• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ischemic preconditioning protects against ischemic brain injury

    2016-12-02 07:05:34XiaomengMaMeiLiuYingyingLiuLiliMaYingJiangXiaohongChen
    關(guān)鍵詞:門(mén)路拮據(jù)無(wú)子

    Xiao-meng Ma, Mei Liu, Ying-ying Liu, Li-li Ma, Ying Jiang, Xiao-hong Chen

    Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China

    RESEARCH ARTICLE

    Ischemic preconditioning protects against ischemic brain injury

    Xiao-meng Ma#, Mei Liu#, Ying-ying Liu, Li-li Ma, Ying Jiang, Xiao-hong Chen*

    Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China

    How to cite this article: Ma XM, Liu M, Liu YY, Ma LL, Jiang Y, Chen XH (2016) Ischemic preconditioning protects against ischemic brain injury. Neural Regen Res 11(5)∶765-770.

    Funding: This work was supported by grants from the National Natural Science Foundation of China, No. 81071068, the Israel Science Foundation-the National Natural Science Foundation of China (Joint Program), No. 813111290; and the Natural Science Foundation of Guangdong Province in China, No. 2014A030313172.

    Graphical Abstract

    # These authors contributed equally to this work.

    orcid: 0000-0001-9864-1647 (Xiao-meng Ma)

    In this study, we hypothesized that an increase in integrin αvβ3and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3and vascular endothelial growth factor levels in the brain following ischemia.

    nerve regeneration; brain injury; integrin αVβ3; vascular endothelial growth factor; vascular endothelial growth factor receptor; vascular endothelial growth factor receptor-2; fetal liver kinase 1; ischemic preconditioning; ischemic tolerance; global cerebral ischemia; cerebral ischemia; cerebral infarction; NSFC grant; neural regeneration

    Introduction

    Cerebral ischemia is a leading cause of death and disability globally. Developing new therapeutic strategies for cerebral ischemic injury is a major aim of scientists. Ischemic preconditioning (IP), which induces ischemic tolerance, is a brief, non-lethal, ischemic event one or several days prior to subsequent severe ischemia. Previous studies have found that the neuroprotective effects of IP are mediated by an attenuation of the mechanisms of injury, the activation of innate defense mechanisms, and the enhancement of endogenous repair processes (Gidday et al., 2006). However, the detailed mechanisms remain unclear.

    Integrin αVβ3, a member of the integrin family, is involved in angiogenesis and tumor growth, and has been shown to play an important role in animal models of focal brain ischemia (Haring et al., 1996; Okada et al., 1996; Abumiya et al., 1999; Del Zoppo and Mabuchi, 2003). In primates, integrin αVβ3is not expressed in the non-ischemic basal ganglia, but is expressed exclusively in the microvessels of the ischemic basal ganglia after middle cerebral artery occlusionor middle cerebral artery occlusion/reperfusion (Okada et al., 1996). Furthermore, inhibition of integrin αVβ3preserves microvascular patency, reduces blood-brain barrier (BBB) breakdown, and ameliorates ischemic damage in animal models of focal brain ischemia (Abumiya et al., 2000; Shimamura et al., 2006a, b; Kiessling et al., 2009).

    Figure 1 IP improved the histopathology of the hippocampus following global cerebral ischemia in mice (hematoxylin-eosin staining).

    Figure 2 IP reduced blood-brain barrier dysfunction in mice with global cerebral ischemia.

    Vascular endothelial growth factor (VEGF) is one of the most important growth factors involved in vasculogenesis and angiogenesis. Park et al. (2014) found that IP dramatically augments VEGF and phosphorylated fetal liver kinase 1 (pFlk-1) immunoreactivity in the pyramidal cells of the hippocampal CA1 region after transient cerebral ischemia in gerbils. Previous studies demonstrated that the expression levels of VEGF and integrin αVβ3are closely related (Abumiya et al., 1999), and that integrin αVβ3plays a role in the activation of the VEGF receptor (Soldi et al., 1999). In animal models of focal brain ischemia, integrin αVβ3antagonists appear to ameliorate damage by modulating VEGF and its receptor (Shimamura et al., 2006a). This suggests that increased expression of integrin αVβ3may play a harmful role during early cerebral ischemic injury, and that the neuroprotective effects of integrin αVβ3inhibition may be mediated through the modulation of VEGF and its receptor.

    Previous studies of integrin αVβ3focused on ischemic brain damage, but the role of integrin αVβ3in IP-mediated neuroprotection has rarely been reported. Liu et al. (2010) demonstrated that IP effectively attenuates the upregulation of integrin αVβ3mRNA expression after ischemia. Therefore, in this study, we investigated the effect of IP on integrin αVβ3, VEGF and its receptor to clarify the relationship betweenthese proteins and neuroprotection.

    Figure 3 IP prevented the increase in integrin αVand β3expression in the cerebral cortex and hippocampus of mice with global cerebral ischemia 24 hours after the ischemic event.

