• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池正極材料線團狀α-M nO2的合成及電化學性能

    2016-12-01 01:32:13徐杉盧琳劉戀駱義文王石泉劉建文李國華馮傳啟湖北大學湖北先進有機化學材料協(xié)同創(chuàng)新中心武漢4006湖北大學有機功能分子的合成與應用教育部重點實驗室武漢4006浙江工業(yè)大學綠色化學合成技術國家重點實驗室杭州00
    無機化學學報 2016年1期
    關鍵詞:實驗室

    徐杉 盧琳 劉戀 駱義文 王石泉*, 劉建文 李國華 馮傳啟(湖北大學湖北先進有機化學材料協(xié)同創(chuàng)新中心,武漢4006)(湖北大學有機功能分子的合成與應用教育部重點實驗室,武漢4006)(浙江工業(yè)大學綠色化學合成技術國家重點實驗室,杭州00)

    鋰離子電池正極材料線團狀α-M nO2的合成及電化學性能

    徐杉1,2盧琳1,2劉戀1,2駱義文1,2王石泉*,1,2劉建文1,2李國華3馮傳啟1,2
    (1湖北大學湖北先進有機化學材料協(xié)同創(chuàng)新中心,武漢430062)
    (2湖北大學有機功能分子的合成與應用教育部重點實驗室,武漢430062)
    (3浙江工業(yè)大學綠色化學合成技術國家重點實驗室,杭州310032)

    以MnSO4,(NH4)2S2O8為反應物,Ag+作為催化劑的溶液相方法合成了線團狀的α-MnO2。采用XRD、SEM和TEM等手段對合成產物進行了表征。發(fā)現(xiàn)反應溫度和反應時間對產物的結晶度和形貌有很大的影響。通過恒電流充電/放電測試和循環(huán)伏安法(CV)對最終產物的電化學性能進行了表征。結果表明,由于其獨特的形態(tài),25℃下反應2 d的產物作為鋰離子電池正極材料,表現(xiàn)出良好的循環(huán)穩(wěn)定性(100次循環(huán)后放電比容量為124 mAh·g-1)。線團狀α-MnO2在鋰離子電池應用中可能是一個潛在的正極材料。

    線團狀α-MnO2;溶液相合成方法;鋰離子電池

    The cost efficiency and environmental friendliness of cathode materials is currently a major focus in battery research[1-2].In this regard,manganese oxides can meet all requirements and offer other desirable features,such as convenient preparation and abundant availability[3].Manganese dioxide is a widely-used material in electrochemical cells for its abundance and benignity.Due to the different interlink of the octahedral MnO6moiety,α,β,γ,δ and λ forms of MnO2are classified into three groups according to the tunnel structures in one,two or three dimensions[4-5],of which the α,β and γ forms are 1D tunnels.The δ and λ forms are 2D layered compound and 3D spinel structure,respectively[4,6].The properties of MnO2largely depend on it crystal structure[4,7-8].In recent years,1D nanostructures have been demonstrated to exhibit superior electrical,optical,mechanical,and thermal properties,showing their potential applications as building blocks in microscale devices[9-13].For example,α-MnO2has been widely used as magnetic materials[14-15],electrode materials in batteries[16-19]and supercapacitors[20-21].For Li/MnO2battery,among the polymorphs of MnO2,α-MnO2has large(2×2)tunnels existing in the crystalline lattice which can facilitate the Li+intercalation and de-intercalation within these systems thereby enhancing the capacity performance[18,23-24].Utilization of 1D α-MnO2could be advantageous in batteries as they not only provide large tunnels but also facilitate shorter diffusion path lengths and stress relaxation during intercalation/deintercalation process leading to a higher rate capability and cyclic stability[18,22,25-26].So far,many methods for synthesis of MnO2have been developed,mainly including hydrothermal method and solution phase synthesis method.Li et al.[9]have reported that a novel α-MnO2core-shell structure could be obtained by introducing a homogeneous catalyst of an Ag+solution[27]to prepare α-MnO2with a specific urchin-like structure. The diameters of these urchin-like structures are 1.6~2.0 μm,which densely aligned with nanorods with uniform diameters of 30~40 nm.In view of the special morphology of the product,it is likely to have high discharge specific capacity and stable cycling performance as cathode material in lithium ion batteries(LIBs).

    In this work,we synthesizedα-MnO2via solution-phase method,using MnSO4and(NH4)2S2O8as reactants and Ag+ions as catalyst.The effects of reaction temperature and time on the crystal structure, the morphology and the electrochemical performance of the products were investigated.

