• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    由芳香羧酸和1,3,5-三咪唑基苯為配體構(gòu)筑的鋅、鎘配合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    2016-12-01 01:32:22劉光祥南京市新型功能材料重點(diǎn)實(shí)驗(yàn)室南京曉莊學(xué)院化學(xué)系南京211171
    關(guān)鍵詞:性質(zhì)南京

    劉光祥(南京市新型功能材料重點(diǎn)實(shí)驗(yàn)室,南京曉莊學(xué)院化學(xué)系,南京211171)

    由芳香羧酸和1,3,5-三咪唑基苯為配體構(gòu)筑的鋅、鎘配合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    劉光祥
    (南京市新型功能材料重點(diǎn)實(shí)驗(yàn)室,南京曉莊學(xué)院化學(xué)系,南京211171)

    通過(guò)水熱法得到了2個(gè)配位聚合物{[Zn(timb)(BTEC)0.5]·H2O}n(1)和{[Cd(timb)(DPA)]·H2O}n(2)(timb=1,3,5-三咪唑基苯,H4BTEC=均苯四甲酸,H2DPA=2,2-聯(lián)苯二甲酸),對(duì)它們進(jìn)行了元素分析、紅外光譜分析,并利用X射線(xiàn)衍射測(cè)定了它們的單晶結(jié)構(gòu)。配合物1屬于三斜晶系,P1空間群。配合物2屬于單斜晶系,C2/c空間群。配合物1擁有一個(gè)不尋常的三維框架結(jié)構(gòu),其拓?fù)錇?4.63·86)2(42·84)(63)2;而配合物2具有一維單層納米管結(jié)構(gòu)。結(jié)果說(shuō)明了金屬離子和有機(jī)羧酸配體在配合物組裝過(guò)程中起著非常重要的作用。此外,在室溫下對(duì)2個(gè)配合物進(jìn)行了熒光性質(zhì)分析。

    配位聚合物;三咪唑配體;芳香羧酸配體;晶體結(jié)構(gòu);熒光性質(zhì)

    0 Introduction

    The field of coordination polymers(CPs)material has undergone flourishing development in the past few years.The unique features of this type of materials, such as tunable structures,diversiform topologies,as well as potential applications in many useful areas, have made it a hot research topic for the scientist worldwide,especially for those who work in the field of crystal engineering[1-8].In general,the applications of CPs are directly related to their structural features. Therefore,the development of new synthetic strategies to achieve CPs with targeted structures and properties has become a great challenge.Although porous CPs can be synthesized using multidentate ligands,their final structural topologies are highly influenced by several factors,including metal-ligand ratio,pH value, solvent,temperature,as well as the oxidation state of the metal ion[9-13].In particular,the rational selection of organic ligands or co-ligands according to their lengths,rigidities,coordination modes and functional groups provides a possibility for the assembly of structurally controllable CPs[14-17].

    Among the various types of organic ligands, imidazole and its derivatives are often employed to fabricate CPs because of their strong coordination abilities and relatively versatile coordination geometries[18-21].The rigid tripodal ligand 1,3,5-tris (imidazol-1-yl)benzene(timb)has previously been justified as an efficient and versatile organic building unit for construction of coordination architectures[22-25]. For timb,the three imidazole groups can rotate with different dihedral angles so as to satisfy the demands of the coordination environments of the central metals in the assembly processes,producing favored arrangements with beautiful architectures[26-27].More importantly,recent studies indicate that utilizing mixed ligands is an effective route to construct intriguing CPs with attractive topological structures[28-31].Such a dualligand strategy offers great promise for the construction of target frameworks with high complexities due to the presence of distinct donors which can coordinate with metal centers through different coordination modes.With a view to develop possible synthetic strategies,the employment of mixed N-and O-donor ligands would be a feasible method to build coordination architectures with interesting topologies and remarkable functionalities[32-36].As is known,polycarboxylate ligands are excellent coligands for the construction of highly connected, different dimensional frameworks due to their versatile bridging modes.However,investigation of the timbcarboxylate mixed-ligand system remains largely unexplored.Thus,the development of comprehensive research on this topic is necessary.Considering all of the above-mentioned,we chose timb and two coligands,1,2,4,5-benzenetetracarboxylic acid(H4BTEC) and diphenic acid(H2DPA)to prepare CPs,and obtained two new coordination polymers with intriguing structures,namely,{[Zn(timb)(BTEC)0.5]· H2O}n(1)and{[Cd(timb)(DPA)]·H2O}n(2).Herein,we report their syntheses,crystal structures and luminescent properties.

    1 Experimental

    1.1M aterials and general methods

    All the reagents and solvents for syntheses and analyses were purchased from Sigma or TCI and employed as received without further purification.The timb ligand was synthesized according to the reported method[37].Elemental analyses(C,H and N)were performed on a Vario EL III elemental analyzer. Infrared spectra were performed on a Nicolet AVATAR-360 spectrophotometer with KBr pellets in the 4 000~400 cm-1region.The luminescent spectra for the powdered solid samples were measured at room temperature on a Horiba FluoroMax-4P-TCSPC fluorescence spectrophotometer with a xenon arc lamp as the light source.In the measurements of emission and excitation spectra the pass width is 5 nm.All the measurements were carried out under the same experimental conditions.

