• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種電荷轉(zhuǎn)移晶體的磁和介電弛豫性質(zhì)

    2016-12-01 01:31:59張雪梅于姍姍張輝段海寶安徽科技學院化學與材料工程學院蚌埠3300南京曉莊學院環(huán)境科學學院南京7
    無機化學學報 2016年1期

    張雪梅 于姍姍 張輝 段海寶*,(安徽科技學院化學與材料工程學院,蚌埠3300)(南京曉莊學院環(huán)境科學學院,南京7)

    一種電荷轉(zhuǎn)移晶體的磁和介電弛豫性質(zhì)

    張雪梅1于姍姍2張輝2段海寶*,2
    (1安徽科技學院化學與材料工程學院,蚌埠233100)
    (2南京曉莊學院環(huán)境科學學院,南京211171)

    在外加電場下,利用分子的旋轉(zhuǎn)和取向運動是組裝分子介電馬達以及弛豫型分子介電體的一個主要策略。在本論文中,我們制備并表征了一個新的電荷轉(zhuǎn)移晶體[C10-DMPy][Ni(mnt)2](1)(C10-DMPy+=1-decanel-N,N-dimethylpyridinium,mnt2-=馬來二氰基二硫烯)。在一定的頻率范圍內(nèi),該化合物展現(xiàn)了介電弛豫行為,我們將此歸于平衡陽離子的動力學位置取向和陰、陽離子間的電荷轉(zhuǎn)移。該化合物的介電弛豫過程遵循Cole-Cole方程,偏離理想的Debye模型。單晶X-射線衍射表明該化合物的陰、陽離子分別獨立堆積成柱狀,柔性的有機陽離子與剛性的磁性陰離子構筑塊間存在電荷協(xié)助氫鍵作用。此外,該化合物的磁行為展現(xiàn)為弱的鐵磁耦合作用。

    電荷轉(zhuǎn)移晶體;晶體結(jié)構;介電響應;磁性質(zhì)

    Relaxation means a systems monotonous approach to the equilibrium state after some excitation.In the case of dielectric relaxation one considers the response of polarization to an external alternating current field.Dielectric relaxation spectroscopy can provides information about the orientation adjustment of mobile charge present in the dielectric medium[1-3]. The dielectric relaxation methods are commonly usedin studies of ionic conductivity and molecular dynamics in different dielectric materials,such as glasses,crystal and liquids[4-7].It is well known that the measurements of alternating current(ac) conductivity can provide the underling mechanisms of the dielectric relaxation[8-10].

    In general,molecular rotation and orientation by applied electric field is one of the promising strategies for assembling the potential molecular ferroelectric and switchable dielectric[11-16].Approaches to creating such materials with internal reorientation or rotation include molecular crystal with rotary groups[17-18], inclusion compounds with rotating guests and rotorcoated surfaces[19-21].In our previous studies,a series of ion-pair compounds with spin-Peierls-type transition were achieved,which consist of bis(maleonitriledithio) metalate monoanion(abbr.[M(mnt)2]-and M=Ni or Pt) bearing S=1/2 spin and organic cation with tunable molecular conformation[22-24].Recently,we explored to introduce mobile organic cation into the rigid [Ni(mnt)2]-spin system and created a bifunctional compound[25].Further investigation indicated utilization of such rigid[Ni(mnt)2]2-molecular block as a stator unit can create a switchable dielectrics.However, there are a limited number of studies on the dielectric relaxation and ac conductivity of[Ni(mnt)2]-spin system.Theses compounds may show interesting dielectric features.Usually,there are weakly chargeassisted interactions between the mobile organic cation and rigid[Ni(mnt)2]-anion,and the dipole motion of the cations under an ac electrical field may give rise to an interesting dielectric response.

    Encouraged by our previous study and abovementioned findings,in this paper,we present a new compound[C10-DMPy][Ni(mnt)2](1)(C10-DMPy+=1-decanel-N,N-dimethylpyridinium cation,mnt2-=maleonitriledithiolate).This compound showed novel dielectric relaxation behaviors.

    1 Experimental

    1.1Chem icals and reagents

    All reagents and chemicals were purchased from commercial sources and used without further purification.The starting materials disodium maleonitriledithiolate(Na2mnt)and 1-decanel-N,N-dimethylpyridinium bromide were synthesized following the published procedures[26-27].

    1.2Physical measurements

    Elemental analyses(C,H and N)were performed with an Elementar Vario ELⅢanalytical instrument. IR spectra were recorded on a Bruker Vector 22 Fourier Transform Infrared Spectrometer(170SX)(KBr disc).Differential scanning calorimetry(DSC) experiments for 1 were carried out on a Pyris 1 powercompensation differential scanning calorimeter and the heating-cooling treatments were performed up to two cycles with the heating/cooling rate of 10 K·min-1. Magnetic susceptibility data on polycrystalline-sample were collected over the temperature range of 1.8~400 K for 1 using a Quantum Design MPMS-5 superconducting quantum interference device(SQUID) magnetometer.Temperature and frequency dependent dielectric constant,ε,dielectric loss,tanδ,the impedance,Z,and ac conductivity,σ(ac)measurements were carried out employing Concept 80 system (Novocontrol,Germany);the powdered pellet,which was prepared under 10 MPa pressure,and was coated by gold films on the opposite surfaces and was sandwiched by the copper electrodes.The pellet had a thickness of ca.0.80 mm and 78.5 mm2in the area. The rang of the ac frequencies was 1~107Hz.

