劉 文,楊琦武,張 媛
(中國(guó)天辰工程有限公司,天津 300409)
?
綜述與展望
光催化劑的研究進(jìn)展
劉 文*,楊琦武,張 媛
(中國(guó)天辰工程有限公司,天津 300409)
主要介紹近幾年光催化劑的研究進(jìn)展,根據(jù)光催化劑化學(xué)組成不同,分類總結(jié)一些典型金屬氧化物光催化劑、非金屬氧化物光催化劑的合成技術(shù)發(fā)展以及光催化劑在廢氣、廢水處理等環(huán)保領(lǐng)域和分解水制氫等新能源領(lǐng)域的應(yīng)用,對(duì)光催化領(lǐng)域未來(lái)發(fā)展前景進(jìn)行展望。
催化化學(xué);光催化劑;降解;分解水制氫
自1972年Fujishima A等[1]發(fā)現(xiàn)銳鈦礦相TiO2的光電效應(yīng)后,研究者開始深入研究各種半導(dǎo)體材料的光催化性能。在催化劑組成研究方面,以化學(xué)成分區(qū)分,形成了以TiO2[2]、Bi2O3[3]和ZnO[4]等為代表的金屬氧化物系列光催化劑、以CuS[5]和CdS[6]等為代表的金屬硫化物系列光催化劑以及碳材料負(fù)載金屬氮化物、硒化物系列催化劑等;在催化劑性能優(yōu)化方面,發(fā)展了金屬離子摻雜、特殊形貌制備和等離子技術(shù)處理等多種光催化劑改性技術(shù);在光催化及應(yīng)用領(lǐng)域,主要集中于有機(jī)廢水與廢氣處理、光催化分解水制氫和太陽(yáng)能電池等方向。從未來(lái)發(fā)展前景看,在環(huán)保領(lǐng)域,隨著環(huán)保法規(guī)的日趨嚴(yán)格,對(duì)于經(jīng)生化處理即可達(dá)標(biāo)排放的低濃度COD廢水迫切需要進(jìn)一步深度氧化處理。另外,隨著對(duì)有機(jī)廢氣污染的重視,光催化降解低濃度有機(jī)廢氣以其獨(dú)特的優(yōu)勢(shì)必然大有可為;在光解水制氫領(lǐng)域,很多研究[7-13]也取得了成果,但關(guān)鍵在于高效率可見光響應(yīng)的催化劑研制; 在制備高效實(shí)用的太陽(yáng)能電池[14-15]方面,存在的難題是光電轉(zhuǎn)化效率不高。
本文主要介紹近幾年光催化劑的研究進(jìn)展,分類總結(jié)一些典型金屬氧化物光催化劑、非金屬氧化物光催化劑的合成技術(shù)發(fā)展以及光催化劑在廢氣、廢水處理等環(huán)保領(lǐng)域和分解水制氫等新能源領(lǐng)域的應(yīng)用,并對(duì)光催化領(lǐng)域未來(lái)發(fā)展前景進(jìn)行展望。
1.1 納米TiO2系列光催化劑
TiO2一直是光催化研究的重點(diǎn),近年來(lái),研究者通過(guò)外加場(chǎng)、離子攙雜、特殊形貌合成和氮改性等以提高TiO2系列光催化劑效率。賈慶等[16]在微波輔助下制備了B-N共摻雜的TiO2光催化劑,并將其用于亞甲基藍(lán)溶液的降解,結(jié)果表明,與常規(guī)方法制備的TiO2相比,反應(yīng)進(jìn)行4 h后,亞甲基藍(lán)降解率提高11.6個(gè)百分點(diǎn),達(dá)到91.6%。Li Ji等[17]在硅基光電陰極上直接外延共生制備SrTiO3光催化劑并用于分解水實(shí)驗(yàn),結(jié)果表明,在開環(huán)電壓450 mV時(shí),可得到高達(dá)35 mA·cm-2的光電流密度。Son Hoang等[18]采用水熱法合成可見光相應(yīng)的單晶TiO2納米線陣列,并在500 ℃氮摻雜改性,發(fā)現(xiàn)禁帶寬度從通常TiO2的3.2 eV降至2.4 eV,并且催化劑經(jīng)過(guò)鈷處理后光電化學(xué)性能進(jìn)一步提高,在波長(zhǎng)為450 nm的光照射下,光電轉(zhuǎn)化效率依然高達(dá)18%。