    1.2Synthesis of{[Zn(timb)(BTEC)0.5]·H2O}n(1)

    A mixture containing Zn(NO3)2·6H2O(59.5 mg, 0.2 mmol),H4BTEC(25.4 mg,0.1 mmol),timb(55.2 mg,0.2 mmol)and LiOH·H2O(16.8 mg,0.4 mmol)in15 m L of deionized water was sealed in a 25 mL Teflon lined stainless steel container and heated at 140℃for 3 days.Colorless block crystals of 1 were collected by filtration and washed with water and ethanol several times with a yield of 41%based on timb ligand.Anal.Calcd.for C20H15N6O5Zn(%):C, 49.55;H,3.12;N,17.34.Found(%):C,49.52;H, 3.13;N,17.35.IR spectrum(cm-1):3 481(br),3 185 (w),1 612(s),1 563(s),1 519(s),1 421(m),1 389 (s),1 319(m),1 264(m),1 109(m),1 077(s),1 021 (m),982(m),823(m),756(m),657(m),586(w).

    1.3Synthesis of{[Cd(timb)(DPA)]·H2O}n(2)

    Complex 2 was prepared by a process similar to that yielding complex 1 by using Cd(NO3)2·4H2O(30.8 mg,0.1 mmol),H2DPA(24.2 mg,0.1 mmol),timb (27.6 mg,0.1 mmol)and LiOH·H2O(8.4 mg,0.2 mmol)in 15 mL of deionized water.Colorless platy crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 53%based on timb ligand.Anal.Calcd.for C29H22N6O5Cd(%):C,53.84;H,3.43;N,12.99.Found (%):C,53.82;H,3.44;N,12.98.IR spectrum(cm-1): 3 450(br),3 130(w),1 559(s),1 521(s),1 444(s), 1386(s),1 240(w),1 169(m),1 079(m),931(w), 822(w),766(m),653(w),556(w).

    1.4X-ray crystallography

    Two single crystals with dimensions of 0.22 mm× 0.16 mm×0.14 mm for 1 and 0.26 mm×0.22 mm×0.12 mm for 2 were mounted on glass fibers for measurement,respectively.X-ray diffraction intensity data were collected on a Bruker APEXⅡCCD diffractometer equipped with a graphitemonochromatic Mo-Kα radiation(λ=0.071 073 nm) using the φ-ω scan mode at 293(2)K.Data reduction and empirical absorption correction were performed using the SAINT and SADABS program[38], respectively.The structures were solved by the direct method using SHELXS-97[39]and refined by full-matrix least squares on F2using SHELXL-97[40].All of the non-hydrogen atoms were refined anisotropically.The hydrogen atoms of the organic ligands were refined as rigid groups.The hydrogen atoms of the solvent water molecules were located from difference Fourier maps, then restrained at fixed positions and refined isotropically.The details of the crystal parameters, data collection and refinement for 1 and 2 are summarized in Table 1,and selected bond lengths and angles with their estimated standard deviations are listed in Table 2.

    CCDC:1422833,1;1422832,2.

    Table 1 Crystal data and structure refinement for 1 and 2

    Continued Table 1

    Table 2 Selected bond lengths(nm)and angles(°)for 1 and 2

    2 Results and discussion

    2.1Crystal structure description

    The single-crystal diffraction analysis indicates that complex 1 crystallized in a triclinic manner with space group P1.There are one Zn(Ⅱ)ion,one timb ligand,half of BTEC ligand lying on inversion center, and one lattice water molecule in one asymmetric unit of 1.The coordination environment around the Zn(Ⅱ)ion is exhibited in Fig.1 along with the atom numbering scheme.Each Zn(Ⅱ)ion is six-coordinated by three oxygen atoms from two different BTEC2-anions and three nitrogen atoms from three individual timb ligands to form a distorted octahedral geometry and its basal plane is occupied by three oxygen atoms, O2,O3iiiand O4iii,and one nitrogen atom,N5ii,while the apical position is occupied by two nitrogen atoms (N1 and N3i).The Zn-O bond lengths are in the range of 0.206 5(3)~0.224 4(3)nm,and the Zn-N bond lengths are 0.211 6(3)~0.213 4(3)nm.The coordination angles around Zn ion are in the range of 59.01(10)~178.76(12)°.

    Fig.1 Coordination environment of Zn(Ⅱ)in complex 1 with thermal ellipsoids at 30%probability

    Fig.2 Ball-stick representation of the Zn-timb sheet in 1

    Fig.3 Schematic representation of the 2D(6,3)framework of 1

    Each timb ligand in turn connects three Zn(Ⅱ)ions which form a triangle with edge lengths(Zn…Zn) of 1.018 2,1.144 4 and 1.320 7 nm,respectively.The three imidazolyl rings are inclined to the phenyl ring with angles of 9.93(1)°,33.52(1)°and 35.22(1)°, respectively.As shown in Fig.2,each Zn(Ⅱ)ion connects three timb ligands and each timb ligand connects three Zn(Ⅱ)ions,such a coordination mode makes the complex a 2D network with honeycomb structure,and a schematic drawing is shown in Fig.3. BTEC4-anions adopt monodentate and bidentate chelate coordination modes and connect the Zn-timblayers as pillars to generate a 3D structure(Fig.4).If the Zn(Ⅱ)ion is considered as a five-connected node (connecting to two BTEC4-anions and three timb ligands),the timb ligand can be considered as a threeconnected node(connecting to three Zn(Ⅱ)ions),and the BTEC4-ligand can be considered as a fourconnected node(connecting to four Zn(Ⅱ)ions).The structure of 1 can be classified as a rare trinodal (3,4,5)-connected(4.63·86)2(42·84)(63)2topology(Fig.5). As far as we know,this topology has not previously been reported in the literature.In order to minimize the space void and stabilize the framework,the potential void cavities are occupied by the uncoordinated water molecules.