    1.3Preparations for 1

    Na2mnt(2.0 mmol)and NiCl2·6H2O(1.0mmol) were mixed under stirring in MeOH.Subsequently,a CH3CN solution of 1-decanel-N,N-dimethylpyridinium bromide(2.0 mmol)was added,and the red precipitate was washed with MeOH.A MeOH solution with I2(0.40 mmol)was added to the mixture;the mixture was allowed standing overnight after stirred for 25 minutes.The black precipitate formed were filtered off,washed with MeOH and dried at 65℃in vacuum to give compound 1.Yield:~42%.

    The single crystals suitable for X-ray analysis were obtained by evaporation of the corresponding compound in MeOH to give black-needle crystals for 1.

    1.4X-ray crystallography

    The diffraction data for single crystals were collected with graphite monochromated Mo Kα(λ= 0.071 073 nm)on a CCD area detector(Bruker-SMART).Data reductions and absorption corrections were performed with the SAINT and SADABS software packages[28],respectively.Structures were solved by the direct method and refined by the fullmatrix least-squares procedure on F2using SHELXL-97 program[29].The non-hydrogen atoms were refined anisotropically,and the hydrogen atoms were introduced at calculated positions(C-H 0.093 0 nm for benzene and 0.097 0 nm for methylene)and refined riding on the parent atoms with U(H)=1.2U eq (bonded C or N atoms).The crystallographic details about data collection and structural refinement are summarized in Table 1.Selected bond lengths and angles together with their estimated standard deviations are listed in Table 2.

    CCDC:1415204,1.

    Table 1 Crystal data and structural refinements at 293 K for 1

    Table 2 Selected bond lengths(nm)and bond angles(°)for 1

    2 Results and discussion

    2.1Crystal structure

    Compound 1 crystallizes in triclinic space group P1 at room temperature,as shown in Fig.1a,and an asymmetry unit is comprised of a pair of[Ni(mnt)2]-anion and C10-DMPy+cation.The[Ni(mnt)2]-anions possess an approximated planar geometry,and the mean-molecule-plane of[Ni(mnt)2]-anion,defined through four coordinated S atoms,makes a dihedral angle of 2.9°with the pyridine ring in the cation.The bond lengths and angles are in good agreement with the reported[Ni(mnt)2]-compounds[22-23].The cations exhibit different alkyl chain conformation,namely, from C11 to C19 atoms show completely trans-planar conformation in the hydrocarbon chain,whereas the C9 and C10 atoms in the pyridyl ring tail display a cis conformation.The direction of alkyl chain isalmost parallel to the long molecular axis of[Ni(mnt)2]-anions.All the alkyl of the cations are nor disordered at room temperature.

    Fig.1(a)ORTEP view labelling atom and thermal ellipsoids drawn at the 20%probability level for 1;(b)Packing structure of 1 viewed along the a axis;(c)The layer arrangement parallel to the(111)p lane,showing the alternating stacks of anions and cations;(d)Anionic dimer with the longitudinal offset mode(Symmetry code:iii1-x,0.5+y,z;iv-x,1-y,-1+z).

    As shown in Fig.1b and 1c,the anions and cations are aligned into segregated stacks, respectively.The two neighboring Ni[(mnt)2]-anions are formed intoπ-type dimer along the crystallographic a axis direction with the shorter interatomic separations is 0.3995 nm of Ni(1)…Ni(1)i(Symmetry code:ix,-1+y,z).The adjacent anions dimers with a slippage arrangement along both short and long molecular axes of the anions form a zigzag chain.Each anions chain was surrounded by four nonmagnetic cations stacks.There existed charge assisted C-H…N and N-H…N interactions between the adjacent anion and cation stacks,as demonstrated in Fig.1d,the shorter inter-atomic contacts are found (C(19)…N(1)0.331 8 nm,H(19)…N(1)0.256 8 nm, C(19)-H(19)…N(1)146.75°,C(23)ii…N(2)0.351 4 nm, H(23)…N(2)0.265 2 nm,C(19)-H(19)…N(1)161.19°, N(25)iii…N(3)0.352 3 nm,H(25A)…N(3)0.255 7 nm, C(19)-H(19)…N(1)175.14°,C(17)iv…N(4)0.349 6 nm, H(17B)…N(4)0.272 8 nm,C(19)-H(19)…N(1)138.57° (Symmetry code:iix,y,-1+z;iii1-x,0.5+y,z;iv-x,1-y, -1+z).Along the c axis direction,two C10-DMPy+cations are arranged in an anti-parallel arrangement, a longer centroid-to-centroid separation(0.680 750 nm)of pyridine owing to the steric hindrance between the N,N-dimethyl groups and the alkyl chain.The cations are further arranged into the individual cation layers,which are also parallel to the ab-plane.