    Figure 4 IP prevented the increase in VEGF and pFlk-1 expression in the cerebral cortex and hippocampus in mice with global cerebral ischemia 24 hours after ischemia.

    Materials and Methods

    Animals

    A total of 78 clean male C57BL/6J mice weighing 22—25 g (certificate No. 0052588) were supplied by the Experimental Animal Center of Sun Yat-sen University in China and housed in separate cages under standard conditions. The animals were fed a standard diet and maintained under a 12-hour light-dark cycle. All surgery was performed under chloral hydrate (350 mg/kg, intraperitoneally) anesthesia, and all efforts were made to minimize pain and stress to the animals. The procedures conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). The animal experiments were performed in accordance with international ethical standards and were approved by the research ethics committee of Sun Yat-sen University in China.

    Surgical operation

    A total of 78 mice were randomly divided into the following groups: sham operation (Sham; n = 18), IP (n = 20), ischemia (Isch; n = 20), and IP followed by ischemia (IP + Isch; n = 20). The two-vessel occlusion model of global cerebral ischemia was used (Liu et al., 2010). To induce lethal ischemia, mice were anesthetized with chloral hydrate (350 mg/kg, intraperitoneally) (Weijia Technology, Guangzhou, China) and allowed spontaneous respiration throughout the surgical procedure. Through a midline cervical incision, the bilateral common carotid arteries were exposed and clipped with two vascular clamps simultaneously for 30 minutes. The ischemic preconditioning was produced in a similar manner for a period of 5 minutes (Wu et al., 2001; Cho et al., 2005). In the IP + Isch group, the second ischemic insult (30 minutes) was performed 48 hours following the preconditioning ischemic event. Sham-operated animals received the same surgical procedures except that the carotid arteries were not clipped. The mice were placed on a heating pad after surgery until they recovered from anesthesia.

    Evaluation of BBB disruption

    The integrity of the BBB was assessed by quantitative measurement of Evans Blue (Sigma-Aldrich, St. Louis, MO, USA) content 24 hours after ischemia or sham surgery in eight animals per group (Kozler et al., 2003). Briefly, sterilized 2% Evans Blue solution was administered intravenously at a dosage of 4 mL/kg. Thirty minutes after injection, mice were perfused with saline to remove intravascular Evans Blue dye. Brains were rapidly removed, and each sample was weighed, homogenized with 2.5 mL phosphate-buffered saline (PBS), and mixed with 2.5 mL 60% trichloroacetic acid to precipitate protein. The samples were centrifuged for 30 minutes at 1,000 × g, and the absorbances of the supernatants were measured at 610 nm using a spectrophotometer (Genesys 10S; Thermo Electron Corporation, Madison, WI, USA). Evans Blue is expressed as μg/g of brain tissue against a standard curve.

    Histological evaluation

    Mice chosen randomly from the four groups (n = 4 in the Sham group; n = 6 each in the other three groups) were anesthetized with chloral hydrate (350 mg/kg, intraperitoneally) 7 days after cerebral ischemia or sham operation, and then perfused transcardially with normal saline followed by 4% formaldehyde solution. All brains were then postfixed in the same fixative at 4°C, dehydrated, and then embedded in paraffin blocks. Coronal sections of 5 μm thickness were stained with hematoxylin and eosin. The morphology of neurons was observed, and damaged and normal neurons were counted at 200× magnification with a ruled counting plate (Olympus, Tokyo, Japan).

    Preparation of tissue extracts

    Twenty-four hours after the last surgical operation, six mice per group were killed with an overdose of chloral hydrate and then transcardially perfused with ice-cold PBS (pH 7.4). The brains were removed quickly, and the cerebral cortex and hippocampus were rapidly dissected on a cold plate and frozen immediately in liquid nitrogen. All tissues were stored at -80°C until assay. Brain tissue was homogenized in 1 mL of ice-cold Tris buffer (pH 7.2, 4°C) containing 50 mM Tris, 1 mM ethylenediamine tetraacetic acid, 6 mM MgCl2and 5% (w/v) protease inhibitor cocktail. After homogenization, samples were sonicated for 10 seconds and then centrifuged at 20,800 × g for 20 minutes at 4°C. Afterwards, supernatants were collected for western blot assay. The protein concentrations were determined in each sample using a commercially available bicinchoninic acid protein assay kit (Key GEN Biotech, Nanjing, China).

    Western blot assay

    To examine the expression of integrin αVβ3, VEGF and its receptor pFlk-1 in the cortex and hippocampus, western blot assay was performed as described in a previous study (Jiang et al., 2013). Samples from treated mice were resolved using sodium dodecyl sulfate polyacrylamide gradient gels (20 mg protein per lane). Proteins were transferred onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The membranes were blocked in 5% non-fat milk and then incubated with polyclonal mouse anti-integrin αv(1 μg/mL), mouse anti-integrin β3(1 μg/mL), rabbit anti-VEGF (1 μg/mL) or rabbit anti-pFlk-1 (1 μg/mL) (all from Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. After three washes with Tris-buffered saline containing Tween-20, the membranes were incubated with anti-mouse-horseradish peroxidase (Santa Cruz Biotechnology) or goat anti-rabbit-horseradish peroxidase (Santa Cruz Biotechnology) for 30 minutes at room temperature. The experiment was performed in triplicate, and β-actin was used as an internal control. The optical density values were calculated with Quantity One image analysis software (Bio-Rad).