    1 Experimental

    1.1Synthesis and characterization of the samples

    The synthesis process is shown in Scheme 1, modified by the previous literature[9].The solutions were prepared by mixing 0.507 g MnSO4·H2O(3 mmol)and 0.684 6 g(NH4)2S2O8(3 mmol)in 50 mL distilled water,1 mL AgNO3(0.059 mol·L-1)solution was added in the above solution.After the homogeneous solution reacted for 2 days at 0℃(25,45,65℃),or reacted at 25℃for 1 day(3,5 days),the products were washed with distilled water and ethanol with centrifugal filtration for several times,respectively, and then dried in a vacuum at 60℃for 5 h.Then α-MnO2products were obtained(designated as α-MnO2-0℃-2 d,α-MnO2-25℃-2 d,α-MnO2-45℃-2 d,α-MnO2-65℃-2d,α-MnO2-25℃-1 d,α-MnO2-25℃-3 d,α-MnO2-25℃-5 d,respectively).

    Scheme 1 Illustration of synthesis for α-MnO2

    1.2General characterization of the sam p les

    The structure and crystallinity of the samples were characterized using an X-ray diffractometer(XRD; Rigaku X-ray diffractometer)with Cu Kα radiation source(λ=0.150 6 nm)under a voltage of 40 kV and a current of 30 mA.The particle sizes of the samples were observed by scanning electron microscopy(SEM; JEOL JSM,6510 V)and transmission electron microscopy(TEM;FEI Tecnai G20).

    1.3Electrochem ical characterization of the samples

    The electrochemical characterizations were performed using coin cells(CR2016).The anode wasprepared by dispersing 70%as-prepared powders and 20%carbon black in 10%polyvinylidene fluoride (PVDF)solution.The mixture was rolled into a film and was dried at 120℃for 24 h in vacuum.The film was cut to size(1 cm2)and pressed onto a nickel mesh substrate(1 cm2).Coin test cells were assembled in an argon-filled glove box,with a metallic Li counter electrode,Celgard 2400 microporous membrane separator, and the electrolyte was a solution of l mol·L-1solution of LiPF6in ethylene carbonate(EC)and diethyl carbonate(DEC)(1∶1,V/V).The cyclic voltammetry (CV)was measured by an electrochemical workstation (CHI660E)between 1.5 and 4.2 V at a scan rate of 0.1 mV·s-1.The electrochemical impedance spectroscopy(EIS)measurements were performed with CHI660E over the frequency range of 0.01~100 kHz with an amplitude of 3 mV.These cells were galvanostatically charged and discharged in the voltage range of 1.5~4.2 V at the current density of 50 mA·g-1to measure the electrochemical response.The current densities used were from 50 to 500 mA·g-1.

    2 Results and discussion

    The chemical reaction in the homogeneous catalytic route to synthesize various α-MnO2structures could be described as follows[9]:

    Without the existence of an Ag+ions solution or Ag foil,no product was formed at room temperature.It was known that the role of catalyst Ag+could reduce the potential energy of this chemical reaction so that the reaction could proceed with the existence of catalyst Ag+even at room temperature[9].

    The XRD patterns of the as-prepared α-MnO2are shown in Fig.1(a,b),which indicates that the products can be indexed as α-MnO2(a=0.280 0 nm,b=0.280 0 nm,c=0.445 0 nm;Space group P63/mmc(194),PDF #300820).The crystallinity of the samples is not very good because the reaction temperature is very low(0~65℃).It can be seen with the increase of temperature and time,the crystallinity of the samples are getting better,which gives the fact that reaction temperature and reaction time have influenced on the crystallinity of materials.The structure of α-MnO2is hollandite structure,which is based on rhombic manganese ore structure.It is generally believed to adopt an octahedron structure in which Mn2+occupies the center of octahedron and O2-is distributed over octahedral sites, shown in Fig.1(c).[MnO6]octahedron forms doublestranded along the axis direction,the octahedron with double-chain shares apex angle with adjacent chains to form the T(2×2)tunnel structure[18,22-23].Tunnel sectional area becomes bigger because of its doublechain structure,which makes it accommodate ions such as Li+ions.It indicates that α-MnO2maybe a potential cathode material for LIBs.

    Fig.1 XRD patterns of the samples prepared at various temperatures(a)and for various times at 25℃(b); (c)Crystal structure of as-prepared α-MnO2

    The SEM images of the samples are shown in Fig.2(a~g).The insets of the SEM images are the higher magnification SEM images.It can be observed that nanowire with different thickness is the smallest unit of the microstructure.The sample α-MnO2-0℃-2 d(Fig.2(a))presents the inchoate mircrospherescomposed of nanowires with the size of 20~25 nm because of the low reaction temperature.With the increase of the temperature,microspheres were formed gradually,shown in Fig.2(b,c).The microspheres fell apart into nanowires with the size of 30~40 nm when the reaction temperature rose to 65℃(Fig.2(d)).With the increase of the reaction time,the morphology of the samples gradually became microspheres winded with nanowires instead of microspheres with diameter of 1 μm.And the longer the time is,the thicker the nanowires are,shown in Fig.2(b,e,f,g).Thus it can be seen that reaction time is the key factor for the formation of nanowires.The sample α-MnO2-25℃-2 d exhibits a mess of clews composed of the thinnest nanowires with the size of 15~20 nm,which can be observed at higher magnifications images(Fig.2(b)). The TEM images of α-MnO2-25℃-2 d are shown in Fig.2(h),present a clearer morphology with the aggregation of many nanowires.The average diameter of clews is about 1μm.There are many interspaces among nanowires,which are in favor for embedding of Li+ions.The nanometered structure of α-MnO2means that the Li+ions diffusion path is shortened and the electrochemical properties are enhanced for LIBs.