    2.2M agnetic property of 1

    The plots of χmas a function of temperature of 1 in the temperature range of 1.8~400 K is displayed in Fig.2,whereχmrepresents the molar magnetic susceptibility with one[Ni(mnt)2]-per formula unit andthe diamagnetism contributed from the atomic cores was not removed.The overall magnetic behavior of 1 corresponds to a paramagnetic system with ferromagnetic coupling interaction.

    Fig.2 Plots of χm-T for 1

    The χmT value at 300 K is 0.390 emu·K·mol-1which is slightly higher than the spin-only value expected for system with S=1/2(0.375 emu·K·mol-1). With the temperature decrease,the value of χmslightly increases.Below 25 K,the χmvalues decrease steeply, and such the typical Curie paramagnetic behavior of 1 in low temperature region arises from the magnetic impurity caused by the lattice defects.In order to estimate the magnetic exchange nature of 1,the simple Curie-Weiss law was used to analyze the magnetic susceptibility data over the range of 1.8~400 K:

    where the symbols of χ0is contributed by the core diamagnetism and the possible temperatureindependent van Vleck-type paramagnetic susceptibility originated from the coupling of the ground and excited states through a magnetic field, and then C/T term represents the paramagnetism from the magnetic impurity.However,the obtained C values from fits are too large and seem unreasonable. The inability of Curie-Weiss models to describe the magnetic behavior indicates this 1-D spin system probably posses strong magnetic anisotropy,which leads to the temperature dependent magnetic susceptibility deviating from the isotropic magnetic coupling model.

    2.3Dielectric p roperties

    The relative permittivity ε*(ω)of the dielectric material as function of frequency is given by:

    Frequency dependent of the dielectric permittivity ε′and dielectric loss tanδ=ε″/ε′for 1 are shown in Fig.3 in the temperature range of 50~130℃. From the Fig.3,it can be seen that the values ε′rapidly drops from about 40 to 7 with the increase of the field frequency from 1 to 104Hz at 130℃.The nature of the dielectric permittivity related to oscillating free dipoles(like long alkyl chain of the organic cation)in an alternating field.At very low frequencies,the dipoles motion can follow the applied electric field.As the frequency increases and reaches a characteristic value(ω=1/τ),the dielectric constant slightly decreases and exhibit relaxation process.The different model of mechanisms leads to the resonance dielectric relaxation spectra in the case of electronic polarization or molecular vibrations which occur at frequency beyond 1012Hz.Below this frequency,the dielectric relaxation spectra prevail relating to the behavior of dipole motion or ionic polarization.For 1, [Ni(mnt)2]-anions have rigid planar configuration and the motion at small electric field is very difficult. Therefore,the relaxation that appears in 1~104Hz could be attributed to dipole motion of the organic cations in 1.Dielectric relaxation process were also observed in the tanδ-f plot(Fig.3b).The dielectric relaxation spectra of 1,transformed into electric modulus spectra in Fig.4a by using Eq.(3),the dielectric modulus representation minimizes the unwanted effects of the extrinsic relaxation and is often used in the analysis of the dynamic conductivity of solids[30].It can essentially eliminate the problem ofthe electrode polarization and space charge injection phenomena.

    Fig.3 Frequency dependences of ε′(a)and tanδ(b)for 1 in the range of 50~130℃

    Fig.4 Frequency dependences of dielectric modulus M″(a)and p lots of τ versus T for 1(b)at selected temperature

    It is observed that the maximum in M″peak shift to higher frequency with the temperature increase.In the frequency region below peak maximum,the charge carrier drifts to long distance.For the frequency above peak maximum M″,the carrier seem to be confined to potential well,thus drifts to short distances or spatially localized.In order to get the deep insight into the dielectric relaxation process,the frequencydependence of peak for the dielectric loss at different temperature is plotted(Fig.4b)and the following relation is:

    Where τ=1/fmaxand fmaxis the frequency at maximum in the plot of tanδ-f under a selected temperature;τ0represents the characteristic macroscopic relation time,Eais the activation energy or potential barrier required for the dielectric relaxation,kBis Boltzmanns constant.The best fits giving the following results using Eq.(4):τ0=8.928(3)× 10-13s and Ea=0.63(1)eV.According to our previous work,this dielectric relaxation is attributed to dynamic orientation motion segmental motions of the organic cation.Similar relaxation have been reported in polymer.The Eaand τ0values in this compound are slightly larger than our reported compound 1,10-bis(1-methylimidazolium)decane bis(maleonitriodithiolato) nickelate[31].For this compound,the segregated stacks of anions and cations and diverse charge-assisted H…N,C…N and H…S interactions between the adjacent anion and cation stacks(as shown in Fig.1d)stabilize the cations in its lattice,furthermore,the rigid pyridine ring compared to imidazolyl ring in 1 give seldom freedom for the motion of the cations,which may be the reason for its relatively larger activation energy and τ0.

