• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A semi-analytical approach for calculating the equilibrium structure and radial breathing mode frequency of single-walled carbon nanotubes

    2016-12-05 07:40:02GongThompsonLi
    Acta Mechanica Sinica 2016年6期

    J.Gong·L.Thompson·G.Li

    A semi-analytical approach for calculating the equilibrium structure and radial breathing mode frequency of single-walled carbon nanotubes

    J.Gong1·L.Thompson1·G.Li1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    A semi-analytical model for determining the equilibrium configuration and the radial breathing mode(RBM) frequency of single-wall carbon nanotubes(CNTs)is presented.By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent variables.A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy.With the equilibrium configuration obtained,the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs.The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics(MD)and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilibrium structure and radial breathing mode frequency of CNTs.

    Carbon nanotubes·Equilibrium structure· Radial breathing mode frequency

    DOI 10.1007/s10409-016-0582-2

    1 Introduction

    In addition to applications in many other areas,carbon nanotubes(CNTs)have shown great potential as a structural material due to their outstanding mechanical properties[1,2]. The mechanical behavior of CNTs have been modeled using both atomistic and continuum methods.While more accurate,atomistic level methods such as ab initio and moleculardynamics(MD)methods are limited to small CNT structures due to their high computational cost.In this regard, continuum level models,such as frame[3–5],shell[6–9],and beam[10,11]models,have been proposed for efficient mechanical analysis of large CNT structures and systems[12].As these continuum models treat CNT as a linear elastic material,equivalent elastic constants such as Young’s modulus and Poisson’s ratio must be determined. Contrary to earlier belief that the elastic constants are insensitive to CNT’s radius and chirality,more recent results have shown otherwise[12].Ab initio calculations indicated that the CNT elastic properties change with different chiralities[13].Results from separate studies showed that the Young’s modulus varies with CNT’s radius,especially when it is small[3,14–16].The study by Wang[17]showed that the bending modulus of CNTs depends on their radius and chirality.The study by Huang et al.[18]further demonstrated theoretically the variation of elastic constants with radius and chirality.Therefore,obtaining equilibrium tube radius,especially for small CNTs,is critical in the continuum models predicting the mechanical behavior of CNTs.

    Other than the elastic properties,the dynamic behavior of CNTs is also geometry dependent.A special vibrational mode of CNTs,called the radial breathing mode(RBM),has attracted much attention recently as it can serve as the“fingerprint”of CNTs[19].In Raman spectroscopy of CNTs,there are four Raman bands that are strongly resonance enhanced. One is the RBM,in which all carbon atoms are vibrating along the radial direction[20].It has been shown that the RBM frequency is highly dependent on the tube radius[21], leading to the idea that it can be used to identify the radius and chirality of a given CNT sample.However,a CNT’s radius varies with its chirality and CNTs with different chiralities may have similar radii.The effectiveness of the RBM fre-quency based CNT identification relies on an accurate model describing the relations of the radius,chirality,and RBM frequency of CNTs.

    Many models have been developed for obtaining the equilibrium structure of CNTs.A popular approach is the simple rolling approach.There are two rolling methods in the simple rolling approach,namely cylinder model and skeleton model(or ball-and-stick model)[22].The cylinder model rolls a graphene sheet into a CNT like a piece of paper.This method assumes that the carbon atoms and bonds are all on the cylindrical surface after rolling,which implies curved bonds in the CNT.To eliminate this artificial effect,the skeleton model assumes that the bonds remain straight with fixed length during the rolling process.However,in actual cases, due to the symmetry breaking in the rolling process,both the angle and length of the bonds are adjusted to reach the minimum potential energy of CNT.Therefore,the assumptions in the simple rolling models are not accurate[13,22],especially for CNTs with small radius.The interactions between the atoms must be accounted for in the determination of a CNT’s equilibrium structure.In this regard,MD or first principle simulations haven been employed to relax the structure of CNT.The balanced atomic structure can be obtained by minimizing the potential energy of CNTs.While these atomistic methods are more accurate than the simple rolling approach,their computational cost is typically very high. To obtain efficiently and accurately the equilibrium geometry of CNTs,Jiang et al.[23]developed a lattice mechanics model with five independent lengths representing the geometry of a CNT.However,since the potential energy cannot be explicitly expressed in terms of these five length variables,their method still largely relies on a numerical solution of the nonlinear system.For the RBM frequency analysis, several models have been proposed to calculate the relation between the RBM frequency and the tube radius[19].Most of the resent results are based on the tight-binding approximation[24,25],zone folding force constant model[26,27], ab initio calculations[20,22,28],and molecular structural mechanics models(i.e.,stick-spiral models)[29–31],which consider the energies from bond stretching,bond twisting, and bond angle variation separately.These models are either complex and computationally expensive or less accurate due to neglecting the multi-body interactions among the carbon atoms.

    In this work,we present a semi-analytical model for obtaining the equilibrium geometry and RBM frequencies of single-wall CNTs.The model employs two bond lengths along with three bond angles as independent variables,which enables analytical differentiation of interatomic potential functions.With the analytical expressions of the derivatives, the equilibrium geometry of CNTs can be obtained by using an energy minimization procedure,which is performed by using the conjugate gradient optimization method.Having obtained the equilibrium geometry of the CNTs,the RBM frequencies can be calculated analytically for a given multibody potential,which,to the authors’best knowledge,has not been done previously in the literature.While the model is general,extremely efficient,and applicable to different multi body potentials,its effectiveness is demonstrated by using the reactive empirical bond order(REBO)potential[32].