    X-ray single-crystal diffraction analysis reveals that 2 is an independent 1D single-wall metal-organic nanotube.It crystallizes in the monoclinic crystal system with space group of C2/c.The asymmetric unit consists of one Cd(Ⅱ)ion,one timb ligand,one DPA dianion,and one uncoordinated water molecule.As depicted in Fig.6,each Cd(Ⅱ)ion is six-coordinated by two nitrogen atoms from two timb ligands and four oxygen atoms from two carboxylate groups of two DPA anions in a distorted octahedral coordination environment.Its basal plane is occupied by two oxygen atoms from two different DPA ligands(O1 and O4i)and two nitrogen atoms from two individual timb ligands(N1 and N3ii),while the apical position is occupied by two oxygen atoms(O2 and O3i).The Cd-O bond lengths are in the range of 0.223 8(4)~0.261 2(4)nm,and the Cd-N bond lengths are 0.225 5(2)~0.226 6(3)nm.The coordination angles around Cd ion are in the range of 52.49(12)°~159.46(12)°.

    Fig.4 Stick representation of a 3D structure of 1 along the b-axis

    Fig.5 Schematic view of the(4.63·86)2(42·84)(63)topology of 1

    Fig.6 Coordination environments of the Cd(Ⅱ)atoms in 2 with the ellipsoids drawn at the 30%probability level

    It is noteworthy that the timb ligand coordinates with two,rather than three like in 1,Cd(Ⅱ)ions using two of its three imidazole groups,and the third one with N6 did not participate in the coordination,which has been observed previously[27].Three dihedral angles formed between the central phenyl ring and three terminal imidazole groups are 20.63(1)°,34.72(1)°, and 5.26(1)°,respectively.The timb ligand acts as bidentate bridging ligand to bind two Cd(Ⅱ)atoms to form double helical chains(Fig.7).Both helical pitches are 1.683 9 nm.Two carboxylate groups of DPA are arranged in the opposite sites relative to the central phenyl ring,giving an anti-conformation, which link the Cd-timb helical chains generate an open-ended,hollow single-wall metal-organic nanotube (Fig.8)with the interior cross section size of ca. 0.589 nm×0.669 nm.The interior of the single-wall metal-organic nanotube is occupied by the uncoordinated water molecules.The neighboring single-wall metal-organic nanotubes are all held together by weak π…π stacking interaction(0.404 9(1) nm)between imidazole and phenyl ring of timb and nonclassical C-H…O hydrogen bonds to form a 3D supramolecular framework.

    2.2FTIR spectra

    Fig.7 View of the 1D infinite double helical chains along the b-axis formed by timb and Cd(Ⅱ)ions

    Fig.8 Ball-and-stick representations of 1D single-wall metal-organic nanotube

    FTIR spectra revealed valuable information about the coordination modes of H4BTEC and H2DPA.The IR spectra of 1 and 2 show the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group,which indicates that the complete deprotonation of H4BTEC and H2DPA upon reaction with metal ion.The difference between asymmetric and symmetric carbonyl stretching frequencies(Δν=νasym-νsym)was used to fetch information on the metal-carboxylate binding modes.Complex 1 showed two pairs of νasymand νsymfrequencies at 1 612, 1 421(Δν=191 cm-1)and 1 563,1 389 cm-1(Δν= 174 cm-1)for the carbonyl functionality indicating two coordination modes as observed in the crystal structure. Complex 2 showed a pairs of νasymand νsymfrequencies at 1 559,1 386 cm-1(Δν=173 cm-1)corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric bis(monodentate)coordination mode.OH stretching broad bands at 3 481 cm-1for 1 and 3 450 cm-1for 2 are attributable to the coordinated lattice water.The bands in the region of 640~1 250 cm-1are attributed to the-CH-in-plane or out-of-plane bend, ring breathing,and ring deformation absorptions of benzene ring.The IR spectra also exhibit the characteristic peaks of imidazole groups at ca.1 520 cm-1[41].