    Fig.5 Temperature dependences of ε″(a)and tanδ(b)for 1 at the selected frequency

    Carefully check the temperature dependence dielectric constant(ε″)and dielectric loss(tanδ)at selected frequency for 1(Fig.5a and 5b),the second step dielectric relaxation was observed in the range of 50~110℃and at the frequency from 105to 106Hz. The dielectric constant and loss are almost constants at low temperature.With the temperature increasing,the wide dielectric loss and constant peak become visible in the range of 50~110℃and maxima of all peaks shift toward high frequencies.This dielectric behavior is typical thermal assisted dielectric relaxation,and may be related to charge transfer of the cations and anions.At high frequencies(105to 106Hz),the dipoles motion(organic cation segments motion,the first step dielectric relaxation)cannot follow the applied electric field,and second relaxation becomes apparent.

    The relaxation process for 1 at selected temperatures was fitted using Cole-Cole model function:

    Fig.6 Plots of ε″versus ε′at selected temperatures for 1 (Open:experimental data;lines:theoretically reproduced using Eq.(5)).

    Where the symbols ε0and ε∞are respectively the static and high frequencies limits of dielectric permittivity,is relaxation time related to the frequency of maximum dielectric loss and is parameter which describe the shape of the relaxation spectra with the range of 0~1.For an ideal Debye relaxation,α=0.Fig.6 shows the Cole-Cole plots of the relaxation process for 1 at selected temperatures,and the best fits using Eq.(5)for the plots of ε”-ε yielded the corresponding parameters ε0,ε∞and α for 1, which are summarized in Table 3.The fitted ε∞parameter is closed to the dielectric constant at higher frequency(f>105Hz)for 1,and the fitted α parameters deviate from zero,indicating that the relaxation process depart from the ideal Debye dielectric response.

    Table 3ε0,ε∞and α parameters for 1

    2.4Com p lex impedance analysis

    The increase of dielectric loss and dielectric permittivity at higher temperature is due to the conductivity increase of the sample.To understand this dielectric relaxation and analyze dynamics of the ionic movement in crystal,the complex impedance(Z′-Z″)plot at different temperature was made(Fig.7a). The plot shows a single semicircle for selected temperature related to bulk effects.It indicates that single conductivity process take place in the sample. These impedance plots were solved by fitting using equivalent circuit where each impedance semicircle can be represent by a resistor,R,and capacitor,C,in parallel.It is clearly seen from the Fig.7a that the radius of semicircle decreases with increasing temperature,which indicates that the decrease of the bulk resistance with an increases of the temperature. The temperature dependent conductivities σdcare plotted in the form of lgσdcversus 1 000/T,as shown in Fig.7b,the lgσdcas a function of 1 000/T shows linear relationship in the temperature range of 403~473 K, and the activation energy(Edc)was estimated as 0.57(2)eV,which is similar with the activation energy obtained from dielectric relaxation.The similar active energy implies that charge carrier has to overcome the same energy barrier while conducting as well as relaxation.The conduction of 1 due to a process of charge transfer between the cation and anion.Fromthe single crystal structure,there are diverse weak interactions between the anion and cation.As the temperature increasing,the motion of the alkyl chain of the cation induces the enhancement charge transfer and charge carrier.The motion of charge carriers in the low-mobility solids is accompanied by an electric relaxation.The charge transfer between the cation and anion is accompanied by the change in the direction of the dipole movement in the samples.

    Fig.7 Complex-plane impedance plots for 1 at various temperatures(a)and temperature dependence of σdcfor 1(b) (Black dot:obtained from using an equivalent circuit;lines:theoretically reproduced)

    3 Conclusions

    In summary,a molecular magnetic based on [Ni(mnt)2]-spin system have been synthesized and characterized structurally via incorporating the easily mobile organic cation.Some weakly charge-assisted interactions between the mobile organic cation and rigid[Ni(mnt)2]-anion were observed in the crystal structure of 1.The dielectric results indicated that the dielectric relaxation in the investigated frequency range originates from the dynamic orientation motion of alkyl chain of the organic cation.The overall magnetic behavior of 1 corresponds to a paramagnetic system with ferromagnetic coupling interaction.This study provided a new strategy for the design of relaxlike dielectric.

    [1]Wojnarowska Z,Knapik J,Diaz M,et al.Macromolecules, 2014,47:4056-4065

    [2]Arik E,Altan H,Esenturk O.J.Phys.Chem.A,2014,118: 3081-3089

    [3]Xiao B,Zheng W,Dong Y L,et al.J.Phys.Chem.C,2014, 118:5802-5809

    [4]Moynihan C T.Solid State Ionics,1998,105:175-180

    [5]Petrovsky V,Manohar A,Dogan F.J.Appl.Phys.,2006,100: 014102(2 pages)

    [6]Sheoran A,Sanghi S,Rani S,et al.J.Alloys Compd.,2009, 475:804-809

    [7]Roling B,Happe A,Funke K,et al.Phys.Rev.Lett.,1997, 78:2160-2163

    [8]Ang C,Yu Z,Jing Z,et al.Phys.Rev.B,2000,61:3922 -3926

    [9]Thongbai P,Yamwong T,Maensiri S.Solid State Commun., 2008,147:385-387

    [10]Pradhan D K,Choudhary R N P,Samantaray B K.Int.J. Electrochem.Sci.,2008,3:597-608