    Fig.2 SEM images of the samples:(a)α-MnO2-0℃-2 d, (b)α-MnO2-25℃-2 d,(c)α-MnO2-45℃-2 d, (d)α-MnO2-65℃-2 d,(e)α-MnO2-25℃-1 d, (f)α-MnO2-25℃-3 d,(g)α-MnO2-25℃-5 d; TEM images:(h)α-MnO2-25℃-2 d

    Fig.3 shows the typical charge/discharge curves of the as-prepared electrodes between 1.5 and 4.2 V with a current density of 50 mA·g-1,respectively.In the discharge curves,a voltage plateaus near at 2.8 V are clearly observed in Fig.3(a~g).It can be found that the initial discharge capacities ofα-MnO2prepared at 0,25,45,65℃for 2 days increase from 102 to 135 mAh·g-1gradually shown in Fig.3(a~d). However,the capacities of the samples(α-MnO2-0℃-2 d,α-MnO2-45℃-2 d,α-MnO2-65℃-2 d)fade sharply except for α-MnO2-25℃-2 d,which delivers an initial discharge capacity of 124 mAh·g-1(Fig.3(b)).The discharge capacity increases to 134 mAh·g-1after 20 cycles,136 mAh·g-1after 50 cycles,and stabilizes at 124 mAh·g-1after 100 cycles.Obviously,too short/ long reaction time also has great influence on electrochemical performance of the products shown in Fig.3(b,e,f,g).The samples(α-MnO2-25℃-1 d,α-MnO2-25℃-3 d,α-MnO2-25℃-5 d)exhibit a incremental initial discharge capacity(93~134 mAh·g-1), however,they all fade obviously.These phenomena can be explained by their crystallinities and morphologies.The microspheres were formed gradually with the rising reaction temperature.The shapes of the microspheres are imperfect and the crystallinity is worse when the temperature was too low,which leads to the low capacity of the product.When the reaction temperature was too high,the as-obtained samples such as α-MnO2-65℃-2 d,have thicker nanowires and better crystallinity,resulting in a lower capacity of the product.From the point in reaction time,for α-MnO2-25℃-1 d,a worse electrochemical performance may be due to the lack of nanowires.For α-MnO2-25℃-3d/5 d electrodes,they exhibit low capacities and unstable electrochemical performance,which can be attributed to their thicker nanowires aggregation.The sample α-MnO2-25℃-2 d exhibits a highest discharge capacity and best cycling stability due to its smaller size of nanowires,appropriate crystallinity.And the existence of the interspace can increase the electrode/ electrolyte contact,shorten the diffusion length of both Li+ions and electrons,and effectively buffer the volume expansion during the lithiation/delithiation process.

    Fig.3 Charge/discharge curves of as-prepared samples(a~g)and CV curves of α-MnO2-25℃-2 d(h)

    Based on the good electrochemical property of the as-prepared α-MnO2-25℃-2 d,it was further studied as cathode material for LIBs.Fig.3(h)shows the cyclic voltammograms(CVs)of α-MnO2-25℃-2 d at a scan rate of 0.1 mV·s-1between 1.5 and 4.2 V.The reactions associated with the redox processes are given below[28]:

    In the first charging process,a reductive peak appears at 2.61 V and an oxidative peak appears at 3.12 V,which can be indexed to the formation of Mn, shown in Eq.(4,5).Then Eq.6 occurs in the subsequent four cycles,all the redox peaks repeat well except for the slight shift to higher potential,indicating good redox reversibility and structural stability(Fig.3(h)).

    Fig.4(a)Cycling performances of the samples;(b)Coulombic efficiency of the samples;(c)Rate capacity and coulombic efficiency of α-MnO2-25℃-2 d at different current densities(50,100,500 mA·g-1)

    The cycling performances of the samples are shown in Fig.4(a).The specific capacity of the samples of α-MnO2-0℃-2 d,α-MnO2-45℃-2 d,α-MnO2-65℃-2 d,α-MnO2-25℃-1 d,α-MnO2-25℃-3 d,α-MnO2-25℃-5 d electrodes show obvious decrease with cycling, from 101,126,132,92,132,133 mAh·g-1for the first cycle to 33,60,61,39,46,42 mAh·g-1for the 50th cycle.It is obvious that the α-MnO2-25℃-2 d electrode shows much stable cycling performance with higher specific capacities at the same cycle with the same current density,as compared with the other samples,which further indicates that the reaction temperature and reaction time have much influence on the electrochemical properties of the products.The coulombic efficiency of the samples is shown in Fig.4 (b).The values of the coulombic efficiency are at around 100%,which indicates discharge/charge process has well conducted in these electrodes.Fig.4(c)shows the rate capacities and coulombic efficiency of the α-MnO2-25℃-2 d electrode of various current densities. The discharge capacity is 123 mAh·g-1at 50 mA·g-1after 20 cycles,and this value is slowly reduced to 76 and 31 mAh·g-1when the current rate is consecutively set at 100 and 500 mA·g-1,respectively.At last,when the current rate returns to initial 50 mA·g-1, the final discharge capacity is 95 mAh·g-1,recovering 78%of the initial capacity.The discharge/charge process has well conducted when the current densities are 50,100 and 500 mA·g-1.