Liu Wen等[19]通過(guò)水熱法合成直徑(8~12) nm、長(zhǎng)度500 nm的TiO2納米管,并用于降解甲基環(huán)己烷,結(jié)果表明,反應(yīng)300 min后,TiO2納米管對(duì)甲基環(huán)己烷的降解率達(dá)到95%,而TiO2僅有72%。Satpati A K等[20]采用原子層沉積法在ITO薄膜玻璃上制備了多孔TiO2光催化劑。
1.2 納米Bi2O3系列光催化劑
單獨(dú)Bi2O3作為光催化劑活性較差,但當(dāng)Bi與V共同存在形成BiVO4時(shí),光催化活性大大提高。Berglund S P 等[21]在氧氣氛中制備納米釩酸鉍復(fù)合光催化劑并用于光分解水,結(jié)果表明,在波長(zhǎng)(340~460) nm的光照射時(shí),光電轉(zhuǎn)化效率最高可達(dá)21%。Cho S K等[22]在BiVO4中摻雜鎢進(jìn)行改性,通過(guò)XPS和XRD表征發(fā)現(xiàn),鎢的加入改變了BiVO4原來(lái)的晶格結(jié)構(gòu),并在光分解水實(shí)驗(yàn)中利用電化學(xué)掃描顯微鏡證明比BiVO4具有更高的光催化活性。Eisenberg D等[23]將BiVO4與多孔TiO2材料結(jié)合,采用電沉積技術(shù)將BiVO4與TiO2沉積在FTO玻璃上制備成(80~120) nm厚的薄膜,將其用于光分解水,結(jié)果表明,光電流與BiVO4光催化劑相比提高5.5倍,并且可以穩(wěn)定12 h。林雪等[24]通過(guò)控制水熱合成過(guò)程的不同參數(shù)分別制備了球形、花形和線狀BiVO4光催化劑,并用于可見光下分解羅丹明B,結(jié)果表明,制備的BiVO4催化劑比普通TiO2催化劑效率高,在制備的不同形貌BiVO4催化劑中,球形BiVO4催化劑顯示出更好的光催化活性,羅丹明B溶液在可見光照射180 min后被完全降解。
除BiVO4外,研究者也大量研究了Bi2O3與其他金屬?gòu)?fù)合后的光催化性能。王繼武等[25]采用水熱法分別合成了具有高可見光活性的Cu和Ag摻雜的Bi2WO6光催化劑,光催化活性實(shí)驗(yàn)表明,在一定條件下催化劑可以對(duì)含苯酚廢水實(shí)現(xiàn)完全降解。張琴等[26]從改變Bi2WO6的形貌出發(fā),以BiOI為模板劑,在原位轉(zhuǎn)化條件下合成出中空微球結(jié)構(gòu)的Bi2WO6光催化劑,并用以降解甲基橙,反應(yīng)80 min后甲基橙完全降解,而作為對(duì)比的片狀Bi2WO6催化劑僅降解了20%。Liu W等[27]通過(guò)制備含Bi2O3的不同配比的復(fù)合光催化劑陣列,并用電化學(xué)掃描顯微鏡測(cè)試其活性,結(jié)果表明,Cd-In-Bi復(fù)合光催化劑顯示出較高的光電活性。Bhattacharya C等[28]成功制備出Zn摻雜的Bi2WO6光催化劑并用于光分解水實(shí)驗(yàn),結(jié)果表明,當(dāng)Zn與Bi2WO6物質(zhì)的量比為0.12時(shí),通過(guò)掃描電化學(xué)顯微鏡測(cè)得相比于未摻雜的Bi2WO6光催化劑,其光電流提高80%。
1.3 其他金屬氧化物光催化劑