    [11]Xu G C,Ma X M,Zhang L,et al.J.Am.Chem.Soc., 2010,132:9588-9590

    [12]ZHOU Qin-Qin(周琴琴),FU Da-Wei(付大偉).Chinese J. Inorg.Chem.(無機化學學報),2013,29(8):1696-1702

    [13]Akutagawa T,Koshinaka H,Sato D,et al.Nat.Mater., 2009,8:342-347

    [14]Fu D W,Cai H L,Liu Y M,et al.Science,2013,339:425-428

    [15]Fu D W,Song Y M,Wang G X,et al.J.Am.Chem.Soc., 2007,129:5346-5347

    [16]Fu D W,Dai J,Ge J Z,et al.Inorg.Chem.Commun.,2010, 13:282-285

    [17]Rodríguez-Molina B,Pérez-Estrada S,Garcia-Garibay M A, J.Am.Chem.Soc.,2013,135:10388-10395

    [18]Jiang X,Rodríguez-Molina B,Nazarian N,et al.J.Am. Chem.Soc.,2014,136:8871-8874

    [19]Kottas G S,Clarke L I,Horinek D,et al.Chem.Rev.,2005, 105:1281-1376

    [20]Kaszynski P,Friedli A C,Michl J.J.Am.Chem.Soc., 1992,114:601-620

    [21]Winston E B,Lowell P J,Vacek J,et al.Phys.Chem. Chem.Phys.,2008,10:5188-5191

    [22]Duan H B,Chen X R,Yang H,et al.Inorg.Chem.,2013,52:3870-3877

    [23]ZHOU Hong(周宏),YU Shan-Shan(于姍姍),DUAN Hai-Bao(段海寶),et al.Chinese J.Inorg.Chem.(無機化學學報),2013,29(7):1-10

    [24]Duan H B,Ren X M,Meng Q J.Coord.Chem.Rev.,2010, 254:1509-1522

    [25]Daun H B,Ren X M,Shen L J,et al.Dalton Trans., 2011,40:3622-3630

    [26]Davison A,Holm H R.Inorg.Synth.,1967,10:8-26

    [27]XU Duo-Hui(許多慧),SHENG Xiao-Li(盛小利),LU Chang-Sheng(蘆昌盛),et al.Chinese J.Inorg.Chem.(無機化學學報),2012,28(5):888-892

    [28]SMART and SAINT,Siemens Analytical X-ray Instrument Inc.,Madison,WI,1996.

    [29]Sheldrick G M.SHELX-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [30]wiergiel J,Jadzyn J.Ind.Eng.Chem.Res.,2011,50:11935 -11941

    [31]Duan H B,Zhang X M,Zhou H.Synth.Met.,2014,15:294-298

    Magnetic and Relax-like Dielectric Response Behavior in a Charge-Transfer Crystal

    ZHANG Xue-Mei1YU Shan-Shan2ZHANG Hui2DUAN Hai-Bao*,2
    (1School of Chem ical and Material Engineering,Anhui Science and Technology University,Bengbu,Anhui 233100,China)
    (2School of Environmental Science,Nanjing Xiaozhuang University,Nanjing 211171,China)

    Molecular rotation and orientation by applied electric field is one of the promising strategies for assembling the potential molecular dielectric rotors and relax-like dielectric.Here,a new charge transfer compound [C10-DMPy][Ni(mnt)2](1)(C10-DMPy+=1-decanel-N,N-dimethylpyridinium cation,mnt2-=maleonitriledithiolate), which shows interesting dielectric relaxation process,is synthesized and characterized.The anions and cations of 1 are aligned into segregated stacks.There existed weakly charge-assisted hydrogen bonding interactions between the mobile organic cation and rigid[Ni(mnt)2]-anion.Large temperature-dependent dielectric constant values and dielectric relaxation process of 1 can be ascribed to the dynamic orientation motion of alkyl chain of the organic cation and charge transfer between anions and cations.The overall magnetic behavior of 1 corresponds to a paramagnetic system with ferromagnetic coupling interaction.CCDC:1415204,1.

    charge-transfer crystal;crystal structure;dielectric response;magnetic properties