    Statistical analysis

    The data followed a normal distribution. Data were expressed as the mean ± SEM and analyzed with SPSS 13.0 software (SPSS, Chicago, IL, USA). Comparisons were performed using one-way analysis of variance followed by Bonferroni post hoc analysis. P values less than 0.05 were considered statistically significant.

    Results

    IP protected against ischemic brain injury

    Hematoxylin-eosin staining revealed no obvious pathological abnormalities in the hippocampus in the Sham and IP groups. In comparison, neuronal cell loss, dark staining of neurons and nuclear shrinkage were observed in the Isch group. Damaged neurons were fewer in the IP + Isch group (Figure 1).

    IP reduced BBB dysfunction in cerebral ischemic mice

    Evans Blue assay showed that the levels of Evans Blue in the brain were higher in the Isch group than in the Sham group (P < 0.001). IP decreased Evans Blue content in the brain (P< 0.01; Figure 2).

    IP suppressed the increase in integrin αVand β3expression in the cerebral cortex and hippocampus following cerebral ischemia

    Twenty-four hours after the ischemic insult, integrin αvprotein levels in the cortex and hippocampus of mice were determined. As shown in Figure 3A, B, integrin αvprotein levels in the cortex were not significantly different among Sham, IP and IP + Isch groups (~1.14-fold increase over Sham in both the IP and IP + Isch groups, with no significant difference among them). However, integrin αvlevels were significantly increased in the Isch group compared with the Sham group (~2.01-fold increase; P < 0.05). Integrin αvlevels were lower in the IP + Isch group compared with the Isch group. In the hippocampus, integrin αvlevels in the IP group were increased slightly compared with the Sham group (~1.50-fold increase over Sham; no significant difference). Integrin αvlevels were significantly elevated in the Isch group (~4.13-fold increase over Sham; P < 0.01). Levels in the IP + Isch group (~1.80-fold increase over Sham) were lower than those in the Isch group (P < 0.05). Changes in integrin β3expression among the four groups were similar to those observed for integrin αv(Figure 3C, D). The integrin β3levels in the IP group were 1.31-fold (cortex) and 0.96-fold (hippocampus) those in the Sham group (no significant differences). In the Isch group, the levels were elevated 3.92-fold in the cortex and 2.38-fold in the hippocampus (both P < 0.05, compared with the Sham group). In the IP + Isch group, integrin β3levels were 1.32-fold (cortex) and 1.11-fold (hippocampus) the levels in the Sham group (both P < 0.05). Therefore, IP seems to attenuate the increase in integrin αVβ3induced by ischemic insult.

    IP prevented the increase in VEGF and pFlk-1 expression in the cerebral cortex and hippocampus 24 hours after ischemia

    As shown in Figure 4A, B, VEGF expression levels in the cortex and hippocampus in the IP group were slightly increased in comparison with the Sham group (1.45-fold and 1.44-fold increases over Sham, respectively [both P > 0.05]). Expression levels in the cortex and hippocampus were increased significantly in the Isch group (~9.08-fold and ~4.20-fold increases over Sham, respectively [both P < 0.05]). The expression levels were lower in the IP + Isch group than in the Isch group (~2.37-fold and ~2.86-fold lower in the cortex and hippocampus, respectively). The difference between the Isch and IP + Isch groups was significant in the cortex (P< 0.05), but no significant difference was observed for the hippocampus. Similar trends were observed in pFlk-1 expression (Figure 4C, D). The levels of pFlk-1 in the IP group were 0.90-fold (cortex) and 1.31-fold (hippocampus) those in the Sham group (P > 0.05). In the Isch group, pFlk-1 levels were elevated 3.80-fold and 2.02-fold in the cortex and hippocampus, respectively (both P < 0.05, compared with Sham group). Expression levels in the IP + Isch group were significantly lower than those in the Isch group (1.38-fold in the cortex and 1.39-fold in the hippocampus [P < 0.05, only for the cortex]).

    Discussion

    Clinical studies suggest that IP is beneficial to the human brain. In a retrospective study, patients with a previous ipsilateral transient ischemic attack (TIA) had a more favorable outcome after cerebral infarction than patients without a prior TIA (Moncayo et al., 2000). This suggests that ischemic tolerance induced by the TIA results in a better neurological outcome after a more severe subsequent ischemic event. Numerous animal studies on the neuroprotective mechanisms of IP suggest that ischemic tolerance is produced by multiple mechanisms, including vascular changes (Gidday et al., 2006).