其他金屬氧化物如ZnO、CuO、Fe2O3和In2O3等也具有良好的光催化活性。張嘉等[29]利用溶劑熱法制備出具有中空結(jié)構(gòu)的ZnFe2O4納米微球,光催化活性實(shí)驗(yàn)表明,當(dāng)羅丹明B的質(zhì)量濃度為(5~10) mg·L-1時(shí),降解率可達(dá)65%~75%。Sherly E D等[30]在微波條件下制備出具有可見光活性的ZnO和CuO復(fù)合光催化劑,并用于降解2,4-二氯苯酚,結(jié)果表明,當(dāng)Cu與Zn物質(zhì)的量比為2∶1時(shí),光催化活性最高,初始濃度為50 mg·L-1的2,4-二氯苯酚光照240 min后降解率達(dá)到82%。馮剛等[31]采用常壓回流方法,制備出具有體心立方結(jié)構(gòu)的In2O3光催化劑,在紫外光照射下,2 h內(nèi)甲基紫溶液的脫色率達(dá)77.4%。Leonard K C等[32]通過(guò)制備復(fù)合ZnWO4/WO3催化劑提高其光分解水活性,當(dāng)Zn物質(zhì)的量分?jǐn)?shù)為9%時(shí),光電流最大,為單獨(dú)WO3光催化劑的2.5倍。Hahn N T等[33]測(cè)試了α-Fe2O3薄膜的光分解水活性,發(fā)現(xiàn)在1 mol·L-1的KOH溶液中420 nm波長(zhǎng)(可見光)的光照射下,其光電轉(zhuǎn)化效率可達(dá)10%。Jang J S等[34]研究發(fā)現(xiàn),在Fe2O3中摻雜物質(zhì)的量分?jǐn)?shù)分別為4%的Sn和6%的Be后,在0.2 mol·L-1的KOH溶液中,其可見光的光電轉(zhuǎn)化效率由Fe2O3光催化劑的0.14%提高至1.2%。目前,針對(duì)金屬氧化物光催化劑的研究最多,并且為了提高光催化活性,常通過(guò)金屬離子摻雜等技術(shù)使晶體結(jié)構(gòu)產(chǎn)生缺陷,從而達(dá)到避免光生空穴和光生電子快速?gòu)?fù)合的目的。
2.1 CdS系列光催化劑
CdS由于具有較低的帶隙(2.5 eV),被廣泛研究并應(yīng)用于太陽(yáng)能電池等領(lǐng)域。CdS光催化劑的制備方法與金屬氧化物光催化劑類似,主要有水熱法、溶劑熱法、超聲法、模板劑法和電化學(xué)沉積法等。單一的CdS存在穩(wěn)定性較差和容易腐蝕的缺點(diǎn),因此,研究主要集中于通過(guò)對(duì)其進(jìn)一步改性提高光催化性能和增加穩(wěn)定性。段莉梅等[35]以硫脲和CdCl2為原料,以水和乙二胺為溶劑,通過(guò)溶劑熱法合成出具有六方相結(jié)構(gòu)的CdS光催化劑,在酸性條件下降解羅丹明B溶液,結(jié)果表明,無(wú)論是在太陽(yáng)光還是紫外燈照射下,羅丹明B降解率均超過(guò)90%。趙榮祥等[36]采用超聲法在不同離子液體中通過(guò)控制反應(yīng)條件合成不同形貌的CdS光催化劑,主要包括粒狀、棒狀以及粒棒混合體等,并用于降解羅丹明B,結(jié)果表明,粒狀CdS具有最高的光催化活性,紫外和可見光照射下,反應(yīng)120 min后,羅丹明B降解率分別為97%和30%。趙榮祥等[37]在離子液體輔助下,采用水熱法制備出枝狀CdS光催化劑,紫外燈下反應(yīng)280 min后,甲基橙降解率達(dá)到85%。
2.2 CuS系列光催化劑
Saranya M等[38]采用水熱法,150 ℃下將配制好的混合溶液進(jìn)行反應(yīng),結(jié)果表明,在不同反應(yīng)時(shí)間內(nèi)分別得到微米球、納米管和六邊形納米片等不同形狀的CuS光催化劑,將其中的CuS納米片用于降解亞甲基藍(lán),結(jié)果表明,反應(yīng)40 min后,亞甲基藍(lán)降解率達(dá)87%。Zhao L等[39]采用水熱法,在不同配比的水合甲醇混合溶劑中分別合成出空心CuS微球和多孔硫化銅微球。
