• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation

    2016-12-05 07:40:06XuXing
    Acta Mechanica Sinica 2016年6期

    T.F.Xu·Y.F.Xing

    Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation

    T.F.Xu1,2·Y.F.Xing1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM)thin plates subjected to initially in-plane loads and with an elastic foundation.Based on classical thin plate theory,the governing differential equations are derived using Hamilton’s principle.A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson’s ratio.The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates.The separation-of-variables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions,including,for example,clamped plates.The obtained normal modes and frequencies are in elegant closed forms,and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors.A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.

    Functionally graded material·Free vibration· Rectangular plate·Close form solutions·Neutral surface

    DOI 10.1007/s10409-016-0600-4

    1 Introduction

    Functionally graded material(FGM)is inhomogeneous composite materials that has received considerable attention inmany engineering applications.FGM was proposed in 1984 [1,2]as thermal barrier materials.FGM show a continuous variation in its material properties along a certain direction and is now being extensively used in aircraft,spacecraft,and various other industries because the strength and stiffness of FGM give it flexibility in design.

    The vibration problem of isotropic and composite rectangular plates continues to be of considerable research interest. As for isotropic and orthotropic rectangular thin plates,many studies are available in the literature,for example,by Xing and coworkers[3–5]have obtained closed-form solutions for rectangular thin plates with two adjacent clamped edges for the first time.As for rectangular FGM thin plates,most of the studies were published in the last15 years;representative ones related to the present study are reviewed in what follows.

    Studies based on the classical thin plate theory(CPT)are reviewed first.Yang and Shen[6]dealt with the dynamic response of initially stressed FGM thin plates by the differential quadrature(DQ)method and the Galerkin procedure. Abrate[7,8]used the extensive results available in the literature to show that the natural frequencies,in-plane buckling loads,critical temperatures,and deflections of FGM plates are proportional to those of homogeneous plates;it was also shown that by a proper choice of reference surface,coupling between in-plane and bending deformations can be eliminated.Zhang and Zhou[9]defined a physical neutral(PN) surface and showed that it is simply the reference surface by which stretching–bending coupling can be eliminated.Yin et al.[10]carried out a free vibration analysis of FGM thin plates using a rational B-spline and PN surface.Li et al.[11] derived scaling factors between solutions of bending,buckling,and free vibrations of isotropic FGM thin plates and those of the corresponding isotropic homogeneous plates and stated the conditions for the existence of a PN surface.

    As for studies based on different shear deformation theories,Thai and Uy[12]obtained closed-form solutions for a buckling analysis of an FGM plate with two opposite edges simply supported using refined plate theory.Reddy et al.[13] used first-order shear deformation theory(FSDT)for bending and stretching analyses of axisymmetric FGM annular and circular plates and expressed the solutions in terms of the corresponding quantities of isotropic plate based on the CPT.Hosseini-Hashemi et al.[14]presented exact solutions for the free vibration of rectangular FGM plates with two opposite edges simply supported based on the FSDT.Reddy [15]presented both a theoretical formulation and finite-element model based on third-order shear deformation theory (TSDT).Yang and Shen[16]used DQ technique,Galerkin approach,and modal superposition method to determine the free and forced vibration behavior of initially stressed FGM plates in a thermal environment based on the TSDT.Kim [17]developed a theoretical method using a Rayleigh–Ritz procedure to investigate the vibration characteristics of initially stressed FGM plates via third-order shear deformation plate theory,where two types of thermal condition were considered.

    Recently,Swaminathan et al.[18]presented a review of the various methods used to study the static,dynamic,and stability behavior of FGM plates.Thai and Kim[19]reviewed existing theories of the modeling and analysis of FGM plates and shells,with the main emphasis on equivalent-single-layer theory models,such as CPT,TSDT,and others.Sayyad and Ghugal[20]reviewed the application of various methods to the vibration analysis of laminated composite and sandwich plates.

    From these reviews one can see that the vibration behavior of FGM thin plates has been investigated,while but most of the papers used numerical methods.In addition,closed-form solutions for the free vibration of rectangular FGM plates are only available for plates with parallel,simply supported sides,whether for CPT or FSDT.Thai and Uy[12] and Hosseini-Hashemi et al.[14]presented closed-form solutions for the free vibrations of rectangular FGM plates using different shear deformation theories.Li et al.[11]investigated the vibration solutions of FGM plates based on CPT, but no explicit analytical solutions were presented.Furthermore,there is no closed-form solution for FGM plates with two adjacent clamped edges to date.

    In this context,one of the aims of this paper is to eliminate the stretching–bending coupling of FGM thin plates by taking a the neutral surface as the reference surface;the other aim is to obtain closed-form normal modes and frequencies of rectangular FGM thin plates with separable boundary conditions using a separation-of-variables approach.Comprehensive comparisons and numerical results in dimensionless form validate the present work and reveal the effects of power law index n and aspect ratio a/b on frequency.The highlight of this paper is the solution method by which closed-form normal modes and frequencies are obtained for rectangular FGM thin plates with separable boundary conditions.

