans.Antennas Propag.55,594–603(2007)

    14.Erentok,A.,Sigmund,O.:Topology optimization of subwavelength antennas.IEEE Trans.Antennas Propag.59,58–69 (2011)

    15.Hassan,E.,Wadbro,E.,Berggren,M.:Topology optimization of metallic antennas.IEEE Trans.Antennas Propag.62,2488–2500 (2014)

    16.Zhou,S.,Li,W.,Li,Q.:Level-set based topology optimization for electromagnetic dipole antenna design.J.Comput.Phys.229, 6915–6930(2010)

    17.Liu,S.,Wang,Q.,Gao,R.:A topology optimization method for design of small GPR antennas.Struct.Multidiscipl.Optim.50, 1165–1174(2014)

    18.Davidson,D.B.:Computational Electromagnetics for RF and Microwave Engineering.Cambridge University Press,Cambridge (2010)

    19.Svanberg,K.:The method of moving asymptotes-a new method for structural optimization.Int.J.Numer.Methods Eng.24,359–373 (1987)

    20.Harrington,R.F.,Harrington,J.L.:Field Computation by Moment Methods.Oxford University Press,Oxford(1996)

    21.Makarov,S.:Antenna and EM Modeling with MATLAB.Princeton University Press,Princeton(2002)

    22.Rao,S.M.,Wilton,D.R.,Glisson,A.W.:Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans.Antennas Propag.30, 409–418(1982)