Zhang Y W等[40]在160 ℃下采用水熱合成法,將CuS粒子均勻負(fù)載到石墨烯上制備出CuS/石墨烯復(fù)合光催化劑,與純CuS 相比,CuS /石墨烯復(fù)合光催化劑表現(xiàn)出更高的光催化活性,以亞甲基藍(lán)為目標(biāo)物,在可見光照射下,降解率達(dá)81%,而純CuS光催化劑僅有49%。Qian J等[41]在乙醇中先將石墨烯超聲分散,然后加入硝酸銅和硫代乙酰胺,利用水熱法120 ℃反應(yīng)15 h,成功制備出納米CuS和石墨烯復(fù)合光催化劑,光催化活性評(píng)價(jià)結(jié)果表明,該催化劑在H2O2中對(duì)亞甲基藍(lán)降解率達(dá)93.1%,遠(yuǎn)高于普通CuS催化劑。
2.3 氮化物系列光催化劑
氮化物光催化劑以其獨(dú)特的結(jié)構(gòu)引起廣泛關(guān)注,如Ta3N5的禁帶寬度只有2.1 eV,可見光活性相對(duì)較高。Cong Y Q等[42]在氨氣氣氛和800 ℃制備出Ta3N5納米管催化劑,在堿性溶液中進(jìn)行光分解水實(shí)驗(yàn)時(shí),該納米管催化劑比一般的Ta3N5薄膜光電流高3倍多,當(dāng)進(jìn)一步用IrO2和Co3O4修飾后,其光催化活性又提高了4倍多。Lin Z Z等[43]采用熱聚合法經(jīng)高溫焙燒合成出C3N4框架材料,將其用于光分解水實(shí)驗(yàn),結(jié)果表明,該框架材料光催化性能明顯優(yōu)于傳統(tǒng)氮化碳。張健等[44]以KOH和雙氰胺制備出K摻雜的石墨型C3N4光催化劑,該催化劑特點(diǎn)是能帶可控,將其在可見光下用于羅丹明B的降解,結(jié)果表明,鉀離子摻雜顯著提高了石墨型C3N4光催化劑活性,降解速率常數(shù)提高6.4倍。
隨著對(duì)光催化學(xué)科認(rèn)識(shí)的不斷深入,研究者開始系統(tǒng)研究各類催化劑的制備及其光催化活性。以制備組成分,逐漸形成以TiO2、Bi2O3和ZnO等為代表的金屬氧化物,以CuS、CdS為代表的金屬硫化物,此外還有金屬硒化物和金屬氮化物系列等;以制備方法分,主要形成了以摻雜、負(fù)載、異形和外加場(chǎng)等為主的制備技術(shù)。在光催化劑應(yīng)用方面,仍然主要用于有機(jī)物降解、光催化分解水制氫以及太陽(yáng)能電池。隨著環(huán)保要求越來(lái)越嚴(yán)格,光催化在揮發(fā)性有機(jī)廢氣(VOCs)處理中有望扮演更為重要的角色。光催化由于反應(yīng)條件要求較低,在針對(duì)低濃度VOCs處理方面比傳統(tǒng)的吸附、燃燒等手段具有不可替代的優(yōu)勢(shì),因此,光催化技術(shù)在這一領(lǐng)域的應(yīng)用依然是今后的研究熱點(diǎn)。
[1]Fujishima A,Honda K.Electrochemical photolysis water at a semiconductor electrode[J].Nature,1972,238:37-38.
[2]Tang J,James R Durrant,David R Klug.Mechanism of photocatalytic water splitting in TiO2,reaction of water with photoholes,importance of charge carrier dynamics,and evidence for four-hole chemistry[J].Journal of the American Chemical Society,2008,130(42):13885-13891.