    Fig.1 A rectangular FGM plate and coordinates

    2 Theoretical formulations

    Consider an FGM plate of length a,width b,and thickness h that is made from a mixture of ceramics and metals(Fig.1). The FGM is assumed to vary from the ceramic-rich top surface(z=h/2)to the metal-rich bottom surface(z=?h/2). The effective Young’s modulus E,mass density ρ,and Poisson’s ratio ν of the FGM plate can be written in a power law as[21]

    in which the variables with subscripts t and b denote the properties of the top and bottom surfaces of the plate,respectively, and n is the power law index.The volume fraction index n indicates the material variation profile through the plate thickness.The value n=0 represents a ceramic plate.

    The present study is based on CPT;taking the geometrical midplane of the plate as the origin plane of the z coordinate results in the following displacement field:

    where u0and v0are the in-plane displacements of the geometrical midplane of the plate along the x-and y-directions,respectively,and w is the transverse displacement.The strains associated with the displacement field in Eq.(2)are given by

    where

    The stresses can be determined from the constitutive relations of the FGM plate as

    where

    The in-plane forces and transverse moments can be written as

    where

    Substituting Eq.(5)into Eq.(8),one obtains

    where A,B,and D are the plate extensional,coupling,and bending stiffness,respectively,defined by

    The strain energy of the thin plate can be written as

    where

    Substituting Eqs.(3)and(5)into Eq.(13)and integrating through the thickness of the plate,the strain energy has the form

    The work done by applied external forces is

    where Fx,Fy,Fxyare the in-plane distributed forces,and K1and K2are the Winkler and Pasternak foundation stiffnesses, respectively.

    The kinetic energy of the plate is

    where

    Note that I1=0 for isotropic and homogeneous materials. In this work,the dynamic equations are derived using Hamilton’s principle?t0δ(U+V?T)d t=0 as

    where the differential operators L and the derived natural boundary conditions are presented in Appendix 2.From Eq.(18)we see that the in-plane stretching and bending couple together because the geometrical midplane is chosen as the reference surface above in which there is in-plane stretching due to the materials’being asymmetrical with respect to the midplane.However,the coupling of the in-plane stretching and bending can be eliminated easily by choosing another surface as a reference surface in which there are no in-plane displacements,and this surface can be called the neutral surface.

    Henceforth,we choose the neutral surface as the reference surface rather than the geometrical midplane,and,in conjunction with the CPT assumptions,the in-plane displacements of the midplane can be expressed in terms of the slopes of deflection as follows

    where z0is the distance between the neutral surface and the midplane,and z0is to be determined.One finds that the in-plane displacements of the neutral surface equal zero by inserting Eqs.(19)into Eq.(2)and letting z=z0;in addition, one also finds that all in-plane stresses equal zero(refer to Eqs.(3)–(5)).Note that the in-plane stretching and bending have been uncoupled owing to the introduction of Eq.(19), although z0has not yet been determined.A method to determine z0is given below.

    Using Eq.(19)we can obtain the in-plane internal forces of the neutral surface:

    As shown above,the variables u=v=0,and σ=0 on the neutral surface;then N=0,which requires all elements of the coefficient matrix in Eq.(20)to be zeros since the strains ε0in the midplane are not zeros.Therefore,one has

    These relations require that the Poisson’s ratio ν be a constant.Hence,we have

    This is the same as in Ref.[9],where the term physical neutral surface was used.Another point is that,in general,the mass neutral surface I1/I0/=z0,and so the in-plane inertial forces must not be zeros in the transverse vibration of the FGM plate;refer to Eq.(18a)and(18b).But in the present study, there is much less in-plane inertia than transverse inertia since the thin plate problem is discussed on the basis of CPT,so that problem is ignored here.

    By substituting Eq.(19)into Eq.(18c),one finds that the last two terms of Eq.(18c)represent the rational inertia of a cross section of the thin plate,which can be ignored in comparisons with transverse translational inertia.The principal vibration is harmonic;then

    Inserting Eq.(19),Eq.(22),and Eq.(23)into Eq.(18c)and neglecting Eq.(18c)’s last two terms,we have

    where

    Equation(24)shows that the characteristic differential equation of FGM thin plates has the same mathematical form as that of homogeneous thin plates based on CPT;hence, FGM thin plates behave like homogeneous thin plates or can be equivalent to homogeneous thin plates.Additionally,the boundary conditions of FGM thin plates have the same forms as those of homogeneous thin plates,as shown in Table 1.