    In this study, the expression levels of integrin αVβ3were substantially elevated after global cerebral ischemia, consistent with other studies (Okada et al., 1996; Shimamura et al., 2006a; Kang et al., 2008). We found that IP inhibited this increase in expression of integrin αVβ3after global cerebral ischemia. Furthermore, this effect of IP was associated with reduced ischemic injury to the brain.

    To examine how IP affects integrin αVβ3expression, two proteins, VEGF and its receptor pFlk-1, which are linked to integrin αVβ3expression following ischemic injury, were assessed. We observed that VEGF and pFlk-1 expression levels were reduced by IP, suggesting that this reduction in VEGF levels after ischemic injury may be beneficial.

    Integrin αVβ3, a member of the integrin family, plays a major role in angiogenesis and tumor growth, and has been shown to play a critical role in animal models of focal brain ischemia (Haring et al., 1996; Okada et al., 1996; Abumiya et al., 1999; Del Zoppo and Mabuchi, 2003). Previous studies have shown that inhibition of integrin αVβ3helps preserve microvascular patency (Okada et al., 1996), reduces BBB breakdown, and ameliorates damage resulting from focal brain ischemia (Abumiya et al., 2000; Shimamura et al., 2006a, b; Kiessling et al., 2009). It has been conjectured that increased expression of integrin αVβ3may play a harmful role during early cerebral ischemic injury, and that inhibition of integrin αVβ3expression may reduce ischemic damage.

    VEGF is an endothelial cell mitogen that enhances vascular permeability during angiogenesis. Flk-1, also known as vascular endothelial growth factor receptor-2, is a receptor for VEGF (Rosenstein et al., 1998). Flk-1 is active in its phosphorylated form. Previous studies reported that VEGF was elaborated during ischemic stroke (Hayashi et al., 1997). Although VEGF has been shown to induce angiogenesis in the penumbra and to contribute to the recovery of neuronal function after an ischemic event (Zhang et al., 2000; Manoonkitiwongsa et al., 2004; Yano et al., 2005; Udo et al., 2008), it also has myriad deleterious effects in early ischemic stroke, including increasing BBB leakage, elevating the risk of hemorrhagic transformation, widening the infarction zone (Zhang et al., 2000; Kaya et al., 2005), and increasing platelet adhesion (Verheul et al., 2004). In this study, we found that VEGF levels were lowered by IP, and that the brain was protected by IP, consistent with a deleterious role of VEGF in stroke. Therefore, the beneficial effects of IP may involve integrin αVβ3, VEGF and its receptor. Although these results are preliminary, our findings provide potential new therapeutic targets for ischemic injury.

    It is known that integrin αVβ3can activate VEGF receptors, and that the inhibition of integrin αVβ3expression reduces phosphorylation of VEGF receptors, thereby limiting thebiological effects of VEGF (Soldi et al., 1999). Furthermore, VEGF was reported to induce integrin αVβ3expression in vitro, and expression was highly correlated with integrin αVβ3in vivo (Abumiya et al., 1999). Hence, integrin αVβ3expression may also be suppressed in a VEGF-dependent manner by IP. The relationship between integrin αVβ3and VEGF is very complex, and their roles in ischemic injury remain unclear.

    One of the limitations of the present study is that all animals were killed at 24 hours, whereas ischemic stroke and ischemic tolerance may occur over several days. This study focused on early brain injury, and the long-term effects of IP on integrin αVβ3were not studied. Future studies will need to evaluate the long-term impact of IP on integrin αVβ3and more time points should be analyzed. In addition, inhibitors of integrin αVβ3and VEGF should be used before and after ischemia to determine the role of these proteins in the neuroprotective effects of IP.

    In summary, IP improved outcome in the global cerebral ischemia model, and its effects were associated with inhibition of integrin αVβ3through decreased expression of VEGF and its receptor. Although the mechanisms of ischemic tolerance remain unclear, this study provides insight into the mechanisms of endogenous neuroprotection, and may help in the development of novel therapeutic strategies for stroke.

    Author contributions: XMM carried out animal experiments, western blot assay, collected the data and drafted the paper. ML instructed the animal experiments, carried out data analysis and revised the paper. YYL, LLM, and YJ participated in western blot assay, detected BBB permeability and revised the paper. XHC obtained funding, designed the study and supervised conduct of the study. All authors read and approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR, del Zoppo GJ (1999) Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab 19:1038-1050.

    Abumiya T, Fitridge R, Mazur C, Copeland BR, Koziol JA, Tschopp JF, Pierschbacher MD, del Zoppo GJ (2000) Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 31:1402-1409.

    Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493-501.

    del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879-894.

    Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437-448.

    Haring HP, Akamine BS, Habermann R, Koziol JA, Del Zoppo GJ (1996) Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol 55:236-245.

    Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039-2044.

    Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D, Ma X, Liu M, Kang Z, Pi R, Peng F, Wang Q, Chen X (2013) The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57BL/6 mice. Neuropharmacology 73:415-424.