    The paper is organized as follows.Section 2 describes the general method for calculating the equilibrium configuration of CNTs.Section 3 illustrates the analytical calculation of RBM frequencies.The radius and RBM results are presented and discussed in Sect.4.Finally,the conclusions are given in Sect.5.

    2 Semi-analytical model for calculating equilibrium configuration of CNTs

    2.1 CNT geometry

    A sufficiently long single-wall CNT with open ends can be regarded as a pattern of repeating two-atom unit cells except for a small region close to the ends.Moreover,in each unit cell,there is a so-called C2-axis rotational symmetry[22],as shown in Fig.1.Because of the C2-axis rotational symmetry, a unit cell can be defined by one atom with its three nearest neighbors.It is often more convenient to represent the atom positions by using bond lengths and angles.Therefore,as shown in Fig.1,given the position of any atom with the lengths(denoted as r)and angles(denoted as θ)of its three bonds,the entire structure of a CNT can be determined.

    2.2 Geometric mapping

    Although the skeleton model does not provide an accurate prediction of CNT radius,it offers a starting point to represent different types of CNTs.The skeleton model assumes that each C–C bond behaves as a rigid rod connecting two carbon atoms on the cylindrical surface.The mapping between a CNT and its corresponding flat graphene is illustrated in Fig.2.As shown in Fig.2a,the bold dashed line represents

    Fig.1 CNT:unit cell and C2-axis symmetry the chiral vector direction(i.e.the rolling direction)of the 2-D graphene.The bond angles,α1,α2,and α3,are defined with respect to the chiral vector.The positions of the three nearest neighbors of the center atom a are defined by the horizontal and vertical distances,l and h,from the center atom.Figure 2b shows the 3-D positions of the four atoms after they are rolled into a CNT.The black circle represents the cross section.The positions of the three neighbor atoms are also defined by the horizontal and vertical distances from the center atom.An example of a chiral(or rolling)vector (4,1)for rolling into a(4,1)CNT is shown in Fig.2c.Since in the simple rolling step,the bond lengths rj,and the distances hj=rjsinαj,lj=rjcosαjremain the same,it is obvious that the three chord lengths in Fig.2b are equal to l1,l2,and l3,respectively.In the simple rolling model,given the chiral vector(N,M),the radius of a carbon nanotube can be determined by:

    where ac?cis the C–C bond length in a 2-D graphene sheet. Because of the asymmetric inter-atomic interactions between the carbon atoms,the bond lengths and angles are no longer the same in a CNT.For this reason,further analysis is necessary to determine the equilibrium bond lengths and angles.

    As shown in Fig.2b,the central angles of the chords in the cross-section circle are

    In order to for ma closed cylindrical surface,atom a and atom a′in Fig.2c must be the same atom.It is easy to show that two geometric conditions must be satisfied:(1)the summation of the central angles of all corresponding chords(i.e.,the βs)should be 2π and(2)the distance between atom a′and the chiral vector should be zero.Mathematically,the first condition leads to

    Fig.2 Geometric mapping of a CNT.a Carbon atoms in 2-D graphene.b Atoms mapped onto a CNT.c Rolling of a(4,1)CNT

    where M and N represent the chirality of a(M,N)CNT. The second condition can be written as

    which gives

    The angle between bonds j and k,θjk,can then be calculated by(see Appendix 1 for details)

    where

    With the graphene-to-CNT mapping described above,the original potential energy function of a CNT unit cell, w0(r1,r2,r3,θ12,θ23,θ13),can be rewritten in terms of seven variables:w0=w(R,r1,r2,r3,α1,α2,α3).Then,the bond angles,θjk,can be replaced by R,r1,r2,r3,α1,α2,α3following Eq.(6).Furthermore,R is an implicit function of r1,r2,r3,α1,α2,α3,according to Eq.(3).Equation(5) shows that r3can be expressed in terms r1,r2,and the angles. Therefore,the potential energy can be expressed in terms of five independent variables as

    where the variable vector x={r1,r2,α1,α2,α3}.

    2.3 Equilibrium structural configuration

    To determine the actual radius of the CNT,it is necessary to calculate the equilibrium configuration of the carbon atoms.An energy minimization procedure using a line search method is adopted to determine the equilibrium configuration.Iteratively,a line search method determines a search direction and then performs single variable minimization to obtain the minimum position along the search direction.In this work,in light of the general form and typical behavior of C–C interatomic potentials,a first order conjugate gradient method[35]is employed to determine the search direction, and the Powell method[36]is used to carry out the single variable optimization along the search direction.

    The conjugate gradient method starts with a steepest descent calculation.The initial bond lengths are set to beand the initial angles are given by

    Therefore,the starting point of the optimization is x0=.The gradient of the potential energy function can be obtained using

    where

    The derivatives of cosθjk,j,k=1,2,3,j/=k can be obtained from Eq.(6)

    The derivatives of R and r3can be obtained from Eqs.(3) and(5)as

    where

    The general procedure of the energy minimization is described as follows.For a given step k(k=0,1,2,...,K?

    1,where K is the number of variables),the objective is to compute a new position vectortoward the minimum point of the potential function.For k=0,x0is the initial position vector given by.Next, a single variable objective functionwhereis minimized along the C0direction.Assuminggives the minimum of,the position vector x is updated asFor k>0, Ckis obtained by using the conjugation constraint,which requires that the new search direction be orthogonal to the previous search directions:

    where Ck?1is the search direction in the previous step,gkis the negative gradient of the potential function

    and

    Once the search direction is computed,the next position vector is determined by minimizing the potential energy function along the search direction,i.e.