    3 Closed-form solution

    In this work a separation-of-variables solution of Eq.(24)is assumed,

    Table 1 Boundary conditions of FGM thin plates

    whereφ andψ are respectively the x-and y-directions mode functions or eigenfunctions,and we assume they are

    where the variables ? and η are the eigenvalues of the x-and y-directions,respectively.In the classical separation-of-variables method,either ? or η and its corresponding eigenfunction are given or assumed for the pair of opposites simply supported or guided edges;then the plate problems resemble beamlike problems.In contrast,both these spatial eigenvalues and frequencies are unknown and solved simultaneously in the present work,and the coefficients of W and the eigenvalue equations can be determined via the boundary conditions of the four edges.Moreover,the relationships among the two spatial eigenvalues and the temporal eigenvalue are solved by substituting Eq.(26)into Eq.(24),

    where

    Table 2 y-direction eigenvalues and eigenfunctions

    Henceforth,the in-plane distributed force Fxyis ignored hereinafter.Then Eq.(28)becomes

    It can be seen from Eq.(30)that the eigenvalues ? and η can be real,imaginary,or conjugate,and their different combinations give differential frequencies.Given?,ηcan be expressed by ? and γ;similarly,given η,? can be expressed by η and γ;therefore,we have

    Table 3 Material properties(at T=300 K)

    where i2=?1,and

    Substituting η=iβ1into Eq.(31)and ?=iα1into Eq.(32) yields

    Fig.2 Boundary conditions of plates with two adjacent clamped edges and combinations of C,SS,and G conditions for remaining edges

    Table 4 Material properties for 3D and 2D FEM models(Type I)

    Table 5 Frequency comparisons for Type I FGM square,fully clamped plates(k1,k2)=(0,0)

    Eliminating η from Eq.(31)and ? from Eq.(32)yields Therefore,we have the two eigenfunctions in terms of the eigenvalues,

    Notably in Refs.[3,4]the authors show that Eqs.(26),(37), and(38)form a general solution of the characteristic govern-ing equation(24)of a thin plate.For the separable boundary conditions as SS,C,and G,two transcendental eigenvalue equations can be derived using two pairs of opposite edge conditions.For any combinations of separable boundary conditions,the methods to derive eigenvalue equations are identical,as shown in Ref.[5].For the pair of opposite boundary conditions with respect to y=0 and b,Table 2 lists the eigenvalue equations and eigenfunctions for all possible combinations of separable boundary conditions,and one can directly obtain the results in the same form with respect to the boundary conditions of x=0 and x=a,as given in Ref.[5].

    Table 6 Frequency comparisons for Type III FGM plates with different boundary conditions(a/h=100),(k1,k2)=(0,0)

    Table 7 Frequency comparisons for Type II FGM(n=2)square,fully clamped plates(k1,k2)=(0,0)

    It should be noted that the transcendental equations can be solved by the Newton–Raphson method without any difficulty;since it just like the beam case,the authors have thus far not encountered problems in connection with missing roots or other issues.

    Table 8 Frequency comparisons for Type III FGM plates with different boundary conditions(a/h=20),(k1,k2)=(0,0)

    4 Numerical results

    This section contains two parts.First,accuracy and comparison studies are carried out.The present results are compared with finite element method(FEM)results and those in the literature.The comparisons show the high accuracy of the present solutions.Second,the effects of the power law index n and aspect ratio a/b on the frequency of FGM plates are investigated,and comprehensive numerical results are presented in dimensionless tabular.

    In the following numerical comparisons,three types of FGM plate are taken into account(Table 3).The boundary conditions of the FGM plates are shown in Fig.2.

    4.1 Numerical comparisons

    This section aims to validate the accuracy of the closed-form solutions by comparing the present results with those in the literature and FEM results obtained by the authors using MSC NASTRAN.To validate the accuracy of the proposed solution method,the linear vibrations of isotropic plates as well as FGM plates without initially stressed and elastic foundations are investigated first.

    For comparison,the relative difference percentages[%= (NASTRAN–present)/present×100]are also given in Table 5,where the ω*with subscripts FEM2D and FEM3D represent the NASTRAN results obtained using 2D bending panel element with a 50×50 mesh and 3D solid element with a 50×50×20 mesh,respectively.The material properties used in the FEM models are presented in Table 4.

    Table 5 shows that the present results are highly accurate. The biggest differences occur for the first-order frequency, in which only a half-wave is included in the mode shape. From Table 6 we can see that the present results and those in Refs.[10,11]are in excellent agreement.In fact, for the cases presented in Table 6,the present results are exact.

    Table 9 Frequency parameterω?for initially stressed CCCC isotropic and(Type I)FGM square plates without elastic foundations(k1,k2)=(0,0)

    The comparisons in Table 5 also show that,as for SUS304, the present solutions agree well with those of Yang and Shen [6],but for Si3N4plates,the present solutions do not;this problem is investigated in Appendix 1,where the authors validate the correctness of the present formulation by analyzing the frequency ratios.

    In the foregoing comparisons with results based on CPT and 3D FEM results,it can be concluded that the present results are highly accurate.In the following,we compared our results with those based on shear deformation plate theory (Tables 7 and 8).

    In Table 7,the results for Type II FGM(n=2,a=0.2) square plates are compared with those of Kim[17]using the Rayleigh–Ritz method.Note that the present results are in good agreement with those of Kim[17]especially when a/h is greater than 20.