    The electrochemical impedance spectra(EIS)of different electrodes,which are collected before the electrochemical properties testing under open voltage conditions,shown in Fig.5(a).For the α-MnO2-2 d(0~65℃)electrodes,the diameters of the semicircle of the curves are 156.83,61.89,77.82 and 70.61 Ω and for the α-MnO2-25℃(1~5 d)electrodes,the diameters of the semicircle of the curves are 226.38,61.89, 87.29 and 108.30 Ω at the frequency of 12.1 Hz, respectively.Among all the samples,the α-MnO2-25℃-2 d has the smallest charge transfer resistance,the highest conductivity and Li+is apt to deintercalate and intercalate,indicating it has the best electrochemical performance.The convective change of Li+from high frequency to low frequency is the migration of Li+in the electrolyte,the conversion of Li+in the interface and the diffusion of Li+in the solid phase. The diffusion process of Li+in the solid phase is a slow process,which becomes a control step.The larger the diffusion coefficient is,the better the highrate discharge performance is.The remaining inclined lines in the low frequency range in the EIS spectra are attributed to the Warburg impedance(Zw).As revealed in Fig.5(b),the Warburg coefficient(Aw)is equal to the slope of the Z′vs ω-1/2line at lowfrequency,where ω is the angular frequency of the alternating current.The numerical value of the Li+diffusion coefficient in the electrode can be estimated from the following equation[29-30]:

    Fig.5(a)Electrochemical impedance spectra of the samples;(b)Linear fitting of Warburg impedance of the samples

    where Vmis the molar volume of the material,S is the apparent surface area of the electrode,and d E/d x is the slope of the open-circuit potential vs the mobile ion concentration x at each x value.Hence,the numerical values of Vm,S,and d E/d x are constant for the model test cells,and the Li+diffusion coefficient is in direct proportion to(1/Aw)2[30].The Warburg coefficients(Aw)of the above cells are 71.69,32.03, 41.99,38.13,85.38,44.57 and 49.47 Ω·s-1/2,respectively,confirming that the ionic conductivity of α-MnO2-25℃-2 d is better than that of other materials according to the Eq.7.These results are consistent with the electrochemical properties of the above electrodes.

    3 Conclusions

    Clew-like α-MnO2was synthesized by a facile solution phase method using MnSO4and(NH4)2S2O8as reactants and Ag+ions as catalyst.The results reveal that the reaction time and temperature play crucial roles to synthesize products with different morphologies,which consequently influence the electrochemical properties of the products.The results show that the product α-MnO2prepared at 25℃for 2 days as cathode material for LIBs,exhibits a highest reversible capacity and excellent cycling stability(124 mAh·g-1after 100 cycles)due to its uniform microspheres composed of many thinner nanowires and appropriate crystallinity.The clew-likeα-MnO2could be a potential cathode material for the application of LIBs.