    Note that k<K since there can only be as many as K vectors in an orthogonal set in a K-dimension space.If the algorithm does not converge within K steps,the procedure is started over again by taking xKas the new x0.The iterations continue until the convergence criterion is met.

    In this work,the Powell method[36]is employed to solve the single variable minimization problem and obtain ηmin. The Powell method approximates the actual function by using a quadratic function.The quadratic function is determined by fitting the actual function near its minimum.As most of the interatomic potential energy functions are smooth near the equilibrium position,performance of the quadratic approximation is found to be satisfactory.To determine the quadratic function,the potential function is sampled at three different locations.The first two are given byandA common choice of the step size is δη=0.5.The third point is obtained based on the potential energy function values at the two ends as

    where

    The location of the minimum of f(η)is obtained as

    Note that the second term on the right hand side of Eq. (24)is used to preventfrom falling too far from the current interval.Onceis obtained,the convergence criteria are checked.The minimum is found if both

    where∈fand∈ηare the termination tolerances for Wsand η,respectively.If any of the convergence criteria are not satisfied,a new iteration starts.Ifis updated to beand a new set of threepoints are determined.The new set is selected fromand the old set,such that it consists ofand two η values that are closest toWith the new η point set,the procedure from Eqs.(22)–(24)is repeated to calculate.The iterations continue until the convergence criteria are satisfied and the minimum of Ws(η)is found.

    The iterative procedure continues until the negative gradient‖gk‖<∈g,where∈gis the global convergence tolerance. The CNT potential energy minimization procedure is summarized in Algorithm 1.

    3 RBM frequency

    Algorithm 1 Algorithm for CNT potential energy minimization

    In this work,having obtained the equilibrium structural configurations of CNTs as described in Sect.2,the RBM frequencies are further calculated using the multi-body inter atomic potential energy of the carbon atoms.The primary assumption is that,when a CNT vibrates in RBM,all atoms move only in radial direction and remain on a cylindrical surface as shown in Fig.3.That is,the mode coupling effect is negligible[22,28].

    Based on this assumption,the relation between bond lengths,bond angles,and tube radius in RBM can be established as

    where ri,αi,li,and hi,i=1,2,3,are defined in Sect.2.1. The superscript 0 denotes the equilibrium configuration.rican be explicitly expressed as

    Fig.3 RBM vibration of CNTs

    By using Eq.(27),Eq.(6)can be rewritten as

    Note that,S,H,and T are all independent of R.Thus,the 1-st and 2-nd order derivatives of riand cosθjkwith respect to R are derived as follows

    where w0is the potential energy per,and i,j,k,l=1,2,or 3.The RBM frequency is given by

    4 Results and discussion

    To demonstrate the performance of the model,the semianalytical approach is applied to the REBO potential[32]tocalculate the equilibrium configuration and RBM frequency of various CNTs.The REBO potential has been widely used in MD and lattice dynamics(LD)simulations of CNTs.It should be noted that while the detailed formulation for the REBO potential is presented in Appendix 2,the application of the method to other C–C interatomic potentials is straightforward by using the approach and following the steps listed in Algorithm 1.

    4.1 Radius of CNTs

    In this section,the radii of a set of CNTs with different chiralities are computed by using the semi-analytical model.For the purpose of model validation,the computed results are compared with those obtained from MD simulations.The MD simulations are preformed using the lammps and gromace(LAMMPS)package.The REBO potential with the parameters given in Table A1(Appendix 2)is adopted in the semi-analytical calculation and MD simulations.In the test cases,the CNT chiralities varies from(4,0)to(8,4).In MD simulations,the length of the CNTs is set to be around 20 nm.It is verified that further increasing the length does not change the results. The MD simulation box size is set to be 20 nm×20 nm in the transverse(cross-sectional)directions and 40 nm in the longitudinal direction with free boundary conditions applied.The total linear momentum and angular momentum are fixed to be zero.With a time step of 0.2 fs,the system is initialized at5 Kand then the temperature is reduced to 0.01 K under the canonical ensemble(NVT) with 3×105time steps.A drag value of 0.5 is applied to increase damping.The purpose of this drag value is to damp unwanted pressure oscillation when applying a Nose/Hoover thermostat.The tube radius is calculated as the average distance between carbon atoms and the tube axis.Bond angles, bond lengths,and the radii are averaged on atoms within 20%length at the tube center to reduce influence of the free ends.

    Bond length,bond angle and radius results of the CNTs obtained by using the semi-analytical method and MD simulations are compared in Tables 1,2,and 3.It is clear that the results obtained from the two methods match very well. The maximum difference is less than 0.2%.Results show that the C–C bond lengths increase as the radius decreases, and the difference between the bond lengths r1,r2,and r3increases as well.For the smallest(4,0)nanotube,the largest bond length is 1.451 ?(1 ?=0.1 nm),which is 2%larger than the bond length in graphene,1.420 ?.The variation of bond lengths is due to the change of bond angles.Rolling a graphene sheet into a tube makes the angles between bonds smaller than 2π/3,which increases the potential energy.This excess energy is then partially relaxed by an expansion of the atomic lattice structure,leading to elongation of the bonds.Therefore,the smaller the radius,the smaller the angles,and the larger the expansion.This conclusion is consistent with previous observations reported in Ref.[13].