    2.3Lum inescent properties

    The luminescence properties of coordination polymers with d10metal centers and π-conjugated organic linkers have attracted intense interest due to their potential applications in chemical optical sensors and light-emitting devices[42-44].Solid state photoluminescent properties of 1 and 2,as well as those of the free ligands,were examined at ambient temperature.The free timb ligand displays photoluminescence with an emission maximum at 404 nm(λex=340 nm),which is in accordance with previous reports[45].Upon complexation of the organic ligands with Zn(Ⅱ)/Cd(Ⅱ)ions, intense blue emissions are observed at 408 nm for 1, and 425 nm for 2 under excitation at 340 nm,as depicted in Fig.9.Since Zn(Ⅱ)/Cd(Ⅱ)ions are difficult to oxidize or reduce due to their d10configurations,the emissions of complexes 1 and 2 are neither metal-toligand charge transfer(MLCT)nor ligand-to-metal charge transfer(LMCT)in nature.Thus,they may be assigned to being characteristic of intraligand charge transfer,as reported for other Zn(Ⅱ)/Cd(Ⅱ)CPs constructed from mixed N-donor and O-donor ligands[46-47]. The maximum emission peak of 1 is similar to that of the free timb ligand and the emission band of 2 is relatively red-shifted(17 nm).The differences in the emission behaviors of 1 and 2 probably derive from their distinct metal centers and varied polycarboxylate co-ligands,which may affect the rigidity of the solidstate crystal packing and further influence their luminescence emission bands.

    Fig.9 Solid-state photoluminescent spectra of complexes 1 and 2

    [1]Du M,Li C P,Chen M,et al.J.Am.Chem.Soc.,2014,136: 10906-10909

    [2]Long J R,Yaghi O M.Chem.Soc.Rev.,2009,38:1213-1214

    [3]Liu C S,Yang X G,Hu M,et al.Chem.Commun.,2012,48: 7459-7461

    [4]Chen L,Chen Q,Wu M,et al.Acc.Chem.Res.,2015,48: 201-210

    [5]Liu K,Shi W,Cheng P.Coord.Chem.Rev.,2015,289-290: 74-122

    [6]Zhou H C,Kitagawa S.Chem.Soc.Rev.,2014,43:5415-5418

    [7]Du M,Li C P,Liu C S,et al.Coord.Chem.Rev.,2013,257: 1282-1305

    [8]Zhou H C,Long J R,Yaghi O M.Chem.Rev.,2012,112: 673-674

    [9]Guo X M,Guo H D,Zou H Y,et al.CrystEngComm,2013, 15:9112-9120

    [10]Zhao F H,Jing S,Che Y X,et al.CrystEngComm,2012,14: 4478-4485

    [11]Shen L,Gray D,Masel R I,et al.CrystEngComm,2012,14: 5145-5147

    [12]Stock N,Biswas S.Chem.Rev.,2012,112:933-969

    [13]Guo H D,Guo X M,Zou H Y,et al.CrystEngComm,2014, 16:7459-7468

    [14]Zhou K,Jiang F L,Chen L,et al.Chem.Commun.,2012, 48:12168-12170

    [15]Hu F L,Wang S L,Wu B,et al.CrystEngComm,2014,16: 6354-6363

    [16]Pan M,Su C Y.CrystEngComm,2014,16:7847-7859

    [17]Ding J G,Yin C,Zheng L Y,et al.RSC Adv.,2014,4: 24594-24600

    [18]Yao X Q,Pan Z R,Hu J S,et al.Chem.Commun.,2011, 47:10049-10051

    [19]LiS,SunW,WangK,etal.Inorg.Chem.,2014,53:4541-4547 [20]Tian Y Q,Zhao Y M,Chen Z X,et al.Chem.Eur.J.,2007, 13:4146-4154

    [21]Phan A,Doonan C J,Uribe-Romo F J,et al.Acc.Chem.Res., 2010,43:58-67

    [22]Mukherjee S,Samanta D,Mukherjee P S.Cryst.Growth Des., 2013,13:5335-5343

    [23]Xu Z Z,Sheng T L,Wang Y L,et al.CrystEngComm, 2015,17:2004-2012

    [24]Wang H,Yi F Y,Dang S,et al.Cryst.Growth Des.,2014, 14:147-156

    [25]Hua J A,Zhao Y,Liu Q,et al.CrystEngComm,2014,16: 7536-7546

    [26]Wang L,Yan Z H,Xiao Z,et al.CrystEngComm,2013, 15:5552-5560

    [27]Sun D,Yan Z H,Blatov V A,et al.Cryst.Growth Des., 2013,13:1277-1289

    [28]Hauptvogel I M,Bon V,Grünker R,et al.Dalton Trans., 2012,41:4172-4179

    [29]Kim D,Lah M S.CrystEngComm,2013,15:9491-9498

    [30]Cao T,Peng Y,Liu T,et al.CrystEngComm,2014,16: 10658-10673

    [31]Li Y W,Li D C,Xu J,et al.Dalton Trans.,2014,43:15708-15712

    [32]Jiang H L,Tatsu Y,Lu Z H,et al.J.Am.Chem.Soc., 2010,132:5586-5587

    [33]Liu X M,Lin R B,Zhang J P,et al.Inorg.Chem.,2012,51: 5686-5692

    [34]Han L W,Lu J,Lin Z J,et al.CrystEngComm,2014,16: 1749-1754

    [35]Kongpatpanich K,Horike S,Sugimoto M,et al.Chem. Commun.,2014,50:2292-2294

    [36]Das M C,Guo Q,He Y,et al.J.Am.Chem.Soc.,2012, 134:8703-8710

    [37]Zhao W,Song Y,Okamura T A,et al.Inorg.Chem.,2005, 44:3330-3336

    [38]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen, Germany,1996.