    [1]Minakshi M.J.Solid State Electrochem.,2009,13:1209-1214

    [2]Tu F,Wu T,Liu S,et al.Electrochim.Acta,2013,106:406-410

    [3]Dose W M,Donne S W.Electrochim.Acta,2013,105:305-313

    [4]Zhang Y,Yuan C L,Ye K,et al.Electrochim.Acta,2014, 148:237-243

    [5]Feng Q,Yanagisawa K,Yamasaki N,et al.J.Porous Mater., 1998,5:153-162

    [6]Thackeray M M.Prog.Solid State Chem.,1997,25:1-71

    [7]Devaraj S,Munichandraiah N.J.Phys.Chem.C,2008,112: 4406-4417

    [8]Wei C,Xu C,Li B,et al.J.Phys.Chem.Solids,2012,73: 1487-1491

    [9]Li Z Q,Ding Y,Xiong Y J,et al.Cryst.Growth Des.,2005, 5:1953-1958

    [10]Xia Y N,Yang P D,Sun Y G,et al.Adv.Mater.,2003,15: 353-389

    [11]Hu J T,Odom T W,Lieber C M,et al.Acc.Chem.Res., 1999,32:435-445

    [12]Duan X F,Huang Y,Cui Y,et al.Nature,2001,409:66-69

    [13]Wong E W,Sheehan P E,Lieber C M,et al.Science,1997, 277:1971-1975

    [14]Dubal D P,Lokhande C D.Ceram.Int.,2013,39:415-423

    [15]Duan Y P,Zhang J,Jing H,et al.J.Solid State Chem., 2011,184:1165-1171

    [16]Xing L L,Cui C X,Ma C H,et al.Mater.Lett.,2011,65: 2104-2106

    [17]Wang S Q,Zheng H,Zhang Q,et al.J.Nanopart.Res., 2014,16:2232-2242

    [18]Ranjusha R,Sonia T S,Roshny S,et al.Mater.Res.Bull., 2015,70:1-6

    [19]Rosenberg S,Hintennach A.J.Power Sources,2015,274: 1043-1048

    [20]Su X H,Yu L,Cheng G,et al.Appl.Energy,2014,134:439-445

    [21]Tang W,Hou Y Y,Wang X J,et al.J.Power Sources, 2012,197:330-333

    [22]Ragupathy P,Vasan H N,Munichandraiah N,et al.J. Electrochem.Soc.,2008,155:A34-A40

    [23]Kim H,Popov B N.J.Electrochem.Soc.,2003,150:D56-D62

    [24]Xie X,Zhang C,Wu M B,et al.Chem.Commun.,2013,49: 11092-11094

    [25]Jeong Y U,Manthiram A.J.Electrochem.Soc.,2002,149: A1419-A1422

    [26]Ranjusha R,Sajesh K M,Roshny S,et al.Microporous Mesoporous Mater.,2014,186:30-36

    [27]Li Z Q,Ding Y,Xiong Y J,et al.Chem.Commun.,2005: 918-920

    [28]SUN Feng(孫峰),YUAN Zhong-Zhi(袁中直),LI Wei-Shan (李偉善).Chinese J.Power Sources(電源技術),2003,27(4) 409-412

    [29]Zhang D,Popov B N,White R E,et al.J.Power Sources, 1998,76:81-90

    [30]Wang W,Yang Y,Yang S J,et al.Electrochim.Acta,2015, 155:297-304

    Synthesis and Electrochem ical Characteristics of Clew-like α-M nO2as Cathode M aterial for Lithium Ion Battery

    XU Shan1,2LU Lin1,2LIU Lian1,2LUO Yi-Wen1,2WANG Shi-Quan*,1,2LIU Jian-Wen1,2LI Guo-Hua3FENG Chuan-Qi1,2
    (1Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,Hubei University,Wuhan 430062,China)
    (2Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules,Hubei University,Wuhan 430062,China)
    (3State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University of Technology,Hangzhou 310032,China)

    Clew-like α-MnO2was synthesized by a solution phase synthesis method using MnSO4and(NH4)2S2O8as reactants and Ag+ions as catalyst.The synthetic materials were characterized by XRD,SEM and TEM.It was found that the reaction temperature and reaction time have much influence on the crystallinity and morphology of the products.The electrochemical properties of the final products were tested by galvanostatic charge/discharge profile measurement and cyclic voltammetry(CV).The results show that the product prepared at 25℃for 2 days as cathode material for lithium ion battery,exhibits excellent cycling stability(124 mAh·g-1after 100 cycles)due to its unique morphology.The clew-structure α-MnO2could be a potential cathode material for the application of lithium ion batteries(LIBs).

    clew-like α-MnO2;solution phase synthesis method;lithium ion battery

    TM912.9

    A

    1001-4861(2016)01-0124-07

    10.11862/CJIC.2016.013

    2015-09-07。收修改稿日期:2015-10-19。

    浙江工業(yè)大學綠色化學合成技術國家重點實驗室培育基地開放基金(No.GCTKF2014013)、貴州省教育廳安順學院功能材料與資源化學特色重點實驗室開放基金(No.GAFMRC201305)和武漢市青年科技晨光計劃項目(No.2014070404010213)資助。