    Table 4 further compares the radius results with those obtained from the simple rolling model and two different ab initio calculations.It is shown that the semi-analytical model with REBO potential gives nearly identical results to the MD simulations,but with much less computational cost. The error of the simple rolling model is obvious.As shown on Fig.4,the relative difference between the relaxed radius and the simple rolling radius R0increases as the radius decreases. The results indicate that the simple rolling model is inappropriate in determining the equilibrium configuration of CNTs, especially for nanotubes with small radius.For example,for the(4,0)nanotube,we obtain a radius that is 9%greater than R0.Furthermore,it is shown that the chirality play an important role on the results.The armchair CNTs show smaller relative errors than the zigzag CNTs.For other chiral nan-otubes,the radius error resides within the zone between the zigzag and armchair CNTs.It is observed that the orientation of the unit cells determines how the bond angles are affected by rolling,which results in different radius expansion for different chiralities.It should be noted that there is a small difference between the semi-analytical model andab initio results.This is due to the difference between the REBO potential employed in the semi-analytical model and the electron density functionals used in the ab initio calculations.

    Table 1 Bond lengths,bond angles,and radius of zigzag CNTs

    Table 2 Bond lengths,bond angles,and radius of armchair CNTs

    Table 3 Bond lengths,bond angles,and radius of chiral CNTs

    Table 4 Comparison of radius results obtained from different methods

    Fig.4 Percentage difference between the simple rolling radius R0and the radii calculated from the semi-analytical,MD,and ab initio models

    Fig.5 RBM frequencies(Hz/speed of light)of CNTs.The two ab initio results(ab initio 1[22]and 3[28])are obtained from the literature

    4.2 RBM frequency of CNTs

    Having obtained the equilibrium structure of the CNTs,the RBM frequencies are calculated as described in Sect.3.Figure 5 shows the RBM frequencies of a variety of CNTs calculated by using the semi-analytical,simple rolling,ab initio approaches,as well as a fitted analytical model[25]. For the sake of clarity,the calculated data points for narrow CNTs are enlarged and displayed on the right side of Fig. 5.The REBO potential with the parameters given in Appendix 2 is used in the semi-analytical approach.As shown in Fig.5,significant differences in the results are observed for narrow CNTs with radius smaller than 2.6 ?.The difference between the semi-analytical and simple rolling approaches is largely due to the inaccurate geometry properties(radius, bond lengths,and angles)given by the simple rolling model. The error in these geometry properties is further enlarged in the RBM frequency results due to the high sensitivity of the force constants(second derivatives of the interatomic potential)to the tube geometry.Figure 5(right)shows that such error in the simple rolling model results is more than 20%for the(4,0)CNT.The difference between the semianalytical and ab initio results stems from the difference in their physical description of the interatomic interactions (i.e.,interatomic potentials vs electron density functionals). It should be noted that the results from“ab initio 3”[28]are based on tube geometries obtained from the simple rolling model.Finally,while Fig.5 shows that the differences in the RBM frequency results from the different models become negligible for tubes with radius larger than 4 ?,it is worth pointing out that for CNTs of larger sizes,the semi-analytical approach is orders of magnitude faster than the lattice dynamics,MD,and ab initio methods.

    5 Conclusions

    In this work,a semi-analytical unconstrained energy optimization model with five independent variables for determining the equilibrium configuration and the RBM frequency of single-wall CNTs is presented.For demonstration purpose, the semi-analytical model is applied to the REBO potential for the calculation of the radii of various CNTs.It is shown that with a negligible computational cost,the semianalytical model can reproduce the results obtained from MD simulations and match well with the results obtained from ab initio calculations.From the radius and RBM frequency results,it is shown that the simple rolling model is inappropriate in determining the equilibrium configuration of CNTs, especially for nanotubes with small radius.While the RBM frequency results obtained from the semi-analytical approach match reasonably well the ab initio results,differences are observed for CNTs with radius smaller than 2.6 ?.The discrepancy is due to the different underlying physical models of the two approaches.As the semi-analytical approach is independent of the potential energy functions,more accurate results may be obtained with other improved potential energy functions.

    Acknowledgments The project was supported by the National Science Foundation(Grant CBET-0955096).

    Appendix 1:Bond angle calculation

    We obtain

    Fig.A1 Bond angle calculation

    Recalling Eq.(2),we have

    Substituting Eq.(A.3)with hj=rjsinαjand lj=rjcosαjinto Eq.(A.2),we have

    Appendix 2:REBO potential and its derivatives

    The general form of the REBO potential energy is given by [32]

    where VR(rab)and VA(rab)are repulsive and attractive energy between atom a and atom b,respectively.is the multi-body coupling modification term:In this work,due to the C2-axis rotational symmetry,bab=bba.Then the potential energy of a unit cell containing only one atom can be expressed using the bond indexes as

    where j=1,2,3 are the indexes of three bonds surrounding an atom.The terms in Eq.(A.6)are given by[32]

    whereθjkis the angle between bond j and bond k.The cutoff function fc(r)is defined as

    and G(cosθjk)is an empirical 6-order spline function.For C–C bonds,G(cosθ)is given by[37]

    The constant parameters Q,A,α,Bn,βn,R1,and R2are listed in Table A1[23].