[3]付紅普,宜沛沛,高曉明,等.活性白土-Bi2WO6光催化劑的制備及其光催化降解含酚廢水[J].工業(yè)催化,2015,23(1):69-74.
Fu Hongpu,Yi Peipei,Gao Xiaoming et al.Preparation and application of activated white clay-Bi2WO6photocatalyst for degradation of phenol-containing wastewater[J].Industrial Catalysis,2015,23(1):69-74.
[4]Yang X,Wolcott A,Wang G,et al.Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting[J].Nano Letters,2009,9(6):2331-2336.
[5]賈博,楊柳,瞿鵬,等.水熱/溶劑熱法制備CuS及其復(fù)合光催化材料的研究進(jìn)展[J].硅酸鹽通報(bào),2015,34(2):420-427.
Jia Bo,Yang Liu,Zhai Peng,et al.Research progress on CuS and its nanocomposites as photocatalystsfabricated via hydrothermal/solvothermal method[J].Bulletin of the Chinese Ceramic Society,2015,34(2):420-427.
[6]王學(xué)文,周力.分子篩負(fù)載硫化鎘光催化降解羅丹明B的研究[J].應(yīng)用化工,2012,41(12):2057-2063.
Wang Xuewen,Zhou Li.CdS Loaded on molecular sieve for photocatalytic degradation of Rhodamine B[J].Applied Chemical Industry,2012,41(12):2057-2063.
[7]Justin Youngblood W,Seung-Hyun Anna Lee,Yoji Kobayashi,et al.Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell[J].Journal of the American Chemical Society,2009,131(3):926-927.
[8]Kazuhiko Maeda,Tsuyoshi Takata,Michikazu Hara,et al.GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J].Journal of the American Chemical Society,2005,127(23):8286-8287.
[9]Kevin Sivula,F(xiàn)lorian Le Formal,Michael Gr?tzel.WO3-Fe2O3photoanodes for water splitting:a host scaffold,guest absorber approach[J].Chemistry of Materials,2009,21(13):2862-2867.
[11]Ilkay Cesar,Andreas Kay,José A,et al.Translucent thin film Fe2O3photoanodes for efficient water splitting by sunlight:nanostructure-directing effect of Si-doping[J].Journal of the American Chemical Society,2006,128(14):4582-4583.
[12]Kazuhiko Maeda,Nobuo Saito,Yasunobu Inoue,et al.Dependence of activity and stability of germanium nitride powder for photocatalytic overall water splitting on structural properties[J].Chemistry of Materials,2007,19(16):4092-4097.
[13]Yu Noda,Lee Byongjin,Kazunari Domen,et al.Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation[J].Chemistry of Materials,2008,20(16):5361-5367.
[14]Yoshihiko Kondo,Hirofumi Yoshikawa,Kunio Awaga,et al.Preparation,photocatalytic activities,and dye-sensitized solar-cell performance of submicron-scale TiO2hollow spheres[J].Langmuir,2008,24:547-550.
[15]Erik C Garnett,Peidong Yang. Silicon nanowire radialp-njunction solar cells[J].Journal of the American Chemical Society,2008,130(29):9224-9225.
[16]賈慶,彭洋,鄭彥清,等.微波輔助制備B-N共摻雜TiO2催化劑及其光催化活性[J].工業(yè)催化,2015,23(10):752-757.
Jia Qing,Peng Yang,Zheng Yanqing,et al. Preparation of B-N co-doped TiO2catalyst by microwave-assisted method and its photocatalytic activity[J].Industrial Catalysis,2015,23(10):752-757.
[17]Li Ji,Martin D McDaniel,Wang Shijun,et al.A silicon-based photocathode for water reduction with an epitaxial SrTiO3protection layer and a nanostructured catalyst[J].Nature Nanotechnology,2015,10(1):84-90.
[18]Son Hoang,Guo Siwei,Nathan T Hahn,et al.Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2nanowires[J].Nano Letters,2012,12(1):26-32.
[19]Liu Wen,Gao Jianqin,Zhang Fengbao,et al.Preparation of TiO2nanotubes and their photocatalytic properties in degradation methylcyclohexane[J].Materials Transactions,2007,48 (9):2464-2466.