    [39]Sheldrick G M.SHELXS-97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [40]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [41]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordinated Compounds.5th Ed.New York:W iley&Sons, 1997.

    [42]Zhang S R,Du D Y,Qin J S,et al.Chem.Eur.J.,2014,20: 3589-3594

    [43]Zhang M,Feng G,Song Z,et al.J.Am.Chem.Soc.,2014, 136:7241-7244

    [44]Zhou X,Li P,Shi Z,et al.Inorg.Chem.,2012,51:9226-9231

    [45]Li L,Fan J,Okamura T A,et al.Supramol.Chem.,2004,16: 361-370

    [46]Coropceanu E B,Croitor L,Siminel A V,et al.Polyhedron, 2014,75:73-80

    [47]Sie M J,Chang Y J,Cheng P W,et al.CrystEngComm, 2012,14:5505-5516

    Syntheses,Crystal Structures and Lum inescent Properties of Zinc(Ⅱ)and Cadm ium(Ⅱ)Coordination Polymers Constructed by Aromatic Carboxylates and 1,3,5-Tris(im idazol-1-yl)benzene

    LIU Guang-Xiang
    (Key Laboratory of Advanced Functional Materials of Nanjing,Department of Chemistry,Nanjing Xiaozhuang University,Nanjing 211171,China)

    Two coordination polymers,namely{[Zn(timb)(BTEC)0.5]·H2O}n(1)and{[Cd(timb)(DPA)]·H2O}n(2), have been obtained by the reaction of metal salt(zinc nitrate or cadmium nitrate),1,3,5-tris(imidazol-1-yl)benzene (timb)with two aromatic carboxylic acids,1,2,4,5-benzenetetracarboxylic acid(H4BTEC)and diphenic acid (H2DPA).They were characterized by IR spectroscopy,elemental analysis and single-crystal X-ray diffraction. Complex 1 crystallizes in triclinic,space group P1 with a=0.991 32(9)nm,b=1.018 23(10)nm,c=1.112 45(11) nm,α=81.479 0(10)°,β=65.613 0(10)°,γ=62.318 0(10)°.Complex 2 belongs to monoclinic,space group C2/c with a=2.633 0(2)nm,b=0.841 96(8)nm,c=2.353 5(2)nm,β=98.027 0(10)°.Structural analyses reveal that complex 1 exhibits a novel three-dimensional(3D)(3,4,5)-connected framework with an unusual(4.63·86)2(42·84) (63)2topology,whereas complex 2 possesses a one-dimensional(1D)single-wall metal-organic nanotube based on double helical chains.The results show that the nature of metal ions and the carboxylic building blocks play an important role in the formation of complexes with diverse structures.The luminescent properties of two complexes have also been investigated.CCDC:1422833,1;1422832,2.

    coordination polymer;tris(imidazole)ligands;polycarboxylate;crystal structure;luminescence