    Table A1 Parameters for VRand VA

    where

    References

    1.Baughman,R.H.,Zakhidov,A.A.,de Heer,W.A.:Carbon nanotubes-the route toward applications.Science 297,787–792 (2002)

    2.Treacy,M.M.J.,Ebbesen,T.W.,Gibson,J.M.:Exceptionally high young’s modulus observed for individual carbon nanotubes.Nature 381,678–680(1996)

    3.Li,C.,Chou,T.W.:A structural mechanics approach for the analysis of carbon nanotubes.Int.J.Solids Struct.40,2487–2499(2003)

    4.Odegard,G.M.,Gates,T.S.,Nicholson,L.M.:Equivalent-continuum modeling of nano-structured materials.Compos.Sci. Technol.62,1869–1880(2002)

    5.Tserpes,K.I.,Papanikos,P.:Finite element modeling of singlewalled carbon nanotubes.Compos.Part B 36,468–477(2005)

    6.Yakobson,B.I.,Brabec,C.J.,Bernholc,J.:Nanomechanics of carbon tubes:instabilities beyond linear response.Phys.Rev.Lett.76, 2511(1996)

    7.Pantano,A.,Parks,D.M.,Boyce,M.C.:Mechanics of deformation of single-and multi-wall carbon nanotubes.J.Mech.Phys.Solids 52,789–821(2004)

    8.Hu,Y.G.,Liew,K.M.,Wang,Q.,et al.:Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes.J.Mech.Phys.Solids 56,3475–3485(2008)

    9.Jefferson,Z.,Zheng,Q.S.,Wang,L.F.,et al.:Mechanical properties of single-walled carbon nanotube bundles as bulk materials.J. Mech.Phys.Solids 53,123–142(2005)

    10.Wang,Q.:Wave propagation in carbon nanotubes via nonlocal continuum mechanics.J.Appl.Phys.98,124301(2005)

    11.Liu,J.Z.,Zheng,Q.,Jiang,Q.:Effect of a rippling mode on resonances of carbon nanotubes.Phys.Rev.Lett.86,4843(2001)

    12.Qian,D.,Wagner,G.J.,Liu,W.K.,et al.:Mechanics of carbon nanotubes.Appl.Mech.Rev.55,495–533(2002)

    13.Sánchez-Portal,D.,Artacho,E.,Soler,J.M.,et al.:Ab initio structural,elastic,and vibrational properties of carbon nanotubes.Phys. Rev.B 59,12678(1999)

    14.Vaccarini,L.,Goze,C.,Henrard,L.,et al.:Mechanical and electronic properties of carbon and boron-nitride nanotubes.Carbon 38,1681–1690(2000)

    15.Chang,T.,Gao,H.:Size-dependent elastic properties of a singlewalled carbon nanotube via a molecular mechanics model.J.Mech. Phys.Solids 51,1059–1074(2003)

    16.Wang,L.,Zheng,Q.,Liu,J.Z.,et al.:Size dependence of the thinshell model for carbon nanotubes.Phys.Rev.Lett.95,105501 (2005)

    17.Wang,Q.:Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes.Int.J.Solids Struct.41, 5451–5461(2004)

    18.Huang,Y.,Wu,J.,Hwang,K.C.:Thickness of graphene and singlewall carbon nanotubes.Phys.Rev.B 74,245413(2006)

    19.Ghavanloo,E.,Ahmad Fazelzadeh,S.,Rafii-Tabar,H.:Analysis of radial breathing-mode of nanostructures with various morphologies:a critical review.Int.Mater.Rev.60,312–329(2015)

    20.Kürti,J.,Kresse,G.,Kuzmany,H.:First-principles calculations of the radial breathing mode of single-wall carbon nanotubes.Phys. Rev.B 58,R8869(1998)

    21.Saito,R.,Hofmann,M.,Dresselhaus,G.,et al.:Raman spectroscopy of graphene and carbon nanotubes.Adv.Phys.60, 413–550(2011)

    22.Kürti,J.,Zólyomi,V.,Kertesz,M.,et al.:The geometry and the radial breathing mode of carbon nanotubes:beyond the ideal behaviour.New J.Phys.5,125(2003)

    23.Jiang,H.,Zhang,P.,Liu,B.,et al.:The effect of nanotube radius on the constitutive model for carbon nanotubes.Comput.Mater. Sci.28,429–442(2003)

    24.Popov,V.N.:Curvature effects on the structural,electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model.New J. Phys.6,17(2004)

    25.Popov,V.N.,Lambin,P.:Radius and chirality dependence of the radial breathing mode and the g-band phonon modes of single-walled carbon nanotubes.Phys.Rev.B 73,085407(2006)

    26.Saito,R.,Dresselhaus,G.,Dresselhaus,M.S.,etal.:Physical Properties of Carbon Nanotubes,4.World Scientific,Singapore(1998)

    27.Zimmermann,J.,Pavone,P.,Cuniberti,G.:Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes:minimal force-constant model.Phys.Rev.B 78,045410 (2008)

    28.Lawler,H.M.,Areshkin,D.,Mintmire,J.W.,et al.:Radialbreathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality:first-principles calculations.Phys.Rev.B 72, 233403(2005)

    29.Xiao,Y.,Li,Z.M.,Yan,X.H.,et al.:Curvature effect on the radial breathing modes of single-walled carbon nanotubes.Phys.Rev.B 71,233405(2005)

    30.Chang,T.:Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes.Acta Mech.Sin.23,159–162 (2007)

    31.Cheng,H.C.,Liu,Y.L.,Wu,C.H.,et al.:On radial breathing vibration of carbon nanotubes.Comput.Methods Appl.Mech.Eng.199, 2820–2827(2010)

    32.Brenner,D.W.,Shenderova,O.A.,Harrison,J.A.,et al.:A secondgeneration reactive empirical bond order(rebo)potential energy expression for hydrocarbons.J.Phys.14,783(2002)