    O614.81+3

    A

    1001-4861(2016)01-0025-09

    10.11862/CJIC.2016.002

    2015-07-27。收修改稿日期:2015-10-16。

    國家自然科學基金(No.21201103,21301093)資助項目。

    *通信聯(lián)系人。E-mail:duanhaibao4660@163.com

    亚洲av二区三区四区| 女人久久www免费人成看片| 国产在线一区二区三区精| 97在线人人人人妻| 日本欧美视频一区| 久久婷婷青草| 国产av一区二区精品久久| 少妇的逼水好多| 国产伦在线观看视频一区| 亚洲av二区三区四区| 中文天堂在线官网| 自拍偷自拍亚洲精品老妇| 欧美精品一区二区免费开放| 一级毛片 在线播放| 2018国产大陆天天弄谢| 日本av手机在线免费观看| 搡老乐熟女国产| 国产成人一区二区在线| 久久这里有精品视频免费| 超碰97精品在线观看| av线在线观看网站| 极品少妇高潮喷水抽搐| 97精品久久久久久久久久精品| 在线观看av片永久免费下载| 久久国产精品大桥未久av | 免费久久久久久久精品成人欧美视频 | 欧美区成人在线视频| 国产女主播在线喷水免费视频网站| 最新的欧美精品一区二区| 亚洲熟女精品中文字幕| av免费在线看不卡| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 男男h啪啪无遮挡| 麻豆成人午夜福利视频| 精品人妻熟女av久视频| 高清在线视频一区二区三区| 另类亚洲欧美激情| 国产免费又黄又爽又色| 亚洲内射少妇av| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美另类一区| 亚洲婷婷狠狠爱综合网| 精品人妻熟女av久视频| 欧美日韩亚洲高清精品| 免费黄频网站在线观看国产| 两个人免费观看高清视频 | 丰满人妻一区二区三区视频av| 丰满乱子伦码专区| 美女福利国产在线| 亚洲国产色片| 韩国av在线不卡| 久热这里只有精品99| 人妻夜夜爽99麻豆av| 午夜激情久久久久久久| 免费观看的影片在线观看| 高清在线视频一区二区三区| 亚洲欧美精品自产自拍| 久久久国产一区二区| 亚洲四区av| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡 | 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 七月丁香在线播放| 2021少妇久久久久久久久久久| 91成人精品电影| 亚洲成人av在线免费| 九九久久精品国产亚洲av麻豆| 精品国产国语对白av| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 欧美bdsm另类| 国产免费一区二区三区四区乱码| 国产免费又黄又爽又色| 秋霞伦理黄片| av天堂久久9| 2018国产大陆天天弄谢| 激情五月婷婷亚洲| 少妇猛男粗大的猛烈进出视频| 热99国产精品久久久久久7| 三级国产精品片| 又爽又黄a免费视频| 亚洲精华国产精华液的使用体验| h日本视频在线播放| 国产成人精品无人区| 国产一区二区三区av在线| 桃花免费在线播放| 久久午夜综合久久蜜桃| 欧美日韩国产mv在线观看视频| 色视频在线一区二区三区| 有码 亚洲区| 欧美精品高潮呻吟av久久| 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 蜜桃在线观看..| av.在线天堂| 一区在线观看完整版| 日韩三级伦理在线观看| 日韩成人av中文字幕在线观看| 女性被躁到高潮视频| 嘟嘟电影网在线观看| 成年女人在线观看亚洲视频| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| av免费在线看不卡| 亚洲,一卡二卡三卡| 亚洲欧美日韩另类电影网站| 一个人免费看片子| 国产精品一区二区三区四区免费观看| 亚洲精品视频女| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩av久久| 国产午夜精品一二区理论片| 国产真实伦视频高清在线观看| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 一级毛片我不卡| 国产色婷婷99| 只有这里有精品99| 亚洲精品国产成人久久av| av不卡在线播放| 欧美xxxx性猛交bbbb| 午夜激情久久久久久久| av天堂久久9| 精品一区二区三区视频在线| 国产精品蜜桃在线观看| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 少妇人妻一区二区三区视频| 久久久精品94久久精品| 国模一区二区三区四区视频| 亚洲av综合色区一区| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 一区在线观看完整版| 伦理电影免费视频| 成年人午夜在线观看视频| 新久久久久国产一级毛片| 五月开心婷婷网| 看非洲黑人一级黄片| videossex国产| 99热这里只有是精品50| 亚洲精品乱码久久久久久按摩| 一级二级三级毛片免费看| 亚洲av不卡在线观看| www.av在线官网国产| 99九九线精品视频在线观看视频| 91成人精品电影| 国产一区二区三区综合在线观看 | 国产黄色视频一区二区在线观看| 精品亚洲成a人片在线观看| 人妻制服诱惑在线中文字幕| 一区二区三区精品91| 一级a做视频免费观看| 国产精品嫩草影院av在线观看| 亚洲图色成人| 国产一区二区三区综合在线观看 | 少妇被粗大的猛进出69影院 | 丁香六月天网| 国产极品天堂在线| 丰满少妇做爰视频| 午夜福利,免费看| 亚洲美女视频黄频| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 国产av码专区亚洲av| 免费久久久久久久精品成人欧美视频 | 国产精品福利在线免费观看| 2021少妇久久久久久久久久久| 蜜桃在线观看..