    21 October 2015/Revised:15 April 2016/Accepted:3 May 2016/Published online:13 September 2016

    岛国在线观看网站| 亚洲av成人一区二区三| av不卡在线播放| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 日韩熟女老妇一区二区性免费视频| 亚洲黑人精品在线| 国产激情久久老熟女| 精品国产国语对白av| 国产亚洲一区二区精品| 国产一区二区三区在线臀色熟女 | 午夜影院日韩av| 国产欧美日韩精品亚洲av| 99精国产麻豆久久婷婷| 久9热在线精品视频| 黄色丝袜av网址大全| 91九色精品人成在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 中文字幕人妻熟女乱码| 窝窝影院91人妻| www日本在线高清视频| 亚洲av成人不卡在线观看播放网| 在线天堂中文资源库| 最新的欧美精品一区二区| 欧美日韩亚洲国产一区二区在线观看 | 夜夜躁狠狠躁天天躁| 下体分泌物呈黄色| 久久久精品免费免费高清| 精品免费久久久久久久清纯 | 色在线成人网| 叶爱在线成人免费视频播放| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| 不卡av一区二区三区| ponron亚洲| 久久狼人影院| 美女午夜性视频免费| 老司机深夜福利视频在线观看| 国产成人av激情在线播放| 麻豆av在线久日| 91成年电影在线观看| 午夜福利在线免费观看网站| 天堂√8在线中文| 日韩熟女老妇一区二区性免费视频| 国产有黄有色有爽视频| 亚洲黑人精品在线| 99热国产这里只有精品6| 黄色a级毛片大全视频| 少妇 在线观看| 一a级毛片在线观看| 极品教师在线免费播放| 日韩人妻精品一区2区三区| 天天操日日干夜夜撸| 国产精品一区二区在线观看99| 精品人妻熟女毛片av久久网站| 91成年电影在线观看| 夜夜爽天天搞| 99精品久久久久人妻精品| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 男女午夜视频在线观看| 成人亚洲精品一区在线观看| 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 国产伦人伦偷精品视频| av片东京热男人的天堂| 成人精品一区二区免费| 亚洲专区中文字幕在线| 亚洲九九香蕉| 国产激情久久老熟女| 成年人午夜在线观看视频| 久久狼人影院| 国产精华一区二区三区| 欧美大码av| 亚洲三区欧美一区| 午夜免费观看网址| 欧美亚洲 丝袜 人妻 在线| 国产高清videossex| av免费在线观看网站| av视频免费观看在线观看| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 天天躁日日躁夜夜躁夜夜| 精品人妻1区二区| 成在线人永久免费视频| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区 | 欧美日韩视频精品一区| 我的亚洲天堂| 婷婷精品国产亚洲av在线 | 9热在线视频观看99| 亚洲国产看品久久| 国产亚洲精品久久久久5区| 国产单亲对白刺激| 免费在线观看视频国产中文字幕亚洲| 80岁老熟妇乱子伦牲交| 99香蕉大伊视频| 亚洲色图综合在线观看| 国产精品综合久久久久久久免费 | 国产成人欧美在线观看 | 99精国产麻豆久久婷婷| 69精品国产乱码久久久| 久久久久国产一级毛片高清牌| 首页视频小说图片口味搜索| 一区二区三区精品91| 午夜福利一区二区在线看| 国产一区有黄有色的免费视频| 一区二区日韩欧美中文字幕| 亚洲av成人av| 欧美日韩亚洲综合一区二区三区_| 国产伦人伦偷精品视频| 男人操女人黄网站| 18禁裸乳无遮挡动漫免费视频| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 中文亚洲av片在线观看爽 | 中文字幕人妻熟女乱码| svipshipincom国产片| 成人永久免费在线观看视频| 纯流量卡能插随身wifi吗| 亚洲,欧美精品.| 亚洲国产精品一区二区三区在线| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 免费黄频网站在线观看国产| 桃红色精品国产亚洲av| 久久久久久久久免费视频了| videos熟女内射| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 美女视频免费永久观看网站| 精品人妻在线不人妻| 99国产综合亚洲精品| 久久精品亚洲av国产电影网| 婷婷丁香在线五月| 一级毛片精品| 亚洲欧美日韩另类电影网站| 久久狼人影院| 亚洲精品中文字幕一二三四区| 精品一区二区三区四区五区乱码| 国产99久久九九免费精品| 国产视频一区二区在线看| 91精品三级在线观看| 精品国产一区二区久久| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲| 中亚洲国语对白在线视频| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| 久久99一区二区三区| 欧美国产精品一级二级三级| av线在线观看网站| 中文字幕人妻丝袜制服| 国产精品免费大片| 国产亚洲av高清不卡| 日韩三级视频一区二区三区| 欧美一级毛片孕妇| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 成人三级做爰电影| 建设人人有责人人尽责人人享有的| 99在线人妻在线中文字幕 | 国产高清激情床上av| 国产精品成人在线| 丝袜美足系列| 久久亚洲精品不卡| cao死你这个sao货| 久久久久国产一级毛片高清牌| www.精华液| 午夜免费鲁丝| netflix在线观看网站| 飞空精品影院首页| 高清视频免费观看一区二区| 久久精品成人免费网站| 午夜成年电影在线免费观看| 手机成人av网站| 国产又爽黄色视频| 又大又爽又粗| 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 亚洲专区字幕在线| 人妻 亚洲 视频| 国产欧美日韩一区二区精品| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 中文字幕人妻熟女乱码| 一级毛片精品| 一区二区三区激情视频| 九色亚洲精品在线播放| 国产亚洲av高清不卡| 女人被躁到高潮嗷嗷叫费观| 国产在线观看jvid| 黄片小视频在线播放| 国产有黄有色有爽视频| 十八禁人妻一区二区| e午夜精品久久久久久久| 成人精品一区二区免费| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 免费看十八禁软件| 91老司机精品| 日本黄色视频三级网站网址 | 国产成人免费无遮挡视频| 免费少妇av软件| 久久性视频一级片| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 少妇粗大呻吟视频| а√天堂www在线а√下载 | 亚洲aⅴ乱码一区二区在线播放 | 十八禁高潮呻吟视频| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频 | 乱人伦中国视频| 老鸭窝网址在线观看| 中文字幕av电影在线播放| 一a级毛片在线观看| 一级作爱视频免费观看| 热99国产精品久久久久久7| 亚洲,欧美精品.