    33.Tersoff,J.:Empirical interatomic potential for carbon,with applications to amorphous carbon.Phys.Rev.Lett.61,2879(1988)

    34.Stillinger,F.H.,Weber,T.A.:Computer simulation of local order in condensed phases of silicon.Phys.Rev.B 31,5262(1985)

    35.Fletcher,R.,Reeves,C.M.:Function minimization by conjugate gradients.Comput.J.7,149–154(1964)

    36.Powell,M.J.D.:An efficient method for finding the minimum of a function of several variables without calculating derivatives.Comput.J.7,155–162(1964)

    37.Wu,J.,Zhang,Z.,Liu,B.,et al.:Numerical analyses for the atomistic-based shell theory of carbon nanotubes.Int.J.Plast.25, 1879–1887(2009)

    ?G.Li gli@clemson.edu

    1Department of Mechanical Engineering,Clemson University, Clemson,SC 29631,USA

    19 March 2016/Revised:20 April 2016/Accepted:27 April 2016/Published online:10 September 2016

    91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 这个男人来自地球电影免费观看| 草草在线视频免费看| 日韩免费av在线播放| 亚洲专区字幕在线| 一级毛片女人18水好多| 午夜福利成人在线免费观看| 首页视频小说图片口味搜索| 十八禁人妻一区二区| av有码第一页| 国产不卡一卡二| 天堂动漫精品| 久久国产精品影院| 淫妇啪啪啪对白视频| 精品欧美一区二区三区在线| 在线观看免费日韩欧美大片| АⅤ资源中文在线天堂| 国产成人系列免费观看| 精品高清国产在线一区| 两人在一起打扑克的视频| 亚洲av电影在线进入| 国产又爽黄色视频| 久久精品人妻少妇| 国产爱豆传媒在线观看 | 免费搜索国产男女视频| 国产不卡一卡二| 亚洲电影在线观看av| 日韩国内少妇激情av| 免费看日本二区| 午夜福利视频1000在线观看| 99在线人妻在线中文字幕| 日韩欧美国产一区二区入口| 久久久久久久久中文| 在线播放国产精品三级| 欧美成狂野欧美在线观看| videosex国产| 国产一卡二卡三卡精品| 美女大奶头视频| 亚洲精品在线美女| 一级毛片女人18水好多| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区在线av高清观看| 中文亚洲av片在线观看爽| 91老司机精品| 好男人在线观看高清免费视频 | 国内精品久久久久精免费| a级毛片在线看网站| 丁香欧美五月| 99re在线观看精品视频| 免费高清视频大片| 成人免费观看视频高清| а√天堂www在线а√下载| 成人手机av| 女人被狂操c到高潮| 夜夜躁狠狠躁天天躁| 中文资源天堂在线| 亚洲成人免费电影在线观看| 成人av一区二区三区在线看| 每晚都被弄得嗷嗷叫到高潮| 亚洲真实伦在线观看| 久久国产乱子伦精品免费另类| 美女免费视频网站| 一a级毛片在线观看| 丰满的人妻完整版| 亚洲精品美女久久久久99蜜臀| 琪琪午夜伦伦电影理论片6080| 亚洲精品美女久久久久99蜜臀| 免费看a级黄色片| 国产精品一区二区免费欧美| 18禁裸乳无遮挡免费网站照片 | 日韩欧美国产一区二区入口| 欧美黄色淫秽网站| 两个人视频免费观看高清| 久久久久久人人人人人| 亚洲av中文字字幕乱码综合 | 欧美激情极品国产一区二区三区| 国产精品爽爽va在线观看网站 | 久久香蕉激情| 日韩有码中文字幕| 国产区一区二久久| 欧美色欧美亚洲另类二区| 久久久精品国产亚洲av高清涩受| 亚洲五月婷婷丁香| 大型av网站在线播放| a级毛片在线看网站| 禁无遮挡网站| 久久久精品国产亚洲av高清涩受| 亚洲avbb在线观看| 国内精品久久久久精免费| 国产亚洲精品一区二区www| 色婷婷久久久亚洲欧美| 精品电影一区二区在线| 18禁国产床啪视频网站| 黄频高清免费视频| 亚洲av第一区精品v没综合| 一夜夜www| 后天国语完整版免费观看| 最新在线观看一区二区三区| 免费在线观看亚洲国产| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 黄色毛片三级朝国网站| 天天一区二区日本电影三级| 亚洲五月色婷婷综合| 一级a爱视频在线免费观看| 欧美绝顶高潮抽搐喷水| 色老头精品视频在线观看| 欧美国产精品va在线观看不卡| 亚洲国产日韩欧美精品在线观看 | 首页视频小说图片口味搜索| 欧美成狂野欧美在线观看| 中国美女看黄片| 男人操女人黄网站| 首页视频小说图片口味搜索| 九色国产91popny在线| 啦啦啦韩国在线观看视频| 岛国在线观看网站| 老汉色∧v一级毛片| 99国产极品粉嫩在线观看| 欧美一区二区精品小视频在线| 97碰自拍视频| 久久久国产欧美日韩av| 久热这里只有精品99| 久久久久久久午夜电影| 久久久久国内视频| 制服诱惑二区| 免费看日本二区| 精品免费久久久久久久清纯| 亚洲精品中文字幕一二三四区| 国产成人系列免费观看| 国产一区二区三区视频了| 少妇 在线观看| 日日摸夜夜添夜夜添小说| 久久草成人影院| 中文字幕精品亚洲无线码一区 | 中文字幕最新亚洲高清| 中文字幕久久专区| 美国免费a级毛片| 又黄又爽又免费观看的视频| 久久久久久九九精品二区国产 | 一级a爱片免费观看的视频| 亚洲精品色激情综合| 成人免费观看视频高清| 久久性视频一级片| 99热这里只有精品一区 | 国产乱人伦免费视频| 国产成人欧美| 国产又爽黄色视频| 美女高潮喷水抽搐中文字幕| 国产一区二区在线av高清观看| 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 黄片播放在线免费| 亚洲国产精品合色在线| 大型黄色视频在线免费观看| 在线视频色国产色| 欧美黑人精品巨大| 日韩欧美一区视频在线观看| 一a级毛片在线观看| 日本 av在线| 国产91精品成人一区二区三区| 免费高清视频大片| or卡值多少钱| 51午夜福利影视在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久人妻福利社区极品人妻图片| 