    Kang WS, Choi JS, Shin YJ, Kim HY, Cha JH, Lee JY, Chun MH, Lee MY (2008) Differential regulation of osteopontin receptors, CD44 and the alpha(v) and beta(3) integrin subunits, in the rat hippocampus following transient forebrain ischemia. Brain Res 1228:208-216.

    徐天水膝下無(wú)子,沒(méi)有更好的發(fā)家致富門(mén)路。好在他能吃苦,日子過(guò)得馬馬虎虎。這幾年歲數(shù)大了,做活也沒(méi)人要,每月老伴兒固定的幾百塊錢(qián)醫(yī)藥費(fèi),讓本來(lái)就不寬裕的生活越發(fā)顯得拮據(jù)。閨女婚后帶著丈夫孩子一家人跪地認(rèn)錯(cuò),怎奈她家并不富裕,照顧老人是遠(yuǎn)水解不了近渴。

    Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T (2005) VEGF protects brain against focal ischemia without increasing blood--brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111-1118.

    Kiessling JW, Cines DB, Higazi AA, Armstead WM (2009) Inhibition of integrin alphavbeta3 prevents urokinase plasminogen activator-mediated impairment of cerebrovasodilation after cerebral hypoxia/ ischemia. Am J Physiol Heart Circ Physiol 296:H862-867.

    Kozler P, Pokorny J (2003) Altered blood-brain barrier permeability and its effect on the distribution of Evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol Res 52:607-614.

    Liu M, Ma X, Chen X, Jiang Y, Wu A, Peng F, Liu Y, Pi R (2010) Ischemic preconditioning partially suppresses and postpones integrin αVβ3mRNA expression following transient global cerebral ischemia in C57BL/6 mice. Neural Regen Res 5:1782-1786.

    Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD (2004) Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 24:693-702.

    Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54:2089-2094.

    Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DA, del Zoppo GJ (1996) Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol 149:37-44.

    Rosenstein JM, Mani N, Silverman WF, Krum JM (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 95:7086-7091.

    Shimamura N, Matchett G, Solaroglu I, Tsubokawa T, Ohkuma H, Zhang J (2006a) Inhibition of integrin alphavbeta3 reduces bloodbrain barrier breakdown in focal ischemia in rats. J Neurosci Res 84:1837-1847.

    Shimamura N, Matchett G, Yatsushige H, Calvert JW, Ohkuma H, Zhang J (2006b) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37:1902-1909.

    Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882-892.

    Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28:14522-14536.

    Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM (2000) Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 96:4216-4221.

    Wu C, Zhan RZ, Qi S, Fujihara H, Taga K, Shimoji K (2001) A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods 107:101-106.

    Yano A, Shingo T, Takeuchi A, Yasuhara T, Kobayashi K, Takahashi K, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I (2005) Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg 103:104-114.

    Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes bloodbrain barrier leakage in the ischemic brain. J Clin Invest 106:829-838.

    Copyedited by Patel B, Wysong S, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.182703 http://www.nrronline.org/

    Accepted: 2015-09-12

    *Correspondence to: Xiao-hong Chen, M.D., Ph.D., xiaohongchenzssy@aliyun.com.