| 亚洲av成人精品一二三区| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 3wmmmm亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲无线观看免费| 777米奇影视久久| 国产69精品久久久久777片| 女性生殖器流出的白浆| 日韩强制内射视频| 精品久久久噜噜| 如日韩欧美国产精品一区二区三区 | 久久ye,这里只有精品| 亚洲精品国产av蜜桃| 成年美女黄网站色视频大全免费 | 成人二区视频| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 精品人妻偷拍中文字幕| 国产欧美日韩精品一区二区| 另类亚洲欧美激情| 精品熟女少妇av免费看| 视频区图区小说| 免费观看的影片在线观看| 久久久国产精品麻豆| 亚洲一级一片aⅴ在线观看| 乱系列少妇在线播放| 精品少妇黑人巨大在线播放| 国产伦精品一区二区三区视频9| 日韩亚洲欧美综合| 亚洲精品一二三| 日韩不卡一区二区三区视频在线| 婷婷色综合www| 午夜影院在线不卡| 国产精品一区二区性色av| 有码 亚洲区| 嘟嘟电影网在线观看| 熟女电影av网| 欧美少妇被猛烈插入视频| 丝袜在线中文字幕| 黄色配什么色好看| 69精品国产乱码久久久| 黄色怎么调成土黄色| 日韩 亚洲 欧美在线| 日韩欧美一区视频在线观看 | 成人特级av手机在线观看| 国产成人aa在线观看| 国产又色又爽无遮挡免| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| a 毛片基地| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 一级爰片在线观看| 纵有疾风起免费观看全集完整版| 一边亲一边摸免费视频| 国产中年淑女户外野战色| 夜夜爽夜夜爽视频| 久久久久久伊人网av| 久久99热6这里只有精品| 肉色欧美久久久久久久蜜桃| av卡一久久| 赤兔流量卡办理| 日韩制服骚丝袜av| 久热久热在线精品观看| 久久99精品国语久久久| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 久久97久久精品| 赤兔流量卡办理| 色吧在线观看| 高清毛片免费看| 国产免费一级a男人的天堂| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 久久人人爽人人爽人人片va| 涩涩av久久男人的天堂| 久久久久久久久久久久大奶| 一级二级三级毛片免费看| 在线亚洲精品国产二区图片欧美 | 免费观看在线日韩| 一级a做视频免费观看| 简卡轻食公司| 日韩在线高清观看一区二区三区| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 在线天堂最新版资源| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 尾随美女入室| 69精品国产乱码久久久| 好男人视频免费观看在线| 欧美一级a爱片免费观看看| 国产精品一区二区性色av| av一本久久久久| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 久久久久精品久久久久真实原创| 美女cb高潮喷水在线观看| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 日韩在线高清观看一区二区三区| 日本-黄色视频高清免费观看| 国产亚洲91精品色在线| 日韩亚洲欧美综合| 欧美人与善性xxx| 一区二区av电影网| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 亚洲国产最新在线播放| 中文字幕久久专区| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 一边亲一边摸免费视频| 男人狂女人下面高潮的视频| 久久久久久久久久久免费av| 国产男人的电影天堂91| 一级黄片播放器| 亚洲成色77777| av又黄又爽大尺度在线免费看| 免费黄色在线免费观看| 高清视频免费观看一区二区| 又大又黄又爽视频免费| 99久国产av精品国产电影| 在线播放无遮挡| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 国产成人精品婷婷| 嘟嘟电影网在线观看| 中文字幕人妻丝袜制服| 成人特级av手机在线观看| 国产爽快片一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 99热这里只有精品一区| 国产视频内射| 中文在线观看免费www的网站| 久久99一区二区三区| 欧美精品国产亚洲| 久久99热6这里只有精品| 国产精品一区二区在线观看99| 久久久久视频综合| 久久久久精品性色| 国产又色又爽无遮挡免| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 久久亚洲国产成人精品v| 视频区图区小说| 简卡轻食公司| 岛国毛片在线播放| 美女主播在线视频| 亚洲欧洲国产日韩| 51国产日韩欧美| 老司机影院毛片| 国产精品女同一区二区软件| 新久久久久国产一级毛片| 免费大片黄手机在线观看| 黑人高潮一二区| 免费看日本二区| 国产成人精品久久久久久| 美女xxoo啪啪120秒动态图| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 一级毛片我不卡| 国产毛片在线视频| 十分钟在线观看高清视频www | videos熟女内射| 久久99精品国语久久久| 99久久精品国产国产毛片| 久久精品国产亚洲av涩爱| 亚洲一级一片aⅴ在线观看| 成人二区视频| 国产成人精品无人区| 国产高清有码在线观看视频| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 亚洲人与动物交配视频| 精品酒店卫生间| 色网站视频免费| 国产极品粉嫩免费观看在线 | 亚洲熟女精品中文字幕| 最近手机中文字幕大全| 亚洲,欧美,日韩| 女人精品久久久久毛片| 少妇 在线观看| 秋霞伦理黄片| 91成人精品电影| 最近中文字幕2019免费版| 18禁裸乳无遮挡动漫免费视频| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 欧美成人午夜免费资源| 久久久午夜欧美精品| 国产免费一区二区三区四区乱码| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 在线观看www视频免费| 人妻夜夜爽99麻豆av| 高清不卡的av网站| 少妇被粗大的猛进出69影院 | 