一夜夜www| 久99久视频精品免费| 窝窝影院91人妻| 黄色成人免费大全| 日本黄色视频三级网站网址| 亚洲 国产 在线| 久久久久亚洲av毛片大全| 久久国产精品男人的天堂亚洲| 97人妻精品一区二区三区麻豆 | 视频区欧美日本亚洲| 国产精品精品国产色婷婷| 国产午夜精品久久久久久| 长腿黑丝高跟| 亚洲无线在线观看| 久久人妻福利社区极品人妻图片| 日本a在线网址| 午夜福利视频1000在线观看| 在线观看免费午夜福利视频| 久久这里只有精品19| 正在播放国产对白刺激| 欧美一级a爱片免费观看看 | 亚洲在线自拍视频| 白带黄色成豆腐渣| 欧美三级亚洲精品| 精品国产一区二区三区四区第35| АⅤ资源中文在线天堂| 满18在线观看网站| 国产精品久久电影中文字幕| 亚洲欧美精品综合一区二区三区| 怎么达到女性高潮| 久久久久免费精品人妻一区二区 | 精品福利观看| 99久久久亚洲精品蜜臀av| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| 日韩一卡2卡3卡4卡2021年| 人妻久久中文字幕网| 人人澡人人妻人| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站 | 久久久久久亚洲精品国产蜜桃av| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 日韩欧美三级三区| 亚洲人成电影免费在线| 成人一区二区视频在线观看| 一进一出抽搐gif免费好疼| 90打野战视频偷拍视频| 在线看三级毛片| 熟妇人妻久久中文字幕3abv| 亚洲国产毛片av蜜桃av| 淫秽高清视频在线观看| 午夜免费激情av| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 成人国产一区最新在线观看| 丰满的人妻完整版| 免费搜索国产男女视频| 国产真实乱freesex| 免费看日本二区| 亚洲av成人一区二区三| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 女生性感内裤真人,穿戴方法视频| tocl精华| 亚洲 欧美一区二区三区| 久久精品人妻少妇| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| 久久婷婷人人爽人人干人人爱| 制服丝袜大香蕉在线| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| xxxwww97欧美| 亚洲一区中文字幕在线| 99热只有精品国产| 99精品久久久久人妻精品| 在线国产一区二区在线| 成年免费大片在线观看| 国产精品久久视频播放| x7x7x7水蜜桃| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 婷婷六月久久综合丁香| 欧美zozozo另类| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 男人舔奶头视频| 日韩三级视频一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲中文av在线| 日韩有码中文字幕| 免费观看精品视频网站| 国产高清视频在线播放一区| 日本精品一区二区三区蜜桃| 一本一本综合久久| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 美女高潮到喷水免费观看| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 国产精品一区二区三区四区久久 | 欧美性猛交╳xxx乱大交人| 男人操女人黄网站| 淫妇啪啪啪对白视频| 亚洲三区欧美一区| 国产成年人精品一区二区| 久9热在线精品视频| 国产激情偷乱视频一区二区| 一区二区三区激情视频| 久久国产精品男人的天堂亚洲| 亚洲精品粉嫩美女一区| 国产精品久久视频播放| 亚洲成国产人片在线观看| 啦啦啦韩国在线观看视频| 激情在线观看视频在线高清| 人人妻,人人澡人人爽秒播| 亚洲成av片中文字幕在线观看| 大型av网站在线播放| e午夜精品久久久久久久| 脱女人内裤的视频| 精品少妇一区二区三区视频日本电影| 最好的美女福利视频网| 亚洲国产欧洲综合997久久, | 国产亚洲精品av在线| 999久久久精品免费观看国产| 亚洲片人在线观看| 精品国产乱码久久久久久男人| 黄色片一级片一级黄色片| 国产在线精品亚洲第一网站| 熟女电影av网| 中亚洲国语对白在线视频| 成人18禁在线播放| 国产亚洲精品久久久久久毛片| 欧美一区二区精品小视频在线| 亚洲久久久国产精品| 日韩高清综合在线| 国产av一区在线观看免费| 白带黄色成豆腐渣| 两个人免费观看高清视频| 国产成人精品无人区| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 好看av亚洲va欧美ⅴa在| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久久免费视频了| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 日本一本二区三区精品| 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 国产亚洲欧美98| 亚洲免费av在线视频| 天堂影院成人在线观看| 精品电影一区二区在线| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 色婷婷久久久亚洲欧美| 看片在线看免费视频| 日韩免费av在线播放| 天堂动漫精品| 国产视频内射| 777久久人妻少妇嫩草av网站| 在线免费观看的www视频| 精品欧美国产一区二区三| 国产精品野战在线观看| 国产三级在线视频| 久久亚洲真实| 国产高清videossex| 少妇熟女aⅴ在线视频| 国产精品香港三级国产av潘金莲| 大型av网站在线播放| 伦理电影免费视频| 午夜视频精品福利| 俄罗斯特黄特色一大片| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩黄片免| 亚洲无线在线观看| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| АⅤ资源中文在线天堂| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 国内揄拍国产精品人妻在线 | 精品久久久久久久末码| 日韩大尺度精品在线看网址| 无遮挡黄片免费观看| 99riav亚洲国产免费| 制服诱惑二区| 亚洲av片天天在线观看| 国产私拍福利视频在线观看| 99热6这里只有精品| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 女人爽到高潮嗷嗷叫在线视频| 十八禁网站免费在线| 亚洲精品久久成人aⅴ小说| 久久亚洲真实| 