    *通信聯(lián)系人。

    E-mail:wsqhao@126.com

    猜你喜歡
    實驗室
    電競實驗室
    電子競技(2020年8期)2020-12-23 04:09:40
    電競實驗室
    電子競技(2020年7期)2020-10-12 10:45:48
    電競實驗室
    電子競技(2020年5期)2020-08-10 08:43:10
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    電競實驗室
    電子競技(2020年11期)2020-02-07 02:49:36
    電競實驗室
    電子競技(2020年9期)2020-01-11 01:06:21
    電競實驗室
    電子競技(2020年10期)2020-01-11 01:06:06
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    美女福利国产在线| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 大片电影免费在线观看免费| 久久人人爽av亚洲精品天堂| 日韩欧美精品免费久久| a 毛片基地| 乱人伦中国视频| 少妇的逼水好多| 老司机影院毛片| 最近最新中文字幕大全免费视频 | 亚洲四区av| 亚洲一区二区三区欧美精品| 亚洲国产av新网站| 国产日韩欧美在线精品| 午夜福利影视在线免费观看| 亚洲一级一片aⅴ在线观看| 免费高清在线观看视频在线观看| 欧美变态另类bdsm刘玥| 久久青草综合色| 999精品在线视频| 亚洲精品视频女| 久久久久网色| 久久久国产一区二区| videosex国产| 久久久久久人人人人人| 美女福利国产在线| 国产精品国产三级国产av玫瑰| 亚洲一码二码三码区别大吗| 国产色婷婷99| www日本在线高清视频| 全区人妻精品视频| 男女免费视频国产| 深夜精品福利| 久久午夜综合久久蜜桃| 男女午夜视频在线观看 | 久久久国产一区二区| 九九在线视频观看精品| 午夜影院在线不卡| 亚洲欧美中文字幕日韩二区| 人人澡人人妻人| 精品国产乱码久久久久久小说| av.在线天堂| 久久亚洲国产成人精品v| 建设人人有责人人尽责人人享有的| 一级毛片电影观看| 国内精品宾馆在线| 97在线人人人人妻| 九草在线视频观看| 国产精品成人在线| 午夜久久久在线观看| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 欧美人与善性xxx| 亚洲激情五月婷婷啪啪| 国产亚洲欧美精品永久| 国产在视频线精品| 亚洲国产日韩一区二区| 大话2 男鬼变身卡| 日韩大片免费观看网站| videossex国产| 午夜精品国产一区二区电影| 在线精品无人区一区二区三| 午夜日本视频在线| 九色成人免费人妻av| 一本大道久久a久久精品| 国产乱人偷精品视频| 欧美激情极品国产一区二区三区 | 成人二区视频| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 精品一区二区免费观看| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 亚洲成人av在线免费| 日韩制服骚丝袜av| 9191精品国产免费久久| 女人被躁到高潮嗷嗷叫费观| 十八禁网站网址无遮挡| 免费观看a级毛片全部| 色视频在线一区二区三区| 国产亚洲一区二区精品| 欧美人与善性xxx| 一区在线观看完整版| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 黄色配什么色好看| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 免费黄网站久久成人精品| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 一区二区三区四区激情视频| 内地一区二区视频在线| 夫妻性生交免费视频一级片| av片东京热男人的天堂| 老司机亚洲免费影院| 青春草视频在线免费观看| 人成视频在线观看免费观看| 国产精品三级大全| 侵犯人妻中文字幕一二三四区| 久久久精品免费免费高清| 久久免费观看电影| 狂野欧美激情性xxxx在线观看| 韩国av在线不卡| 亚洲,欧美,日韩| 国产精品无大码| 久久99热这里只频精品6学生| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 国内精品宾馆在线| 午夜视频国产福利| 国产极品天堂在线| 国产综合精华液| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 成人国语在线视频| 曰老女人黄片| 亚洲国产精品国产精品| 九九爱精品视频在线观看| kizo精华| 久久久久久久国产电影| 两个人免费观看高清视频| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 蜜臀久久99精品久久宅男| 亚洲综合色惰| 国产成人a∨麻豆精品| 丝袜脚勾引网站| 国产欧美日韩一区二区三区在线| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 香蕉丝袜av| 国产黄色免费在线视频| 国产精品国产三级国产av玫瑰| 国产av国产精品国产| 九色亚洲精品在线播放| 亚洲欧美成人精品一区二区| 制服诱惑二区| av国产久精品久网站免费入址| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 久久影院123| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 美女国产高潮福利片在线看| 国产毛片在线视频| 免费播放大片免费观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 免费黄网站久久成人精品| 中文字幕另类日韩欧美亚洲嫩草| 少妇的逼好多水| 三级国产精品片| 看免费成人av毛片| 日韩大片免费观看网站| 五月天丁香电影| 国产av一区二区精品久久| 超色免费av| 美女xxoo啪啪120秒动态图| 久久久久久久精品精品| 色94色欧美一区二区| 蜜桃在线观看..