下体分泌物呈黄色| av福利片在线观看| 一级二级三级毛片免费看| 成人综合一区亚洲| av福利片在线| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 久久精品国产亚洲av天美| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一区久久| 午夜激情久久久久久久| 亚洲精华国产精华液的使用体验| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人| 国产精品一区二区在线观看99| 性色avwww在线观看| 国产av码专区亚洲av| 国内精品宾馆在线| 亚洲精品视频女| 日本黄色片子视频| 最黄视频免费看| 亚洲图色成人| 中文精品一卡2卡3卡4更新| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 国产欧美亚洲国产| 国产在视频线精品| 91久久精品电影网| 精品一区二区三区视频在线| 国产探花极品一区二区| 亚洲国产精品专区欧美| 深夜a级毛片| 男人和女人高潮做爰伦理| 国产精品.久久久| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 久久国产精品男人的天堂亚洲 | 晚上一个人看的免费电影| 亚洲中文av在线| 国产 一区精品| 乱系列少妇在线播放| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 精品国产露脸久久av麻豆| 午夜91福利影院| av福利片在线观看| 好男人视频免费观看在线| 国产男女超爽视频在线观看| 最近中文字幕高清免费大全6| 91精品一卡2卡3卡4卡| 久久国产乱子免费精品| 热re99久久精品国产66热6| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 精品人妻偷拍中文字幕| 久久久久精品性色| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 22中文网久久字幕| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 国产av精品麻豆| 一本久久精品| 国产免费福利视频在线观看| 国内精品宾馆在线| 我的老师免费观看完整版| 高清欧美精品videossex| 精品熟女少妇av免费看| 热99国产精品久久久久久7| 日本黄大片高清| 国产亚洲精品久久久com| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 麻豆成人午夜福利视频| 男女免费视频国产| 国产精品嫩草影院av在线观看| av.在线天堂| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 精品卡一卡二卡四卡免费| 美女脱内裤让男人舔精品视频| 黄色毛片三级朝国网站 | 亚洲国产欧美在线一区| 美女中出高潮动态图| 亚洲自偷自拍三级| 丝袜喷水一区| 久久久久久久久大av| 亚洲图色成人| 亚洲欧洲国产日韩| 中文资源天堂在线| 制服丝袜香蕉在线| 亚洲精品国产av成人精品| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| av有码第一页| 国产成人免费无遮挡视频| 国产黄片美女视频| 亚洲高清免费不卡视频| 女人久久www免费人成看片| 啦啦啦中文免费视频观看日本| 国产毛片在线视频| 观看美女的网站| 免费看光身美女| av在线播放精品| 亚洲国产日韩一区二区| 日日爽夜夜爽网站| 国产精品.久久久| 精品国产国语对白av| 国产有黄有色有爽视频| 免费观看的影片在线观看| 在线看a的网站| 亚洲国产色片| 大陆偷拍与自拍| 国产精品福利在线免费观看| 99热6这里只有精品| 哪个播放器可以免费观看大片| 久久久久久人妻| 国产精品秋霞免费鲁丝片| av黄色大香蕉| 国产真实伦视频高清在线观看| 国产精品蜜桃在线观看| 精品久久久久久久久亚洲| 如何舔出高潮| 26uuu在线亚洲综合色| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线 | 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 免费av中文字幕在线| 亚洲精品一二三| 天堂8中文在线网| www.av在线官网国产| 日本av免费视频播放| 免费大片18禁| 久久久欧美国产精品| √禁漫天堂资源中文www| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 在线观看人妻少妇| 国产一区亚洲一区在线观看| 有码 亚洲区| 亚洲三级黄色毛片| 久久久国产一区二区| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 久久狼人影院| 日韩制服骚丝袜av| 99热这里只有是精品50| 午夜久久久在线观看| 欧美成人午夜免费资源| 岛国毛片在线播放| 国产在视频线精品| 日韩av在线免费看完整版不卡| 国产69精品久久久久777片| 在线天堂最新版资源| 欧美日韩av久久| 午夜av观看不卡| 日日啪夜夜爽| a级毛片免费高清观看在线播放| 亚洲国产日韩一区二区| 最近手机中文字幕大全| 日韩人妻高清精品专区| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 麻豆成人午夜福利视频| av播播在线观看一区| 高清不卡的av网站| 久久人妻熟女aⅴ| 人妻系列 视频| 免费播放大片免费观看视频在线观看| 中文字幕制服av| 七月丁香在线播放| 秋霞伦理黄片| 天堂8中文在线网| 女人久久www免费人成看片| 国产在视频线精品| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 免费黄色在线免费观看| 日本色播在线视频| videos熟女内射| 多毛熟女@视频| 亚洲在久久综合| 久久久久久久精品精品| av.在线天堂| 欧美3d第一页| av又黄又爽大尺度在线免费看| 久久久久久久久久成人| 免费观看的影片在线观看| 亚洲美女黄色视频免费看| 观看免费一级毛片| 夫妻午夜视频| 国产在线视频一区二区| videossex国产| 久久免费观看电影| 亚洲国产欧美日韩在线播放 | av国产久精品久网站免费入址| 日韩欧美 国产精品|