    In Table 8,the first four natural frequencies of Type III FGM plates were obtained for three cases of boundary conditions(SSSS,SSSC,and SCSC)and n=0,0.5,1,2,5,8,10. The comparisons reveal that the present results are slightly larger than those of Hosseini-Hashemi et al.[14];this is rea-sonable because that method[14]is based on FSDT and the present method is based on CPT.

    Table 10 Frequency parameter ω?for initially stressed CCCC isotropic and Type I FGM square plates resting on Winkler elastic foundations (k1,k2)=(5,0)

    Based on the comparisons presented in this subsection,the high accuracy of the present formulation and present results are validated.

    4.2 Parameter study

    After verifying the accuracy of the present formulation,parameter studies are carried out to investigate the effects of the power law index n and aspect ratio a/b on the frequency of FGM plates.In this subsection,the same natural frequency parameter as that in Table 5 is used.

    Tables 9,10,and 11 give the natural frequencies of prestressed CCCC Type I FGM square plates,in which SUS304 and Si3N4are isotropic,and the other three cases are for n=0.2,3,10.

    The in-plane loads are given byFive initialin-plane loading conditions are involved;sx=sy=0 denotes no in-plane loads;sx=0.5 and sy=0 denote uniaxial tension,and sx=sy=0.25 (or 0.5)denotes equal biaxial tension;sx=?0.5 and sy=0 denote uniaxial compression,and sx=sy= ?0.25(or?0.5)denotes equal biaxial compression.

    Table 11 Frequency parameter ω?for initially stressed CCCC isotropic and Type I FGM square plates resting on Pasternak elastic foundations (k1,k2)=(5,1)

    The elastic foundations are involved by using(π/a)4k1and.Three types of elastic foundation are taken into account:(k1,k2)=(5.0,1.0)is for the Pasternak model,(k1,k2)=(5.0,0.0)is for the Winkler model,and(k1,k2)=(0.0,0.0)is for plates with no elastic foundation.It can be seen that the frequencies become small when the material composition varies from pure Si3N4to pure stainless steel.As expected,the frequency parameters of plates subjected to initial in-plane tension are much higher than those that are initially compressed.Additionally, the natural frequencies increase as the foundation stiffness increases.

    Table 12 presents natural frequencies for Type IFGM rectangular plates with different boundary conditions(SSCC,GGCC,SCCC,CCCG,SGCC,and CCCC,as shown in Fig.2)and different values of the plate aspect ratio a/b(=0.5,0.75,1.0,1.5)and the volume fraction index n(=0.2,3,10).It can be seen that the CCCC rectangular plate has the highest frequencies,whereas the GGCC plate has the lowest.Meanwhile,the dimensionless frequency parameters increase as a/b increases from 0.5to1.5anddecreaseasnincreasesfrom0.2 to 10.

    Table 12 Frequency parameter ω?for Type I FGM rectangular plates with different boundary conditions

    Table 12 continued

    Numerical results show that the dimensionless frequency parameters increase as a/b increases and decrease as n increases.Further,the foundation stiffness and initial stress also significantly affect the vibration of FGM plates.Comprehensive numerical results for FGM rectangular thin plates with two adjacent clamped edges subjected to initially inplane loads without or resting on elastic foundations are presented in dimensionless tabular form.

    5 Conclusions

    In the present study,a frequency analysis of initially stressed FGM rectangular thin plates subjected to in-plane loads and with elastic foundations was analytically conducted.Hamilton’s principle was used to derive the equations of motion based on CPT.A neutral surface was adopted to eliminate the stretching–bending coupling in the FGM plates, and the resulting governing equations of the FGM thin plates have the same forms as those of homogeneous thin plates.

    From the study one may conclude that a constant Poisson’s ratio is the condition for the existence of a neutral surface;in this sense,the neutral surfaces of the material elastic properties are the same,but they are not the same like a mass neutral surface.For real FGM plates,Poisson’s ratio cannot be constant;therefore,the material neutral surface is not pos-sible in reality,that is,the theory based on a neutral surface is approximate.

    As for FGM rectangular plates with separable boundary conditions,including plates with two adjacent clamp supports,closed-form solutions for the problem of free vibrations of rectangular FGM thin plates were obtained using a separation-of-variables method.The obtained normal mode functions and frequency equations are in an elegant closed form.The present solutions were validated by comprehensive comparisons with those in the literature.

    Comprehensive numerical results show that dimensionless frequency parameters increase as the aspect ratio a/b increases and decrease as the power law index n increases. Furthermore,the foundation stiffness and initial stress also significantly affect the vibration of FGM plates.

    Acknowledgments The project was supported by the National Natural Science Foundation of China(Grants 11172028,1372021),Research Fund for the Doctoral Program of Higher Education of China(Grant 20131102110039),and the Innovation Foundation of Beihang University for PhD graduates.