    O614.24+1;O614.24+2

    A

    1001-4861(2016)01-0175-09

    10.11862/CJIC.2016.024

    2015-09-28。收修改稿日期:2015-11-07。

    國(guó)家自然科學(xué)基金資助項(xiàng)目(No.21271106)和江蘇省“333工程”培養(yǎng)基金資助項(xiàng)目。

    E-mail:njuliugx@126.com

    猜你喜歡
    性質(zhì)南京
    南京比鄰
    “南京不會(huì)忘記”
    一類(lèi)非線(xiàn)性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    一類(lèi)多重循環(huán)群的剩余有限性質(zhì)
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    厲害了,我的性質(zhì)
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    久久香蕉激情| 黄片小视频在线播放| 热re99久久精品国产66热6| 国产精品久久久久成人av| 日日夜夜操网爽| 精品一区二区三区四区五区乱码| cao死你这个sao货| 精品人妻熟女毛片av久久网站| 在线观看一区二区三区激情| 国产成人欧美| 老司机在亚洲福利影院| 咕卡用的链子| xxxhd国产人妻xxx| 久久午夜综合久久蜜桃| 国产亚洲欧美精品永久| 亚洲成a人片在线一区二区| 中文字幕人妻熟女乱码| 欧美日韩视频精品一区| 一区二区三区精品91| 十八禁人妻一区二区| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩精品亚洲av| 精品乱码久久久久久99久播| 午夜福利一区二区在线看| 亚洲精品久久成人aⅴ小说| 国产xxxxx性猛交| 色在线成人网| 欧美 日韩 精品 国产| 悠悠久久av| 一级毛片精品| 亚洲欧美激情综合另类| 久久精品亚洲av国产电影网| 欧美精品人与动牲交sv欧美| 欧美激情高清一区二区三区| 亚洲精品粉嫩美女一区| 深夜精品福利| 久久精品aⅴ一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产亚洲在线| 动漫黄色视频在线观看| 婷婷成人精品国产| 少妇粗大呻吟视频| 国产精品免费视频内射| 亚洲欧美精品综合一区二区三区| 在线国产一区二区在线| 欧美日韩国产mv在线观看视频| 一级毛片精品| 黄色怎么调成土黄色| 久久人人爽av亚洲精品天堂| 国产aⅴ精品一区二区三区波| av天堂久久9| 久久人人爽av亚洲精品天堂| av国产精品久久久久影院| 黄片播放在线免费| 国产99久久九九免费精品| 国精品久久久久久国模美| 国产精品一区二区免费欧美| 成人影院久久| 人妻丰满熟妇av一区二区三区 | 精品午夜福利视频在线观看一区| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 波多野结衣一区麻豆| 欧美日韩福利视频一区二区| 很黄的视频免费| 99精品久久久久人妻精品| 免费在线观看黄色视频的| 99热国产这里只有精品6| a级毛片在线看网站| 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 亚洲七黄色美女视频| 大香蕉久久网| 色94色欧美一区二区| 国产成人精品在线电影| 欧美日韩亚洲综合一区二区三区_| 午夜亚洲福利在线播放| 男女之事视频高清在线观看| av网站免费在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲九九香蕉| 久久人妻福利社区极品人妻图片| 91成年电影在线观看| 露出奶头的视频| 免费高清在线观看日韩| 国产成人精品在线电影| 极品教师在线免费播放| 91av网站免费观看| 大陆偷拍与自拍| 国产精品av久久久久免费| 狠狠婷婷综合久久久久久88av| 久久久久久久久久久久大奶| 久久久久久久精品吃奶| 亚洲aⅴ乱码一区二区在线播放 | 欧美不卡视频在线免费观看 | 两性夫妻黄色片| 欧美成狂野欧美在线观看| 波多野结衣一区麻豆| 制服诱惑二区| 99热国产这里只有精品6| 精品久久久久久电影网| 操美女的视频在线观看| 国产成人免费观看mmmm| 精品久久蜜臀av无| 国产精品永久免费网站| 人人澡人人妻人| 搡老熟女国产l中国老女人| www日本在线高清视频| 一级黄色大片毛片| 久久香蕉精品热| 老司机靠b影院| 91字幕亚洲| 黄色 视频免费看| 中文字幕制服av| 日韩成人在线观看一区二区三区| av线在线观看网站| av中文乱码字幕在线| 麻豆乱淫一区二区| 欧美 日韩 精品 国产| 女人高潮潮喷娇喘18禁视频| 欧美精品高潮呻吟av久久| 高清av免费在线| 最新美女视频免费是黄的| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区中文字幕在线| 黄色 视频免费看| 婷婷精品国产亚洲av在线 | 欧美日韩视频精品一区| 一级作爱视频免费观看| 色婷婷av一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 精品国产乱子伦一区二区三区| 成人精品一区二区免费| 国产成+人综合+亚洲专区| 国产精品国产高清国产av | 亚洲av欧美aⅴ国产| 夜夜爽天天搞| 欧美色视频一区免费| 亚洲一区高清亚洲精品| 亚洲第一欧美日韩一区二区三区| 精品午夜福利视频在线观看一区| √禁漫天堂资源中文www| 欧美大码av| 亚洲成人手机| av免费在线观看网站| 国产精品久久久久久精品古装| 亚洲少妇的诱惑av| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 久久久精品免费免费高清| 国产成人系列免费观看| 黄色女人牲交| 亚洲中文av在线| 免费高清在线观看日韩| 一边摸一边抽搐一进一小说 | 老熟妇仑乱视频hdxx| 91成人精品电影| 亚洲熟妇熟女久久| 亚洲欧美一区二区三区黑人| 又大又爽又粗| 欧美日韩福利视频一区二区| 亚洲综合色网址| 亚洲精品av麻豆狂野| 777久久人妻少妇嫩草av网站| 好男人电影高清在线观看| 在线观看免费视频网站a站| 久久久国产精品麻豆| 男女之事视频高清在线观看| 亚洲av熟女| 嫁个100分男人电影在线观看| 精品无人区乱码1区二区| 老司机福利观看| 淫妇啪啪啪对白视频| 搡老熟女国产l中国老女人| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 国产精品国产av在线观看| 美女高潮喷水抽搐中文字幕| 五月开心婷婷网| 国产精品 国内视频| 久久久久久亚洲精品国产蜜桃av| 黄色a级毛片大全视频| 国产免费男女视频| 动漫黄色视频在线观看| 精品亚洲成a人片在线观看| 欧美黄色片欧美黄色片| 少妇裸体淫交视频免费看高清 | 国产日韩一区二区三区精品不卡| 9191精品国产免费久久| 亚洲精品在线美女| 