| 亚洲欧美成人精品一区二区| 国产成人精品久久久久久| 国产成人精品无人区| 99香蕉大伊视频| 免费久久久久久久精品成人欧美视频 | 久久国产精品大桥未久av| av免费在线看不卡| 水蜜桃什么品种好| 不卡视频在线观看欧美| 精品国产一区二区久久| 免费日韩欧美在线观看| 日韩成人伦理影院| 精品久久久久久电影网| 国产精品久久久久久精品电影小说| 18禁国产床啪视频网站| 亚洲av成人精品一二三区| 男人添女人高潮全过程视频| 18在线观看网站| 黄色毛片三级朝国网站| 高清在线视频一区二区三区| 天天操日日干夜夜撸| 两个人看的免费小视频| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 9色porny在线观看| 极品少妇高潮喷水抽搐| 丝袜人妻中文字幕| 亚洲高清免费不卡视频| 成年动漫av网址| 午夜av观看不卡| 我要看黄色一级片免费的| 久久久欧美国产精品| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 91精品三级在线观看| 女人精品久久久久毛片| 99热6这里只有精品| av有码第一页| 国产欧美另类精品又又久久亚洲欧美| 一边摸一边做爽爽视频免费| 久久国产精品大桥未久av| 激情五月婷婷亚洲| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 美女福利国产在线| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 欧美xxxx性猛交bbbb| 欧美激情极品国产一区二区三区 | 国产精品人妻久久久久久| 精品一区二区三区四区五区乱码 | 狠狠婷婷综合久久久久久88av| 伦理电影免费视频| 老熟女久久久| 91午夜精品亚洲一区二区三区| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 免费黄色在线免费观看| 99国产综合亚洲精品| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 一级,二级,三级黄色视频| 好男人视频免费观看在线| 亚洲精品一二三| 成人国产av品久久久| 少妇被粗大猛烈的视频| 亚洲国产色片| 亚洲成色77777| 久久ye,这里只有精品| 精品亚洲成国产av| 大香蕉久久成人网| 在现免费观看毛片| 国产精品.久久久| 伦理电影免费视频| av在线老鸭窝| 哪个播放器可以免费观看大片| 美女国产高潮福利片在线看| 亚洲成色77777| 丰满迷人的少妇在线观看| 十八禁高潮呻吟视频| 18在线观看网站| 毛片一级片免费看久久久久| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 好男人视频免费观看在线| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 九色成人免费人妻av| 精品久久久精品久久久| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 一区在线观看完整版| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频 | 日韩制服丝袜自拍偷拍| 欧美最新免费一区二区三区| 久久久久久伊人网av| 咕卡用的链子| 欧美97在线视频| 国产免费一级a男人的天堂| 亚洲,一卡二卡三卡| 一区二区日韩欧美中文字幕 | 亚洲欧美日韩另类电影网站| 全区人妻精品视频| 一二三四中文在线观看免费高清| 蜜桃在线观看..| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 永久免费av网站大全| 日日爽夜夜爽网站| 18+在线观看网站| 亚洲综合色惰| 国产成人欧美| 日本黄大片高清| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 高清毛片免费看| 欧美日韩视频精品一区| 少妇人妻精品综合一区二区| 男女免费视频国产| 精品国产国语对白av| 亚洲精品美女久久av网站| www.熟女人妻精品国产 | 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| 国产精品偷伦视频观看了| a级毛片黄视频| 成人亚洲欧美一区二区av| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 晚上一个人看的免费电影| 18在线观看网站| 欧美日韩av久久| 中文字幕人妻丝袜制服| 丝袜美足系列| 欧美日本中文国产一区发布| 久久综合国产亚洲精品| 蜜桃在线观看..| 大片电影免费在线观看免费| 如何舔出高潮| 日韩欧美一区视频在线观看| 少妇 在线观看| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 精品福利永久在线观看| 制服人妻中文乱码| 亚洲四区av| 天天影视国产精品| 91午夜精品亚洲一区二区三区| 亚洲av电影在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 久久人妻熟女aⅴ| 亚洲经典国产精华液单| 国产成人91sexporn| 美女国产高潮福利片在线看| 欧美激情国产日韩精品一区| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 国产探花极品一区二区| 亚洲av.av天堂| 少妇 在线观看| www.av在线官网国产| 国产熟女午夜一区二区三区| 国产精品人妻久久久久久| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 老熟女久久久| 边亲边吃奶的免费视频| 久久久久久久精品精品| 日本欧美视频一区| 国产精品成人在线| 2021少妇久久久久久久久久久| 免费在线观看完整版高清| 亚洲熟女精品中文字幕| 人妻人人澡人人爽人人| 国产精品人妻久久久久久| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 伦理电影免费视频| av黄色大香蕉| 国产极品天堂在线| 一区二区三区乱码不卡18| 成年人免费黄色播放视频| 人人妻人人添人人爽欧美一区卜| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 亚洲欧洲精品一区二区精品久久久 | 这个男人来自地球电影免费观看 | 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 久久午夜福利片| 日韩熟女老妇一区二区性免费视频| 一二三四中文在线观看免费高清| 女性生殖器流出的白浆| 久久久久久久精品精品| 看免费成人av毛片| 国产成人精品婷婷| 国产精品一区www在线观看| 亚洲欧美中文字幕日韩二区| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 中文精品一卡2卡3卡4更新| 香蕉精品网在线| 免费人妻精品一区二区三区视频| 欧美 亚洲 国产 日韩一| 在线精品无人区一区二区三| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 成人手机av| 下体分泌物呈黄色| 不卡视频在线观看欧美| 久久久久人妻精品一区果冻| tube8黄色片| 国产国语露脸激情在线看| 欧美丝袜亚洲另类| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 日韩中字成人| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 91精品三级在线观看| 