    Appendix 1

    have

    From Eq.(24)one finds that the frequency parameterω?is the same for thin plates with different materials since the elastic foundation and in-plane loads are not taken into account here,that is

    Substitution of Eq.(A1)into Eq.(A2)yields

    from which we have

    To substitute the material properties of SUS304 and Si3N4as given in Table 3 into Eq.(A3),and to substitute the ensuing results into Eq.(A5),one can obtain that the ratio of the frequency parameter ω?between Si3N4and SUS304 is 2.2579(Table 13).In Sect.4.1,we use the same dimensionless natural frequency parameter as Yang and Shen[6] in numerical comparisonswhich is also 2.2579(Table 13);therefore,it can be concluded that the present results are correct.But using the numerical results of Yang and Shen[6]is 1.2164,and this shows that some numerical results of Yang and Shen[6]may not be correct.

    Appendix 2

    The differential operators in Eq.(18)are as follows

    Table 13 Frequency comparisons between present method and that of Yang and Shen[6]for Type I FGM plates

    And the boundary conditions derived using Hamilton’s principle have the following forms:

    The shear forces are given by following relations:

    References

    1.Koizumi,M.:The concept of FGM.Ceram.Trans.Func.Grad. Mater.34,3–10(1993)

    2.Koizumi,M.:FGM activities in Japan.Compos.PtB.Eng.28,1–4 (1997)

    3.Xing,Y.F.,Liu,B.:New exact solutions for free vibrations of rectangular thin plates by symplectic dual method.Acta.Mech.Sin. 25,265–270(2009)

    4.Xing,Y.F.,Liu,B.:New exact solutions for free vibrations of thin orthotropic rectangular plates.Compos.Struct.89,567–574(2009)

    5.Xing,Y.F.,Xu,T.F.:Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions.Compos.Struct.104,187–195(2013)

    6.Yang,J.,Shen,H.S.:Dynamic response of initially stressed functionally graded rectangular thin plates.Compos.Struct.54, 497–508(2001)

    7.Abrate,S.:Free vibration,buckling,and static deflections of functionally graded plates.Compos.Sci.Technol.66,2383–2394 (2006)

    8.Abrate,S.:Functionally graded plates behave like homogeneous plates.Compos.Pt B.Eng.39,151–158(2008)

    9.Zhang,D.G.,Zhou,Y.H.:A theoretical analysis of FGM thin plates based on physical neutral surface.Comput.Mat.Sci.44,716–720 (2008)

    10.Yin,S.,Yu,T.,Liu,P.:Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface.Adv.Mech.Eng.5,634584(2013)

    11.Li,S.R.,Wang,X.,Batra,R.C.:Correspondence relations between deflection,buckling load,and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates.J.Appl.Mech.82,111006(2015)

    12.Thai,H.T.,Uy,B.:Levy solution for buckling analysis of functionally graded plates based on a refined plate theory.J.Mech.E.Pt C. 227,2649–2664(2013)

    13.Reddy,J.N.,Wang,C.,Kitipornchai,S.:Axisymmetric bending of functionally graded circular and annular plates.Eur.J.Mech.18, 185–199(1999)

    14.Hosseini-Hashemi,S.,Fadaee,M.,Atashipour,S.R.:A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates.Int.J.Mech.Sci.53,11–22 (2011)

    15.Reddy,J.N.:Analysis of functionally graded plates.Int.J.Numer. Meth.Eng.684,663–684(2000)

    16.Yang,J.,Shen,H.S.:Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environments.J.Sound.Vib.255,579–602(2002)

    17.Kim,Y.W.:Temperature dependent vibration analysis of functionally graded rectangular plates.J.Sound.Vib.284,531–549(2005)

    18.Swaminathan,K.,Naveenkumar,D.T.,Zenkour,A.M.,et al.: Stress,vibration and buckling analyses of FGM plates–a state-of-the art review.Compos.Struct.120,10–31(2015)

    19.Thai,H.T.,Kim,S.E.:A review of theories for the modeling and analysis of functionally graded plates and shells.Compos.Struct. 128,70–86(2015)

    20.Sayyad,A.S.,Ghugal,Y.M.:On the free vibration analysis of laminated composite and sandwich plates:a review of recent literature with some numerical results.Compos.Struct.129,177–201(2015)

    21.Reddy,J.N.,Chin,C.D.:Thermomechanical analysis of functionally graded cylinders and plates.J.Therm.Stresses.21,593–626 (1998)