伊人久久大香线蕉亚洲五| 少妇被粗大的猛进出69影院| 久久中文字幕人妻熟女| 成人手机av| 欧美成人免费av一区二区三区 | 黄色成人免费大全| 久久人人97超碰香蕉20202| 他把我摸到了高潮在线观看| 人人妻人人澡人人爽人人夜夜| 久久亚洲真实| 中文字幕色久视频| 亚洲色图综合在线观看| 又紧又爽又黄一区二区| 91成人精品电影| 国产一区二区三区综合在线观看| 男女下面插进去视频免费观看| 欧美日韩一级在线毛片| 久久热在线av| 亚洲va日本ⅴa欧美va伊人久久| 老汉色∧v一级毛片| 成年动漫av网址| 亚洲九九香蕉| 18在线观看网站| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 免费日韩欧美在线观看| 欧美 日韩 精品 国产| 午夜福利一区二区在线看| 精品久久久久久久毛片微露脸| 制服诱惑二区| av一本久久久久| 不卡av一区二区三区| 午夜精品国产一区二区电影| 欧美黑人精品巨大| 国产精品自产拍在线观看55亚洲 | 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| 电影成人av| 777米奇影视久久| 看片在线看免费视频| 国产亚洲一区二区精品| 啦啦啦免费观看视频1| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看免费视频日本深夜| 日本五十路高清| 亚洲精品美女久久久久99蜜臀| 老鸭窝网址在线观看| 大片电影免费在线观看免费| 91九色精品人成在线观看| 日韩中文字幕欧美一区二区| 国产又色又爽无遮挡免费看| 极品教师在线免费播放| 波多野结衣一区麻豆| 国产高清videossex| 国产精品乱码一区二三区的特点 | 国产成人免费观看mmmm| 欧美最黄视频在线播放免费 | www.精华液| 搡老熟女国产l中国老女人| ponron亚洲| 深夜精品福利| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 日日夜夜操网爽| 亚洲精品国产区一区二| 人妻一区二区av| 中国美女看黄片| 成人三级做爰电影| 岛国在线观看网站| 久久国产精品男人的天堂亚洲| 久久人妻福利社区极品人妻图片| 久9热在线精品视频| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 精品久久久久久,| 欧美激情高清一区二区三区| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 老司机靠b影院| 捣出白浆h1v1| 青草久久国产| 人人澡人人妻人| 亚洲精品国产区一区二| a级片在线免费高清观看视频| 亚洲精品自拍成人| 国产成人影院久久av| 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 美女午夜性视频免费| 国产伦人伦偷精品视频| 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 亚洲 国产 在线| 19禁男女啪啪无遮挡网站| a在线观看视频网站| 男女高潮啪啪啪动态图| 欧美成人午夜精品| 久久久精品免费免费高清| 中亚洲国语对白在线视频| av天堂久久9| 日本黄色视频三级网站网址 | 少妇的丰满在线观看| 美国免费a级毛片| videos熟女内射| 叶爱在线成人免费视频播放| 首页视频小说图片口味搜索| 一本大道久久a久久精品| 嫩草影视91久久| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 丁香六月欧美| 亚洲 国产 在线| 女人久久www免费人成看片| 很黄的视频免费| 亚洲自偷自拍图片 自拍| 天天影视国产精品| 久久精品国产亚洲av高清一级| 欧美成人免费av一区二区三区 | 婷婷精品国产亚洲av在线 | 热re99久久国产66热| av线在线观看网站| 欧美激情高清一区二区三区| 国产亚洲欧美98| 高清欧美精品videossex| 91成人精品电影| 国产一区二区激情短视频| 精品熟女少妇八av免费久了| 69av精品久久久久久| 久久草成人影院| 欧美乱色亚洲激情| 亚洲国产精品sss在线观看 | 12—13女人毛片做爰片一| 天堂动漫精品| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频 | 亚洲欧美一区二区三区久久| 亚洲成人免费电影在线观看| 国产日韩欧美亚洲二区| 天堂√8在线中文| 精品国产一区二区久久| 脱女人内裤的视频| 一进一出抽搐gif免费好疼 | 久久天堂一区二区三区四区| 精品福利永久在线观看| 免费日韩欧美在线观看| 国产一区二区三区视频了| 国产一区二区三区综合在线观看| 国产av又大| 国精品久久久久久国模美| 大型黄色视频在线免费观看| 国产一区二区三区综合在线观看| 亚洲av欧美aⅴ国产| 亚洲avbb在线观看| 成年版毛片免费区| 亚洲片人在线观看| 在线观看午夜福利视频| 黑人欧美特级aaaaaa片| 大型黄色视频在线免费观看| 黄频高清免费视频| 操美女的视频在线观看| 免费久久久久久久精品成人欧美视频| 亚洲一区二区三区不卡视频| 亚洲五月色婷婷综合| 午夜福利一区二区在线看| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 亚洲少妇的诱惑av| 久久国产精品大桥未久av| 一级片'在线观看视频| 757午夜福利合集在线观看| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91| 国产精品欧美亚洲77777| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 欧美国产精品va在线观看不卡| 久久狼人影院| 嫁个100分男人电影在线观看| 国精品久久久久久国模美| 国产在线观看jvid| 亚洲五月婷婷丁香| 在线播放国产精品三级| av天堂久久9| 很黄的视频免费| 满18在线观看网站| 男女床上黄色一级片免费看| 999精品在线视频| 精品高清国产在线一区| 身体一侧抽搐| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 亚洲欧美激情在线| 色94色欧美一区二区| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 国产三级黄色录像| 欧美另类亚洲清纯唯美| 老司机靠b影院| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美免费精品| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 一本一本久久a久久精品综合妖精| 欧美日韩一级在线毛片| 成人永久免费在线观看视频| av视频免费观看在线观看| 中文字幕人妻熟女乱码| 女性被躁到高潮视频| 亚洲第一青青草原| 日本vs欧美在线观看视频| 一级黄色大片毛片| 国产一区二区三区在线臀色熟女 | 两人在一起打扑克的视频| 久久香蕉精品热| 精品国产乱码久久久久久男人| 