    猜你喜歡
    門(mén)路拮據(jù)無(wú)子
    “無(wú)子”問(wèn)題與社會(huì)、家庭應(yīng)對(duì)策略*
    ——以民國(guó)之前文獻(xiàn)為中心
    人文雜志(2022年4期)2022-10-14 17:46:18
    “無(wú)子”問(wèn)題與社會(huì)、家庭應(yīng)對(duì)策略
    人文雜志(2022年4期)2022-05-19 01:20:07
    三明:姐妹發(fā)展有愿望,增收有門(mén)路
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    徐母育彎棗樹(shù)
    蘭芝無(wú)責(zé) 仲卿之過(guò)
    “拮據(jù)”的“皇帝”婚禮
    “拮據(jù)”釋義
    “拮據(jù)”釋義
    健康之門(mén)路
    成功之門(mén)路
    最近手机中文字幕大全| 国产高清三级在线| 女性被躁到高潮视频| 久久国产亚洲av麻豆专区| 久久久久人妻精品一区果冻| 欧美少妇被猛烈插入视频| 国产精品秋霞免费鲁丝片| 桃花免费在线播放| av免费观看日本| 如日韩欧美国产精品一区二区三区 | 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 人妻人人澡人人爽人人| 一级二级三级毛片免费看| 欧美少妇被猛烈插入视频| av天堂久久9| 天美传媒精品一区二区| 丰满乱子伦码专区| 欧美少妇被猛烈插入视频| 国产综合精华液| 久久青草综合色| 校园人妻丝袜中文字幕| 久久综合国产亚洲精品| 男女国产视频网站| 精品一区在线观看国产| 国产男人的电影天堂91| 国产欧美另类精品又又久久亚洲欧美| 国产一区二区在线观看av| 如日韩欧美国产精品一区二区三区 | 看免费成人av毛片| 十八禁网站网址无遮挡| 人妻一区二区av| 人妻一区二区av| 一个人看视频在线观看www免费| 99国产精品免费福利视频| 日韩在线高清观看一区二区三区| 考比视频在线观看| 国产精品不卡视频一区二区| 人人妻人人爽人人添夜夜欢视频| 一个人看视频在线观看www免费| 免费看光身美女| 看十八女毛片水多多多| 亚洲av二区三区四区| 免费观看在线日韩| 亚洲第一区二区三区不卡| 天天操日日干夜夜撸| 亚洲精品视频女| 高清在线视频一区二区三区| 另类精品久久| 婷婷色av中文字幕| 妹子高潮喷水视频| 久久久久久人妻| 久久久a久久爽久久v久久| 老女人水多毛片| 男女无遮挡免费网站观看| 精品亚洲乱码少妇综合久久| 国产欧美日韩一区二区三区在线 | 国产免费一级a男人的天堂| av.在线天堂| 国产成人精品福利久久| 色网站视频免费| 国产免费一级a男人的天堂| freevideosex欧美| 91国产中文字幕| 日韩伦理黄色片| 中国三级夫妇交换| 在线观看三级黄色| 一边亲一边摸免费视频| 久久午夜综合久久蜜桃| 日韩成人av中文字幕在线观看| av国产精品久久久久影院| 国产成人av激情在线播放 | 国产老妇伦熟女老妇高清| 精品一区二区三区视频在线| 亚洲欧美日韩另类电影网站| 超碰97精品在线观看| 嘟嘟电影网在线观看| av线在线观看网站| 中文字幕久久专区| 午夜视频国产福利| 人妻一区二区av| 大陆偷拍与自拍| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 国产熟女午夜一区二区三区 | 亚洲精品第二区| 99热6这里只有精品| 如何舔出高潮| 熟妇人妻不卡中文字幕| 久久国产精品男人的天堂亚洲 | 国产一区有黄有色的免费视频| 蜜桃在线观看..| 国产精品一区二区三区四区免费观看| 久久久久久久久久久免费av| 免费观看在线日韩| 国产午夜精品久久久久久一区二区三区| 亚洲av.av天堂| 成人影院久久| 亚洲欧美日韩卡通动漫| 好男人视频免费观看在线| 高清欧美精品videossex| 免费黄色在线免费观看| 蜜桃国产av成人99| 亚洲不卡免费看| 欧美97在线视频| 国产精品99久久久久久久久| 精品酒店卫生间| 满18在线观看网站| 成人毛片60女人毛片免费| 在线看a的网站| 久久久久久久久久久久大奶| freevideosex欧美| 亚洲欧洲国产日韩| 一级a做视频免费观看| 国精品久久久久久国模美| 一本久久精品| 久久精品久久久久久久性| 天天影视国产精品| 在线精品无人区一区二区三| 久久久久久久久久人人人人人人| 91午夜精品亚洲一区二区三区| 国产精品一国产av| 亚洲内射少妇av| 亚洲,一卡二卡三卡| 曰老女人黄片| 精品人妻熟女av久视频| 国产精品蜜桃在线观看| 秋霞伦理黄片| 久久女婷五月综合色啪小说| 亚洲精品aⅴ在线观看| 又大又黄又爽视频免费| 日韩中文字幕视频在线看片| 中国国产av一级| 国产免费视频播放在线视频| 99九九在线精品视频| 欧美xxxx性猛交bbbb| 蜜桃久久精品国产亚洲av| 国产伦理片在线播放av一区| 精品国产露脸久久av麻豆| 国产极品天堂在线| 成人国产av品久久久| 夜夜爽夜夜爽视频| 国产成人午夜福利电影在线观看| www.av在线官网国产| 亚洲国产精品一区二区三区在线| 欧美精品一区二区免费开放| 日韩av免费高清视频| 久久久国产一区二区| 69精品国产乱码久久久| 精品国产乱码久久久久久小说| 精品久久久久久久久av| 免费观看性生交大片5| 插阴视频在线观看视频| 国产成人aa在线观看| 亚洲av在线观看美女高潮| 亚洲欧美成人精品一区二区| 精品国产露脸久久av麻豆| 一区二区三区精品91| 国产精品免费大片| 成人18禁高潮啪啪吃奶动态图 | 中文字幕亚洲精品专区| 免费少妇av软件| kizo精华| 满18在线观看网站| 亚洲国产精品一区二区三区在线| 久久99蜜桃精品久久| 大码成人一级视频| 免费观看无遮挡的男女| a 毛片基地| 久久国产精品男人的天堂亚洲 | 中文字幕人妻丝袜制服| 成人国产麻豆网| 亚洲av福利一区| av国产精品久久久久影院| 少妇人妻精品综合一区二区| 飞空精品影院首页| 一级毛片aaaaaa免费看小| 国产精品.