狂野欧美激情性xxxx在线观看| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 黄色 视频免费看| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 黄色一级大片看看| 国产高清国产精品国产三级| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 三级国产精品片| av网站免费在线观看视频| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 久久久久人妻精品一区果冻| h视频一区二区三区| 亚洲av成人精品一二三区| 久久精品久久久久久久性| 天堂中文最新版在线下载| 高清不卡的av网站| 日韩电影二区| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 在线精品无人区一区二区三| 男女国产视频网站| 欧美97在线视频| 成人国产av品久久久| 丝瓜视频免费看黄片| av在线观看视频网站免费| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 毛片一级片免费看久久久久| 午夜福利在线观看免费完整高清在| 欧美日韩av久久| 久久99精品国语久久久| 久久久久久人人人人人| 极品人妻少妇av视频| 国产成人精品一,二区| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 午夜福利视频精品| 大话2 男鬼变身卡| 青春草国产在线视频| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 啦啦啦在线观看免费高清www| 国产精品嫩草影院av在线观看| 在线天堂最新版资源| 色婷婷久久久亚洲欧美| 国产黄频视频在线观看| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 18+在线观看网站| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 久久久久精品性色| 黄片无遮挡物在线观看| 十八禁高潮呻吟视频| 大片电影免费在线观看免费| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区大全| 久久99热6这里只有精品| 成人国产麻豆网| 香蕉精品网在线| 男人操女人黄网站| 丰满少妇做爰视频| 一区二区日韩欧美中文字幕 | 欧美少妇被猛烈插入视频| 国产又爽黄色视频| 亚洲成国产人片在线观看| 十八禁高潮呻吟视频| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 日本午夜av视频| 欧美丝袜亚洲另类| 免费人妻精品一区二区三区视频| 免费黄色在线免费观看| 久久久久久久久久久久大奶| 五月天丁香电影| 亚洲av日韩在线播放| 免费日韩欧美在线观看| 男女免费视频国产| 在现免费观看毛片| 最近最新中文字幕大全免费视频 | 久久国产精品男人的天堂亚洲 | 丝袜喷水一区| 最近最新中文字幕免费大全7| 精品亚洲成a人片在线观看| 国产成人91sexporn| 97精品久久久久久久久久精品| 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 高清不卡的av网站| 国产毛片在线视频| xxxhd国产人妻xxx| 精品少妇黑人巨大在线播放| 欧美精品av麻豆av| 精品人妻在线不人妻| 国产视频首页在线观看| 久久久欧美国产精品| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 在线天堂中文资源库| 99久久综合免费| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 永久网站在线| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 国产免费一区二区三区四区乱码| 亚洲成人av在线免费| 老司机影院成人| 日韩av在线免费看完整版不卡| 99热全是精品| 一区二区三区精品91| 亚洲成人一二三区av| 少妇人妻 视频| av在线老鸭窝| 黑人猛操日本美女一级片| 在线精品无人区一区二区三| 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| 欧美 亚洲 国产 日韩一| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 亚洲色图 男人天堂 中文字幕 | 国产成人欧美| 精品一区二区三区四区五区乱码 | 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 青春草国产在线视频| 国产国语露脸激情在线看| 一级爰片在线观看| 国产激情久久老熟女| 午夜免费男女啪啪视频观看| 啦啦啦中文免费视频观看日本| 国产av精品麻豆| 久久国内精品自在自线图片| 久久99一区二区三区| 亚洲人与动物交配视频| 哪个播放器可以免费观看大片| av线在线观看网站| 大片电影免费在线观看免费| 色5月婷婷丁香| 国产av国产精品国产| 天堂中文最新版在线下载| 亚洲精品成人av观看孕妇| 哪个播放器可以免费观看大片| 91成人精品电影| 亚洲精品国产色婷婷电影| 国产在线免费精品| 欧美国产精品va在线观看不卡| 免费高清在线观看视频在线观看| 久久人人97超碰香蕉20202| 啦啦啦在线观看免费高清www| 午夜视频国产福利| 久久久久久久精品精品| 日本免费在线观看一区| 一二三四在线观看免费中文在 | 五月天丁香电影| 国产精品无大码| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 精品少妇久久久久久888优播| 香蕉丝袜av| 最近2019中文字幕mv第一页| 欧美日韩精品成人综合77777| 老女人水多毛片| 久久影院123| 色网站视频免费| 99热6这里只有精品| 草草在线视频免费看| 日韩欧美一区视频在线观看| 国产av国产精品国产| 亚洲国产精品一区二区三区在线| a级毛色黄片| 七月丁香在线播放| 国产成人午夜福利电影在线观看| 国产成人a∨麻豆精品| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 美女国产视频在线观看| 人妻 亚洲 视频| 亚洲,一卡二卡三卡| 高清黄色对白视频在线免费看| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 高清视频免费观看一区二区| 最近手机中文字幕大全| 大香蕉久久成人网| 在线观看人妻少妇| 久久热在线av| 美女脱内裤让男人舔精品视频| 欧美成人午夜精品| 99热网站在线观看| 国产精品不卡视频一区二区| 咕卡用的链子| 久久99精品国语久久久| 男女午夜视频在线观看 | 亚洲,欧美精品.| 午夜福利影视在线免费观看| 国产极品天堂在线| 91成人精品电影|