    ? Y.F.Xing xingyf@buaa.edu.cn

    1Institute of Solid Mechanics,Beihang University, Beijing 100191,China

    2China Academy of Launch Vehicle Technology R&D Center, Beijing 100076,China

    8 January 2016/Revised:3 May 2016/Accepted:21 June 2016/Published online:21 September 2016

    白带黄色成豆腐渣| 亚洲国产精品成人综合色| 国产精品久久久久久精品电影小说 | 少妇的逼好多水| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| 一级爰片在线观看| 网址你懂的国产日韩在线| 亚洲精品日韩在线中文字幕| 国产精品爽爽va在线观看网站| 中文乱码字字幕精品一区二区三区| 97在线人人人人妻| av福利片在线观看| 婷婷色综合大香蕉| 欧美成人a在线观看| 超碰97精品在线观看| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 国产美女午夜福利| 人妻 亚洲 视频| 欧美三级亚洲精品| 高清av免费在线| 国产在视频线精品| 97在线人人人人妻| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 性插视频无遮挡在线免费观看| 国产精品久久久久久久久免| 在线精品无人区一区二区三 | 91久久精品国产一区二区三区| 成年人午夜在线观看视频| 久久久a久久爽久久v久久| 黄色一级大片看看| 亚洲国产av新网站| 美女cb高潮喷水在线观看| 亚洲国产精品国产精品| 精品国产露脸久久av麻豆| 一区二区av电影网| 性插视频无遮挡在线免费观看| 国产爽快片一区二区三区| 九草在线视频观看| 日本wwww免费看| 少妇猛男粗大的猛烈进出视频 | xxx大片免费视频| 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看 | 女人久久www免费人成看片| 免费看a级黄色片| 嫩草影院精品99| 少妇 在线观看| 久久久精品免费免费高清| 亚洲av欧美aⅴ国产| 高清av免费在线| 下体分泌物呈黄色| 欧美高清成人免费视频www| 午夜福利高清视频| 成人漫画全彩无遮挡| 青春草国产在线视频| 欧美日本视频| 少妇丰满av| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 黄色日韩在线| 亚洲av免费在线观看| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 精华霜和精华液先用哪个| 久久人人爽av亚洲精品天堂 | 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 久久热精品热| 97在线视频观看| 97精品久久久久久久久久精品| 午夜精品一区二区三区免费看| 欧美xxⅹ黑人| 我要看日韩黄色一级片| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 国模一区二区三区四区视频| 黄色欧美视频在线观看| 欧美精品人与动牲交sv欧美| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 国产欧美亚洲国产| 美女国产视频在线观看| 午夜爱爱视频在线播放| 午夜视频国产福利| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 一级二级三级毛片免费看| 国产69精品久久久久777片| 久久精品国产亚洲av涩爱| 欧美日韩视频精品一区| 春色校园在线视频观看| 97超碰精品成人国产| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 综合色丁香网| 香蕉精品网在线| 精品酒店卫生间| 久久久成人免费电影| 大香蕉97超碰在线| 精品久久久久久久人妻蜜臀av| 2022亚洲国产成人精品| 亚洲精品影视一区二区三区av| 中文在线观看免费www的网站| 成年女人看的毛片在线观看| 久久久久久国产a免费观看| 三级国产精品片| 国产探花极品一区二区| 亚洲美女视频黄频| 人妻少妇偷人精品九色| 国产成人一区二区在线| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| 男人和女人高潮做爰伦理| 日韩视频在线欧美| 国产有黄有色有爽视频| 日韩欧美 国产精品| 免费av观看视频| 特级一级黄色大片| av国产免费在线观看| 嫩草影院新地址| 99久国产av精品国产电影| 最近的中文字幕免费完整| 久久久久久久久久久丰满| 人妻一区二区av| 天堂中文最新版在线下载 | 久久久国产一区二区| 久久97久久精品| 麻豆成人午夜福利视频| 涩涩av久久男人的天堂| 内射极品少妇av片p| 日韩欧美 国产精品| 日韩大片免费观看网站| 亚洲av日韩在线播放| 免费播放大片免费观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 91久久精品国产一区二区成人| 亚洲精品第二区| 99re6热这里在线精品视频| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 免费av观看视频| 看非洲黑人一级黄片| 禁无遮挡网站| kizo精华| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说 | 欧美高清成人免费视频www| 亚洲av欧美aⅴ国产| 日韩大片免费观看网站| 一级av片app| 午夜视频国产福利| 哪个播放器可以免费观看大片| 性色avwww在线观看| 人妻 亚洲 视频| 欧美日韩精品成人综合77777| 高清欧美精品videossex| 免费看不卡的av| 26uuu在线亚洲综合色| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| 91aial.com中文字幕在线观看| 一级毛片我不卡| 成人午夜精彩视频在线观看| 亚洲美女视频黄频| 国产视频内射| 亚洲欧美一区二区三区黑人 | 777米奇影视久久| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 国产欧美日韩一区二区三区在线 | 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 亚洲精品国产色婷婷电影| 亚洲成人久久爱视频| 