[20]Satpati A K,Arroyo-CurrasN,Li Ji,et al.Electrochemical monitoring of TiO2atomic layer deposition by chronoamperometry and scanning electrochemical microscopy[J]. Chemistry of Materials,2013,25(21):4165-4172.
[21]Berglund S P,F(xiàn)laherty D W,Hahn N T,et al.Photoelectrochemical oxidation of water using nanostructured BiVO4films[J].The Journal of Physical Chemistry C,2011,115(9):3794-3802.
[22]Cho S K,Park H S,Lee H C.Metal doping of BiVO4by composite electrodeposition with improved photoelectrochemical water oxidation[J].The Journal of Physical Chemistry C,2013,117(44):23048-23056.
[23]Eisenberg D,Ahn H S,Bard A J.Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide[J].Journal of the American Chemical Society,2014,136(40):14011-14014.
[24]林雪,于麗麗,閆利娜,等.球形、花形和線狀礬酸鉍的可控合成及光催化性能[J].物理化學(xué)學(xué)報(bào),2013,29 (8):1771-1777.Lin Xue,Yu Lili,Yan Lina,et al.Controllable synthesis and photocatalytic activity of spherical,flowerlike and threadlike bismuth vanadates[J].Acta Physico-Chimica Sinica,2013,29(8):1771-1777.
[25]王繼武,翟祥,高曉明,等.摻雜型Bi2WO6光催化劑的制備及光催化性能研究[J].工業(yè)催化,2014,22(3):206-210.
Wang Jiwu,Zhai Xiang,Gao Xiaoming,et al.Preparation and photocatalytic performance of doping Bi2WO6photocatalysts[J].Industrial Catalysis,2014,22(3):206-210.
[26]張琴,汪曉鳳,段芳,等.Bi2WO6中空微球的制備及其光催化性能[J].無(wú)機(jī)化學(xué)學(xué)報(bào),2015,31(11):2152-2158.
Zhang Qin,Wang Xiaofen,Duan Fang,et al.Bi2MoO6hollow microspheres preparation and photocatalytic properties[J].Chinese Journal of Inorganic Chemistry,2015,31(11):2152-2158.
[27]Liu W,Ye H,Bard A J.Screening of novel metal oxide photocatalysts by scanning electrochemical microscopy and research of their photoelectrochemical properties[J].The Journal of Physical Chemistry C,2010,114:1201-1207.
[28]Bhattacharya C,Lee H C,Bard A J.Rapid screening by scanning electrochemical microscopy(SECM) of dopants for Bi2WO6improved photocatalytic water oxidation with Zn doping[J].The Journal of Physical Chemistry C,2013,117(19):9633-9640.
[29]張嘉,張立新.中空鐵酸鋅納米材料的制備及其光催化性能[J].現(xiàn)代化工,2015,35(2):91-94.
Zhang Jia,Zhang Lixin. Synthesis of hollow ZnFe2O4nanomaterials and their photocatalytic performance[J].Modern Chemical Industry,2015,35(2):91-94.
[30]Sherly E D,Vijaya J J,Kennedy L J.Visible-light-induced photocatalytic performances of ZnO-CuO nanocomposites for degradation of 2,4-dichlorophenol[J].Chinese Journal of Catalysis,2015,36:1263-1272.
[31]馮剛,陳彪,沈明,等.針狀I(lǐng)n2O3微納材料的制備、表征及其光催化性能研究[J].化學(xué)研究與應(yīng)用,2015,27(11):1734-1740.
Feng Gang,Chen Biao,Shen Ming,et al.Synthesis and characterization of needle-like indium oxide micro-nanomaterials and their photocatalytic property[J].Chemical Research and Application,2015,27(11):1734-1740.
[32]Leonard K C,Nam K M,Lee H C,et al.ZnWO4/WO3composite for improving photoelectrochemical water oxidation[J].The Journal of Physical Chemistry C,2013,117(31):15901-15910.
[33]Hahn N T,Ye H,F(xiàn)laherty D W,et al.Reactive ballistic deposition of α-Fe2O3thin films for photoelectrochemical water oxidation[J].ACS Nano,2010,4(4):1977-1986.