久久久| 欧美精品一区二区免费开放| 午夜激情久久久久久久| 午夜免费鲁丝| a级毛色黄片| 99久久精品一区二区三区| 国产成人freesex在线| 成人毛片60女人毛片免费| 精品一区二区免费观看| 久久影院123| 99久国产av精品国产电影| 99久久人妻综合| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 这个男人来自地球电影免费观看 | 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 婷婷色av中文字幕| 91精品一卡2卡3卡4卡| 国产精品 国内视频| 我的女老师完整版在线观看| 啦啦啦视频在线资源免费观看| 水蜜桃什么品种好| 丝袜喷水一区| 国产在线视频一区二区| 黄片无遮挡物在线观看| 日韩三级伦理在线观看| 国精品久久久久久国模美| 婷婷成人精品国产| 日韩电影二区| 精品国产露脸久久av麻豆| 日本午夜av视频| 久久影院123| 午夜激情av网站| 中文字幕久久专区| 久久久久久久久久人人人人人人| 精品国产一区二区久久| 男女边吃奶边做爰视频| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 一个人看视频在线观看www免费| 交换朋友夫妻互换小说| 国产精品国产三级国产av玫瑰| 热re99久久国产66热| 999精品在线视频| 伦精品一区二区三区| 久久99精品国语久久久| 又粗又硬又长又爽又黄的视频| 一本久久精品| 老熟女久久久| 成人免费观看视频高清| 国产 一区精品| 自拍欧美九色日韩亚洲蝌蚪91| 99九九在线精品视频| 99久久人妻综合| 亚洲人成77777在线视频| 只有这里有精品99| 精品久久久久久久久av| 国产亚洲精品久久久com| 中文字幕免费在线视频6| 日本黄色日本黄色录像| 免费高清在线观看视频在线观看| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| 人妻 亚洲 视频| av网站免费在线观看视频| 国产男人的电影天堂91| 一区二区三区乱码不卡18| 亚洲精品乱码久久久v下载方式| 免费高清在线观看日韩| 视频区图区小说| 亚洲色图综合在线观看| 亚洲精品成人av观看孕妇| 国产精品不卡视频一区二区| freevideosex欧美| 97在线视频观看| 少妇 在线观看| 中文字幕久久专区| 亚洲av中文av极速乱| 亚洲欧洲国产日韩| 国产免费视频播放在线视频| 成年av动漫网址| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 老司机亚洲免费影院| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 啦啦啦视频在线资源免费观看| 国产精品一二三区在线看| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 免费日韩欧美在线观看| 亚洲欧美色中文字幕在线| 全区人妻精品视频| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| 日本欧美视频一区| 成年美女黄网站色视频大全免费 | 国产在线一区二区三区精| 国产成人精品福利久久| 日韩中字成人| 青春草亚洲视频在线观看| 超碰97精品在线观看| 免费大片黄手机在线观看| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 新久久久久国产一级毛片| 成年美女黄网站色视频大全免费 | 欧美 日韩 精品 国产| 免费大片黄手机在线观看| 搡女人真爽免费视频火全软件| av在线播放精品| 久久韩国三级中文字幕| av网站免费在线观看视频| 亚洲美女黄色视频免费看| 欧美日韩视频精品一区| 伦理电影大哥的女人| 一级毛片黄色毛片免费观看视频| 成人亚洲精品一区在线观看| 黄色欧美视频在线观看| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 中文字幕久久专区| 22中文网久久字幕| 18禁在线播放成人免费| 国产精品久久久久久精品古装| 免费大片黄手机在线观看| 少妇丰满av| 最后的刺客免费高清国语| 午夜福利视频在线观看免费| 边亲边吃奶的免费视频| 国产亚洲最大av| 在线观看www视频免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色吧在线观看| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 少妇人妻久久综合中文| 高清欧美精品videossex| 少妇被粗大的猛进出69影院 | 中文字幕久久专区| 这个男人来自地球电影免费观看 | 王馨瑶露胸无遮挡在线观看| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 99国产综合亚洲精品| www.色视频.com| 国产精品一区www在线观看| av视频免费观看在线观看| 日本与韩国留学比较| 人人妻人人添人人爽欧美一区卜| 婷婷成人精品国产| 少妇高潮的动态图| 观看av在线不卡| 最后的刺客免费高清国语| 欧美精品高潮呻吟av久久| 日韩av在线免费看完整版不卡| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品在线电影| 亚洲av.av天堂| 亚洲五月色婷婷综合| 国产成人精品福利久久| 成人国语在线视频| 国产成人aa在线观看| 伦精品一区二区三区| 极品人妻少妇av视频| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| 亚洲综合色惰| 午夜激情av网站| 欧美精品高潮呻吟av久久| freevideosex欧美| 天堂8中文在线网| 国产亚洲一区二区精品| 国产高清不卡午夜福利| 高清av免费在线| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 国产男人的电影天堂91| 亚洲av综合色区一区| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 我要看黄色一级片免费的| kizo精华| 国产欧美日韩综合在线一区二区| 美女cb高潮喷水在线观看| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 久久青草综合色| 极品少妇高潮喷水抽搐| 全区人妻精品视频| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 人妻夜夜爽99麻豆av| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 亚洲精品国产av成人精品| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | 母亲3免费完整高清在线观看 | 老熟女久久久| 母亲3免费完整高清在线观看 | 99久久人妻综合| 国产免费一级a男人的天堂| 人人澡人人妻人| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 