欧美大码av| 婷婷精品国产亚洲av在线 | 岛国在线观看网站| 亚洲精品国产精品久久久不卡| av网站在线播放免费| 999精品在线视频| 91av网站免费观看| 最近最新中文字幕大全电影3 | 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 在线观看免费视频日本深夜| 成在线人永久免费视频| 最新美女视频免费是黄的| 欧美精品高潮呻吟av久久| 在线观看日韩欧美| 欧美激情久久久久久爽电影 | 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| 国产区一区二久久| 一级a爱视频在线免费观看| 国产一区二区激情短视频| 免费av中文字幕在线| av线在线观看网站| 日韩大码丰满熟妇| 成人精品一区二区免费| 国产91精品成人一区二区三区| 18禁裸乳无遮挡动漫免费视频| 婷婷成人精品国产| 男女下面插进去视频免费观看| 少妇猛男粗大的猛烈进出视频| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 天堂俺去俺来也www色官网| 香蕉丝袜av| 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产 | 99riav亚洲国产免费| 王馨瑶露胸无遮挡在线观看| 另类亚洲欧美激情| 精品一区二区三区四区五区乱码| 黄网站色视频无遮挡免费观看| 欧美不卡视频在线免费观看 | 精品熟女少妇八av免费久了| www日本在线高清视频| 1024香蕉在线观看| 极品人妻少妇av视频| 国产视频一区二区在线看| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 99香蕉大伊视频| 国产精品99久久99久久久不卡| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看| 成年动漫av网址| 亚洲成a人片在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月天丁香| 国产精品久久久久成人av| 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频| 91字幕亚洲| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三| 大码成人一级视频| 中文字幕制服av| 青草久久国产| 国产精品一区二区精品视频观看| 日韩视频一区二区在线观看| 啦啦啦视频在线资源免费观看| 99热只有精品国产| 欧美成人免费av一区二区三区 | 国产男女超爽视频在线观看| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 悠悠久久av| 国产色视频综合| 亚洲欧美精品综合一区二区三区| 男女免费视频国产| 好看av亚洲va欧美ⅴa在| 女人久久www免费人成看片| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 国产亚洲欧美98| av线在线观看网站| 欧美日韩福利视频一区二区| 超碰97精品在线观看| 亚洲精华国产精华精| 在线十欧美十亚洲十日本专区| 黄色视频,在线免费观看| 少妇猛男粗大的猛烈进出视频| 国产精品免费一区二区三区在线 | 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 看黄色毛片网站| 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| av欧美777| 老司机福利观看| tube8黄色片| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 亚洲一区二区三区欧美精品| 久久久国产欧美日韩av| 黄片大片在线免费观看| 国产精品1区2区在线观看. | 人人妻人人澡人人看| 久久久久久久国产电影| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 日韩人妻精品一区2区三区| av不卡在线播放| 性色av乱码一区二区三区2| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 色综合婷婷激情| 欧美激情极品国产一区二区三区| 午夜免费鲁丝| 91精品三级在线观看| 亚洲国产中文字幕在线视频| 国产成人系列免费观看| 夜夜夜夜夜久久久久| 日本五十路高清| x7x7x7水蜜桃| 国产深夜福利视频在线观看| 国产国语露脸激情在线看| 中文字幕制服av| 99精品久久久久人妻精品| 国产一区二区三区视频了| 欧美精品一区二区免费开放| 国产99白浆流出| 久久午夜亚洲精品久久| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 妹子高潮喷水视频| 成人手机av| 欧美亚洲日本最大视频资源| 国产精华一区二区三区| 国产无遮挡羞羞视频在线观看| 成人手机av| 美女视频免费永久观看网站| 久久亚洲真实| 又紧又爽又黄一区二区| 国产精华一区二区三区| 妹子高潮喷水视频| 久久九九热精品免费| 999久久久精品免费观看国产| 午夜精品在线福利| 久久久久久免费高清国产稀缺| 成人手机av| 少妇粗大呻吟视频| 国产成人av教育| 亚洲少妇的诱惑av| aaaaa片日本免费| www.自偷自拍.com| 欧美黄色淫秽网站| 欧美在线黄色| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 国产男女内射视频| 精品视频人人做人人爽| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产av在线观看| 久久影院123| 99国产精品免费福利视频| 亚洲在线自拍视频| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 欧美乱码精品一区二区三区| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 亚洲精品自拍成人| 日本黄色视频三级网站网址 | 岛国在线观看网站| 欧美精品人与动牲交sv欧美| 久热爱精品视频在线9| 成人手机av| 午夜精品国产一区二区电影| av福利片在线| 久久精品国产a三级三级三级| 国产区一区二久久| 99re在线观看精品视频| √禁漫天堂资源中文www| 亚洲,欧美精品.| 日日爽夜夜爽网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产精品人妻蜜桃| 亚洲av美国av| 亚洲中文日韩欧美视频| 狠狠婷婷综合久久久久久88av| 超碰97精品在线观看| 男人操女人黄网站| 日韩制服丝袜自拍偷拍| 少妇的丰满在线观看| 在线永久观看黄色视频| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 9191精品国产免费久久| 欧美激情高清一区二区三区| 亚洲午夜精品一区,二区,三区| 超色免费av|