[34]Jang J S,Lee J,Ye H,et al.Rapid screening of effective dopants for Fe2O3photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties[J].The Journal of Physical Chemistry C,2009,113(16):6719-6724.
[35]段莉梅,崔海洋,趙偉強(qiáng),等.硫化鎘納米材料對(duì)羅丹明B溶液的光催化降解性能[J].內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,28(3): 259-261.
Duan Limei,Cui Haiyang,Zhao Weiqiang,et al.The photocatalytic degradation proformance of CdS nanomaterials[J].Journal of Inner Mongolia University for Nationalities (Natural Sciences),2013,28(3):259-261.
[36]趙榮祥,李秀萍,徐鑄德.離子液體中不同形貌硫化鎘的合成及光催化活性[J].材料導(dǎo)報(bào),2014,28(9):18-22.
Zhao Rongxiang,Li Xiuping,Xu Zhude.Controlled synthesis and photocatalytic activity of CdS with different morphologies in ionic liquids[J].Materials Review,2014,28(9):18-22.
[37]趙榮祥,李秀萍,徐鑄德.離子液體輔助水熱法合成樹枝狀硫化鎘及光催化性能[J].材料工程,2014,28(2):7-12.
Zhao Rongxiang,Li Xiuping,Xu Zhude.Synthesis and photocatalytic performance of dendritic CdS nanostructures by an ionic liquid-assisted hydrothermal route[J].Materials Review,2014,28(2):7-12.
[38]Saranya M,Santhosh C,Ramachandran R,et al.Hydrothermal growth of CuS nanostructures and its photocatalytic properties[J].Powder Technology,2014,252:25-32.
[39]Zhao L,Tao F Q,Quan Z,et al.Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery[J].Materials Letters,2012,68:28-31.
[40]Zhang Y W,Tian J Q,Li H Y,et al.Biomolecule-assisted,environmentally friendly,one-pot synthesis of CuS /reduced graphene oxide nanocomposites with enhanced photocatalytic performance[J].Langmuir,2012,28:12893-12900.
[41]Qian J,Wang K,Guan Q M,et al.Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites[J].Applied Surface Science,2014,288:633-640.
[42]Cong Y Q,Park H S,Dang H X,et al.Tantalum cobalt nitride photocatalysts for water oxidation under visible light[J].Chemistry of Materials,2012,24:579-586.
[43]Lin Z Z,Lin L H,Wang X C.Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis[J].Chinese Journal of Catalysis,2015,36:2089-2094.
[44]張健,王彥娟,胡紹爭(zhēng).鉀離子摻雜對(duì)石墨型氮化碳光催化劑能帶結(jié)構(gòu)及光催化性能的影響[J].物理化學(xué)學(xué)報(bào),2015,31(1):159-165.
Zhang Jian,Wang Yanjuan,Hu Shaozheng.Effect of K+doping on the band structure and photocatalytic performance of graphitic carbon nitride photocatalysts[J].Acta Physico-Chimica Sinica,2015,31(1):159-165.
Progress in the photocatalysts
LiuWen*,YangQiwu,ZhangYuan
(China Tianchen Engineering Co.,Ltd.,Tianjin 300409, China)
The latest progress in the photocatalysts in recent years was introduced.Based on the chemical composition of the photocatalysts,the preparation and application of typical nanometer metal oxide and non-metal oxide photocatalysts in environmental protection field such as waste gas and waste water disposal and green energy such as hydrogen production from water decomposition were summarized.The prospects of photocatalysis in the future are outlined.
catalytic chemistry;photocatalyst;degradation;water decomposition for hydrogen production
TQ383;TQ034 Document code: A Article ID: 1008-1143(2016)10-0028-05
2016-06-21
劉 文,1982年生,男,高級(jí)工程師,主要從事納米催化劑與工藝技術(shù)研發(fā)。
劉 文。
10.3969/j.issn.1008-1143.2016.10.005
TQ383;TQ034
A
1008-1143(2016)10-0028-05
doi:10.3969/j.issn.1008-1143.2016.10.005