男女高潮啪啪啪动态图| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 九九爱精品视频在线观看| 亚洲av二区三区四区| 国产精品欧美亚洲77777| 飞空精品影院首页| 午夜福利在线观看免费完整高清在| 9色porny在线观看| 久久精品国产鲁丝片午夜精品| 亚洲欧美一区二区三区黑人 | 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| a级毛片黄视频| 性高湖久久久久久久久免费观看| 最近最新中文字幕免费大全7| 日韩亚洲欧美综合| 国产成人freesex在线| 高清av免费在线| 亚洲精品国产av蜜桃| 国产精品 国内视频| 久久精品久久精品一区二区三区| 国产亚洲精品第一综合不卡 | 大香蕉久久成人网| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 男女国产视频网站| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 国产一区二区在线观看av| 另类精品久久| 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 欧美少妇被猛烈插入视频| 久久精品国产a三级三级三级| 大香蕉久久成人网| 五月天丁香电影| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 99热国产这里只有精品6| 一边摸一边做爽爽视频免费| 欧美xxⅹ黑人| 嫩草影院入口| 久久精品国产亚洲av涩爱| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 能在线免费看毛片的网站| 新久久久久国产一级毛片| 国产精品一国产av| av女优亚洲男人天堂| 国产免费现黄频在线看| 亚洲av电影在线观看一区二区三区| 亚洲av成人精品一区久久| 99热网站在线观看| 国产精品蜜桃在线观看| 日产精品乱码卡一卡2卡三| 黄色视频在线播放观看不卡| 日本-黄色视频高清免费观看| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 高清av免费在线| 精品亚洲成a人片在线观看| 永久免费av网站大全| 婷婷色综合www| 免费大片黄手机在线观看| 人人澡人人妻人| 18+在线观看网站| 国产精品免费大片| 老女人水多毛片| 成人国产麻豆网| 久热久热在线精品观看| 在线观看免费日韩欧美大片 | 肉色欧美久久久久久久蜜桃| 男男h啪啪无遮挡| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 国产精品久久久久久av不卡| 成年人免费黄色播放视频| 青青草视频在线视频观看| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 午夜影院在线不卡| 最近最新中文字幕免费大全7| 国产在线一区二区三区精| 亚洲国产av影院在线观看| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 18禁在线播放成人免费| 国产伦理片在线播放av一区| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 亚洲内射少妇av| 久久国产精品男人的天堂亚洲 | 国产片内射在线| 免费看不卡的av| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 黑人猛操日本美女一级片| 国产av一区二区精品久久| √禁漫天堂资源中文www| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 欧美97在线视频| 大片电影免费在线观看免费| 美女中出高潮动态图| 国产精品三级大全| 亚洲人成网站在线观看播放| 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 免费看不卡的av| 中文字幕最新亚洲高清| 日韩成人伦理影院| 日韩成人av中文字幕在线观看| 国产成人精品福利久久| 日本av手机在线免费观看| 日本黄色日本黄色录像| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 国产高清有码在线观看视频| 女性生殖器流出的白浆| 亚洲高清免费不卡视频| 精品国产露脸久久av麻豆| 亚洲综合精品二区| 永久网站在线| a 毛片基地| 汤姆久久久久久久影院中文字幕| 麻豆乱淫一区二区| 国产黄频视频在线观看| 久久久精品区二区三区| 69精品国产乱码久久久| 亚洲人成网站在线播| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 午夜免费观看性视频| 伦理电影免费视频| 人妻 亚洲 视频| 久久ye,这里只有精品| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 亚洲综合精品二区| 日本黄大片高清| 黄色视频在线播放观看不卡| 18在线观看网站| 久热久热在线精品观看| 搡女人真爽免费视频火全软件| 在线观看人妻少妇| 少妇的逼好多水| 日韩成人伦理影院| 久久久久久久精品精品| 黄色配什么色好看| 热re99久久国产66热| 欧美三级亚洲精品| 亚洲欧美中文字幕日韩二区| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 久久99蜜桃精品久久| 18禁动态无遮挡网站| 亚洲综合色惰| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 久久久久久久久久成人| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利剧场| 我的老师免费观看完整版| 午夜激情av网站| 日本av免费视频播放| 亚洲图色成人| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说 | 日韩一区二区三区影片| 亚洲天堂av无毛| 午夜福利视频在线观看免费| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 一区二区三区四区激情视频| 在线天堂最新版资源| 丝袜脚勾引网站| 欧美日韩成人在线一区二区| 香蕉精品网在线| av免费在线看不卡| 国产免费又黄又爽又色| 黑人猛操日本美女一级片| 亚洲在久久综合| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 亚洲欧美日韩另类电影网站| 观看av在线不卡| 在线观看人妻少妇|