免费人成在线观看视频色| 亚洲精品视频女| 卡戴珊不雅视频在线播放| 午夜精品一区二区三区免费看| 91aial.com中文字幕在线观看| 国模一区二区三区四区视频| 搞女人的毛片| 视频区图区小说| 色哟哟·www| www.av在线官网国产| 边亲边吃奶的免费视频| 色吧在线观看| 精品少妇久久久久久888优播| 国产中年淑女户外野战色| 丝袜喷水一区| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 婷婷色综合www| 国产高清三级在线| 欧美xxⅹ黑人| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 另类亚洲欧美激情| 亚洲av中文av极速乱| 搡老乐熟女国产| 亚洲欧美一区二区三区国产| 免费看不卡的av| av播播在线观看一区| 中文字幕亚洲精品专区| 成人一区二区视频在线观看| 亚洲av二区三区四区| 亚洲天堂av无毛| 丝袜美腿在线中文| 久久精品夜色国产| 精品久久久噜噜| 你懂的网址亚洲精品在线观看| 日本wwww免费看| 亚洲精品影视一区二区三区av| 久久精品国产鲁丝片午夜精品| 老司机影院毛片| av免费在线看不卡| 国产精品熟女久久久久浪| 免费人成在线观看视频色| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 极品教师在线视频| h日本视频在线播放| av免费在线看不卡| 精品一区二区三区视频在线| 国产在线男女| 黄片无遮挡物在线观看| av在线播放精品| av在线app专区| 国内精品美女久久久久久| av一本久久久久| 欧美丝袜亚洲另类| 天天一区二区日本电影三级| 国产成年人精品一区二区| 精品久久久精品久久久| 观看免费一级毛片| 成人亚洲精品一区在线观看 | 国产成人精品一,二区| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 久久99热这里只频精品6学生| 久久久久性生活片| 午夜视频国产福利| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲无线观看免费| 国产真实伦视频高清在线观看| 亚洲av一区综合| 成年av动漫网址| 人体艺术视频欧美日本| 黄色怎么调成土黄色| 国产探花在线观看一区二区| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 日本欧美国产在线视频| 成人亚洲精品一区在线观看 | 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆久久精品国产亚洲av| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 国产精品麻豆人妻色哟哟久久| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 国产人妻一区二区三区在| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 日韩欧美一区视频在线观看 | 精品国产乱码久久久久久小说| 少妇人妻精品综合一区二区| 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 白带黄色成豆腐渣| 丝袜美腿在线中文| 欧美激情久久久久久爽电影| 视频中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频 | 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 高清午夜精品一区二区三区| 国产免费一区二区三区四区乱码| 亚洲av二区三区四区| 视频中文字幕在线观看| 欧美+日韩+精品| 啦啦啦在线观看免费高清www| 九九爱精品视频在线观看| 国产黄频视频在线观看| 国产视频内射| 一区二区三区精品91| 简卡轻食公司| 中文天堂在线官网| 国产人妻一区二区三区在| 亚洲第一区二区三区不卡| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 亚洲精品久久午夜乱码| 亚洲性久久影院| 国产视频首页在线观看| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 联通29元200g的流量卡| 久久久国产一区二区| 真实男女啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲5aaaaa淫片| 水蜜桃什么品种好| 久久久亚洲精品成人影院| 一本一本综合久久| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 国产午夜福利久久久久久| 丰满少妇做爰视频| 欧美区成人在线视频| 午夜福利视频精品| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 高清视频免费观看一区二区| 少妇裸体淫交视频免费看高清| 免费av观看视频| 丰满乱子伦码专区| 亚洲精品一二三| 国国产精品蜜臀av免费| 波多野结衣巨乳人妻| 精品久久久久久久久av| 久热这里只有精品99| 777米奇影视久久| 久久久久久久亚洲中文字幕| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 国产成年人精品一区二区| 国产综合懂色| av又黄又爽大尺度在线免费看| 久久久a久久爽久久v久久| 高清日韩中文字幕在线| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 一级爰片在线观看| 日韩av免费高清视频| 又爽又黄a免费视频| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 国产视频内射| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 精华霜和精华液先用哪个| 极品教师在线视频| 亚洲av成人精品一二三区| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 美女视频免费永久观看网站| 男女下面进入的视频免费午夜| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 少妇人妻久久综合中文| 中文在线观看免费www的网站| 99久久中文字幕三级久久日本| 老师上课跳d突然被开到最大视频| 一级毛片 在线播放| 最近最新中文字幕大全电影3| 亚洲综合色惰| 国产日韩欧美在线精品| 久久久久久国产a免费观看| 