久久热在线av| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 精品久久久久久久久久免费视频| 老熟妇仑乱视频hdxx| 少妇裸体淫交视频免费看高清 | 国产精品爽爽va在线观看网站 | 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 美国免费a级毛片| 黄片小视频在线播放| 成年免费大片在线观看| 一二三四在线观看免费中文在| 久久精品影院6| 成人国语在线视频| 少妇 在线观看| 免费高清在线观看日韩| 黄色a级毛片大全视频| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 欧美亚洲日本最大视频资源| 狠狠狠狠99中文字幕| 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 日韩大尺度精品在线看网址| 男女做爰动态图高潮gif福利片| 欧美人与性动交α欧美精品济南到| 国产精品免费视频内射| 免费观看人在逋| 亚洲中文日韩欧美视频| 久久精品影院6| 日韩欧美国产在线观看| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩国内少妇激情av| 亚洲久久久国产精品| 精品欧美一区二区三区在线| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 午夜免费鲁丝| 村上凉子中文字幕在线| 欧美乱妇无乱码| 韩国av一区二区三区四区| 日韩欧美一区二区三区在线观看| 99国产精品一区二区蜜桃av| svipshipincom国产片| 亚洲在线自拍视频| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 久久热在线av| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 两个人视频免费观看高清| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看| www国产在线视频色| 欧美一区二区精品小视频在线| 亚洲九九香蕉| 午夜久久久在线观看| 国产男靠女视频免费网站| 嫁个100分男人电影在线观看| 成人永久免费在线观看视频| 国产成年人精品一区二区| 午夜久久久在线观看| 精品人妻1区二区| 91国产中文字幕| 欧美日韩瑟瑟在线播放| a级毛片a级免费在线| 欧美中文综合在线视频| 亚洲 国产 在线| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 非洲黑人性xxxx精品又粗又长| 一级a爱视频在线免费观看| 露出奶头的视频| 国产1区2区3区精品| 亚洲av美国av| 日韩欧美在线二视频| 国产成人系列免费观看| 国产日本99.免费观看| 久久精品人妻少妇| 亚洲色图 男人天堂 中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 午夜成年电影在线免费观看| 自线自在国产av| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 久久精品aⅴ一区二区三区四区| 很黄的视频免费| 亚洲国产高清在线一区二区三 | 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| 久久伊人香网站| 最好的美女福利视频网| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 美国免费a级毛片| 国产黄a三级三级三级人| 高清在线国产一区| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 在线观看舔阴道视频| 黄色视频不卡| 我的亚洲天堂| 国产一卡二卡三卡精品| 日韩欧美国产在线观看| 国产av一区二区精品久久| svipshipincom国产片| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 亚洲国产高清在线一区二区三 | 国产久久久一区二区三区| 精品久久久久久,| 三级毛片av免费| 国产一区二区三区视频了| 这个男人来自地球电影免费观看| 欧美日本视频| 深夜精品福利| 国产av一区在线观看免费| 国产野战对白在线观看| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 国产人伦9x9x在线观看| 一二三四社区在线视频社区8| 日日夜夜操网爽| 国产精品爽爽va在线观看网站 | 亚洲国产毛片av蜜桃av| 午夜福利成人在线免费观看| 亚洲国产毛片av蜜桃av| 桃色一区二区三区在线观看| 日本五十路高清| e午夜精品久久久久久久| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| www日本黄色视频网| 国产亚洲欧美98| 精品久久久久久,| 国产v大片淫在线免费观看| 午夜影院日韩av| 国产单亲对白刺激| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 一进一出抽搐动态| 国产三级在线视频| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 91老司机精品| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 日韩三级视频一区二区三区| 久久国产亚洲av麻豆专区| 制服丝袜大香蕉在线| 亚洲色图av天堂| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 精品乱码久久久久久99久播| 国产单亲对白刺激| avwww免费| 观看免费一级毛片| 波多野结衣高清作品| 老司机午夜十八禁免费视频| 国产99久久九九免费精品| 波多野结衣av一区二区av| av片东京热男人的天堂| 在线视频色国产色| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站 | 亚洲三区欧美一区| tocl精华| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| av片东京热男人的天堂| 亚洲一区二区三区不卡视频| 日本免费a在线| 国产免费男女视频| 国产精品 国内视频| 国产成人欧美| 两人在一起打扑克的视频| av欧美777| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 日本熟妇午夜| 国产精品久久视频播放| 午夜视频精品福利| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 国内毛片毛片毛片毛片毛片| 一二三四在线观看免费中文在| 国产亚洲av嫩草精品影院| 99国产极品粉嫩在线观看| 午夜久久久在线观看| 国产精品,欧美在线|