| 欧美黄色淫秽网站| 国产亚洲av高清不卡| 亚洲性夜色夜夜综合| 欧美一级毛片孕妇| 欧美人与性动交α欧美软件| 19禁男女啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| 丝袜美足系列| 99在线人妻在线中文字幕 | 捣出白浆h1v1| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| 久久热在线av| 国产一区有黄有色的免费视频| 欧美色视频一区免费| 一边摸一边抽搐一进一出视频| 成人免费观看视频高清| 夫妻午夜视频| 在线视频色国产色| 后天国语完整版免费观看| 国产精品国产高清国产av | 午夜视频精品福利| 亚洲欧美一区二区三区黑人| 啦啦啦在线免费观看视频4| 亚洲国产看品久久| 美女 人体艺术 gogo| 午夜两性在线视频| 天堂中文最新版在线下载| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线 | ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 欧美日韩国产mv在线观看视频| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| ponron亚洲| 18在线观看网站| 一本综合久久免费| 捣出白浆h1v1| 人人澡人人妻人| 啦啦啦免费观看视频1| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女 | 亚洲精品美女久久av网站| 午夜久久久在线观看| 国产男靠女视频免费网站| 欧美成狂野欧美在线观看| 欧美不卡视频在线免费观看 | 三级毛片av免费| 少妇 在线观看| 亚洲精品国产精品久久久不卡| 视频区图区小说| 亚洲免费av在线视频| 久久久国产一区二区| 人人澡人人妻人| 亚洲午夜精品一区,二区,三区| av天堂在线播放| videosex国产| 人成视频在线观看免费观看| 99久久国产精品久久久| av电影中文网址| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美网| 午夜福利欧美成人| 国产精品自产拍在线观看55亚洲 | 美国免费a级毛片| 91成人精品电影| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区| 免费在线观看日本一区| 欧美日韩亚洲高清精品| 久久亚洲精品不卡| 亚洲精华国产精华精| 精品久久久久久久久久免费视频 | 国产亚洲av高清不卡| 国产一区二区激情短视频| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| 亚洲av日韩精品久久久久久密| 国产极品粉嫩免费观看在线| 免费在线观看亚洲国产| 欧洲精品卡2卡3卡4卡5卡区| 黄色a级毛片大全视频| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 欧洲精品卡2卡3卡4卡5卡区| 超碰97精品在线观看| 国产免费现黄频在线看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品合色在线| 欧美黑人欧美精品刺激| 久久久精品国产亚洲av高清涩受| 757午夜福利合集在线观看| 亚洲av美国av| 精品久久久久久电影网| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 99热国产这里只有精品6| 欧美精品啪啪一区二区三区| 精品乱码久久久久久99久播| 一级作爱视频免费观看| 亚洲中文字幕日韩| 1024视频免费在线观看| 欧美日韩av久久| 男女免费视频国产| 咕卡用的链子| 大香蕉久久网| 免费观看精品视频网站| 国产91精品成人一区二区三区| 国产激情久久老熟女| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 好男人电影高清在线观看| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 久久精品亚洲av国产电影网| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 欧美日韩瑟瑟在线播放| 国产有黄有色有爽视频| 亚洲午夜理论影院| 国产三级黄色录像| 啦啦啦在线免费观看视频4| 十八禁网站免费在线| 国产精品一区二区免费欧美| 亚洲av成人av| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 国产片内射在线| 精品一品国产午夜福利视频| www.精华液| 一区福利在线观看| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 国产精品亚洲av一区麻豆| 男女午夜视频在线观看| 性少妇av在线| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 久久香蕉激情| 黑人巨大精品欧美一区二区蜜桃| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线 | 精品一区二区三卡| 国产单亲对白刺激| 亚洲国产毛片av蜜桃av| 成年女人毛片免费观看观看9 | 久久天躁狠狠躁夜夜2o2o| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 777久久人妻少妇嫩草av网站| 亚洲av熟女| 欧美性长视频在线观看| 欧美日韩乱码在线| 超碰成人久久| 天天操日日干夜夜撸| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载 | 一级作爱视频免费观看| ponron亚洲| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 