久久久久久久亚洲中文字幕| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 大香蕉久久网| 久久人人爽av亚洲精品天堂 | 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 久久久久久久亚洲中文字幕| 国产黄a三级三级三级人| 人妻 亚洲 视频| 精品一区在线观看国产| 亚洲在久久综合| 精品少妇久久久久久888优播| 亚洲欧美日韩东京热| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 国产精品无大码| 晚上一个人看的免费电影| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 黑人高潮一二区| 午夜精品一区二区三区免费看| 国产黄a三级三级三级人| 小蜜桃在线观看免费完整版高清| 综合色丁香网| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 欧美激情久久久久久爽电影| 国产在视频线精品| 午夜福利高清视频| 干丝袜人妻中文字幕| eeuss影院久久| 高清在线视频一区二区三区| 国产av不卡久久| 赤兔流量卡办理| 偷拍熟女少妇极品色| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | 国产乱人偷精品视频| 国产欧美另类精品又又久久亚洲欧美| 一级毛片aaaaaa免费看小| 在线观看国产h片| 成人高潮视频无遮挡免费网站| 王馨瑶露胸无遮挡在线观看| 国产综合懂色| 777米奇影视久久| 亚洲人成网站在线观看播放| 观看美女的网站| 岛国毛片在线播放| 国产亚洲精品久久久com| 22中文网久久字幕| 国产v大片淫在线免费观看| 99久久精品热视频| 成年女人在线观看亚洲视频 | 成人亚洲欧美一区二区av| 五月天丁香电影| 亚洲精品视频女| 91精品国产九色| 美女国产视频在线观看| 国产伦精品一区二区三区四那| 一级毛片久久久久久久久女| 国产高清不卡午夜福利| 黄色视频在线播放观看不卡| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久av不卡| 国产女主播在线喷水免费视频网站| 99热6这里只有精品| 亚洲熟女精品中文字幕| 97在线人人人人妻| 成人特级av手机在线观看| 亚洲在久久综合| 亚洲国产最新在线播放| 精品人妻偷拍中文字幕| 久热久热在线精品观看| 各种免费的搞黄视频| 亚洲av中文字字幕乱码综合| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃 | 少妇被粗大猛烈的视频| 天堂网av新在线| 一级二级三级毛片免费看| 人人妻人人澡人人爽人人夜夜| 五月天丁香电影| 国产黄频视频在线观看| 97在线人人人人妻| 亚洲精品国产成人久久av| 精品酒店卫生间| 在现免费观看毛片| 国产真实伦视频高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 岛国毛片在线播放| 国产片特级美女逼逼视频| 亚洲成人精品中文字幕电影| 中文字幕人妻熟人妻熟丝袜美| 久久久精品94久久精品| 国产黄片美女视频| 亚洲国产精品成人久久小说| av国产免费在线观看| 国产精品麻豆人妻色哟哟久久| 久久久精品欧美日韩精品| 五月开心婷婷网| 成年人午夜在线观看视频| 国产真实伦视频高清在线观看| 老师上课跳d突然被开到最大视频| 欧美另类一区| 亚洲色图av天堂| 在线免费十八禁| 亚洲熟女精品中文字幕| 天堂网av新在线| 观看美女的网站| 肉色欧美久久久久久久蜜桃 | 九九久久精品国产亚洲av麻豆| 日韩电影二区| 久久6这里有精品| 1000部很黄的大片| 欧美 日韩 精品 国产| 在线观看三级黄色| 特级一级黄色大片| 热99国产精品久久久久久7| 国产精品福利在线免费观看| 观看免费一级毛片| 少妇裸体淫交视频免费看高清| 全区人妻精品视频| 干丝袜人妻中文字幕| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 亚洲四区av| 街头女战士在线观看网站| 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 看十八女毛片水多多多| 国产精品99久久99久久久不卡 | 日韩视频在线欧美| av在线播放精品| 纵有疾风起免费观看全集完整版| 欧美成人精品欧美一级黄| 国产成人精品婷婷| 不卡视频在线观看欧美| 五月天丁香电影| 日韩中字成人| 午夜免费观看性视频| 女人十人毛片免费观看3o分钟| 边亲边吃奶的免费视频| 蜜桃久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 成人国产麻豆网| 国产伦精品一区二区三区四那| av卡一久久| 午夜福利在线在线| 真实男女啪啪啪动态图| 国产黄片视频在线免费观看| 两个人的视频大全免费| 亚洲人成网站在线播| 夫妻午夜视频| 欧美日韩综合久久久久久| 成年免费大片在线观看| 97超视频在线观看视频| 亚洲欧美日韩东京热| 简卡轻食公司| 99久久精品热视频| 亚洲国产精品999| 高清欧美精品videossex| 日本色播在线视频| 午夜免费观看性视频| 王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| 免费少妇av软件| 国产成人免费无遮挡视频| 亚洲精品视频女| 免费黄频网站在线观看国产| 午夜亚洲福利在线播放| 亚洲av欧美aⅴ国产| 久久久久久久久久久丰满| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 亚洲最大成人av| 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 欧美国产精品一级二级三级 | 成人高潮视频无遮挡免费网站| 水蜜桃什么品种好| 久久久久久伊人网av| 99re6热这里在线精品视频| 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 中国美白少妇内射xxxbb| 99久国产av精品国产电影| 精品国产乱码久久久久久小说| 久久久欧美国产精品| 2021少妇久久久久久久久久久| 99热国产这里只有精品6| kizo精华| 好男人在线观看高清免费视频| 亚洲美女视频黄频| 人妻一区二区av| 简卡轻食公司| 国产成人免费观看mmmm| 亚洲精华国产精华液的使用体验| 亚洲欧美清纯卡通| 少妇丰满av| 中国美白少妇内射xxxbb| 国产老妇伦熟女老妇高清| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久久成人| 国产成人aa在线观看| 精品久久久久久久久亚洲|