国产麻豆69| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看 | 一区福利在线观看| 一进一出抽搐动态| 亚洲五月色婷婷综合| 精品免费久久久久久久清纯 | 亚洲中文av在线| 中文字幕最新亚洲高清| 久久国产乱子伦精品免费另类| 波多野结衣一区麻豆| 水蜜桃什么品种好| 久久中文字幕一级| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 成人特级黄色片久久久久久久| 一夜夜www| 国精品久久久久久国模美| 在线永久观看黄色视频| 久久久久视频综合| 好男人电影高清在线观看| 国产精品成人在线| 欧美精品亚洲一区二区| 丝袜美腿诱惑在线| 国精品久久久久久国模美| 99热只有精品国产| av网站在线播放免费| 91成人精品电影| 无人区码免费观看不卡| 欧美亚洲日本最大视频资源| 久久亚洲真实| 欧美日韩国产mv在线观看视频| 亚洲精品国产精品久久久不卡| 国产在线精品亚洲第一网站| 热99久久久久精品小说推荐| 午夜成年电影在线免费观看| 亚洲av美国av| 热re99久久国产66热| 国产精品av久久久久免费| 老司机亚洲免费影院| 天堂中文最新版在线下载| 热re99久久国产66热| 黄片小视频在线播放| 婷婷丁香在线五月| 18禁观看日本| 在线看a的网站| 国产精品一区二区在线不卡| 每晚都被弄得嗷嗷叫到高潮| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美日韩在线播放| 久久久久久久精品吃奶| 亚洲国产欧美网| 欧美激情 高清一区二区三区| 精品午夜福利视频在线观看一区| 日韩制服丝袜自拍偷拍| 亚洲色图av天堂| 国内毛片毛片毛片毛片毛片| 精品第一国产精品| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 成人国产一区最新在线观看| 一区在线观看完整版| 国产视频一区二区在线看| 18禁美女被吸乳视频| 啦啦啦视频在线资源免费观看| 亚洲 国产 在线| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| 美女午夜性视频免费| 人成视频在线观看免费观看| 国产成+人综合+亚洲专区| 香蕉丝袜av| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 一边摸一边抽搐一进一出视频| 桃红色精品国产亚洲av| av线在线观看网站| www.精华液| 十八禁网站免费在线| 搡老熟女国产l中国老女人| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 久久人妻av系列| 人人妻人人澡人人爽人人夜夜| 免费日韩欧美在线观看| 亚洲五月婷婷丁香| 午夜免费成人在线视频| 男女高潮啪啪啪动态图| 日韩熟女老妇一区二区性免费视频| 欧美国产精品va在线观看不卡| 超色免费av| 99久久人妻综合| 午夜久久久在线观看| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美软件| 国产精华一区二区三区| 男女午夜视频在线观看| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 欧美日韩精品网址| 在线观看日韩欧美| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 国产一卡二卡三卡精品| 午夜91福利影院| 国产精品 国内视频| 午夜精品国产一区二区电影| 亚洲avbb在线观看| 欧美激情极品国产一区二区三区| 久久久久国产精品人妻aⅴ院 | 丰满饥渴人妻一区二区三| 免费在线观看亚洲国产| 午夜福利一区二区在线看| av国产精品久久久久影院| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 亚洲欧美激情综合另类| 午夜免费观看网址| 韩国av一区二区三区四区| av超薄肉色丝袜交足视频| 黄色 视频免费看| 国产精品亚洲av一区麻豆| 日韩欧美三级三区| 91在线观看av| 一边摸一边抽搐一进一小说 | 777米奇影视久久| 亚洲视频免费观看视频| 黄色a级毛片大全视频| 欧美日本中文国产一区发布| 免费在线观看日本一区| 高清视频免费观看一区二区| 人妻丰满熟妇av一区二区三区 | 黄色视频,在线免费观看| 91老司机精品| av线在线观看网站| 69av精品久久久久久| 窝窝影院91人妻| av在线播放免费不卡| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 国产av一区二区精品久久| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 国产高清激情床上av| 亚洲成a人片在线一区二区| 国产精品久久久久久精品古装| 夜夜爽天天搞| 国产免费男女视频| 视频区欧美日本亚洲| 久久影院123| 日韩欧美一区视频在线观看| 欧美丝袜亚洲另类 | 久久天堂一区二区三区四区| av一本久久久久| 99精国产麻豆久久婷婷| 999久久久精品免费观看国产| 欧美成人免费av一区二区三区 | 久久久久久久久免费视频了| 久久久国产成人精品二区 | 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看| 色尼玛亚洲综合影院| 午夜福利在线免费观看网站| 日本黄色视频三级网站网址 | 中文字幕人妻丝袜一区二区| 又黄又爽又免费观看的视频| 久久久精品国产亚洲av高清涩受| 亚洲,欧美精品.| 老司机亚洲免费影院| 国产极品粉嫩免费观看在线| 1024香蕉在线观看| 热99国产精品久久久久久7| 国产精品美女特级片免费视频播放器 | 欧美 亚洲 国产 日韩一| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 精品久久久精品久久久| 久9热在线精品视频| av视频免费观看在线观看| 亚洲一区二区三区不卡视频| 波多野结衣一区麻豆| 两个人免费观看高清视频| 天天躁日日躁夜夜躁夜夜| 波多野结衣一区麻豆| av视频免费观看在线观看| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 80岁老熟妇乱子伦牲交| 国产成+人综合+亚洲专区| 欧美日韩福利视频一区二区| 1024香蕉在线观看| 岛国在线观看网站| 极品人妻少妇av视频| 亚洲熟妇中文字幕五十中出 | 91麻豆精品激情在线观看国产 | 午夜福利乱码中文字幕| 好看av亚洲va欧美ⅴa在| 99精品久久久久人妻精品| 国产91精品成人一区二区三区| 看片在线看免费视频|