• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES??

    2016-11-29 01:18:37YanZhangWeipingZhangXiaoGuoDeptofStatisticsandFinanceUniversityofScienceandTechnologyofChinaAnhui230026PRChina
    Annals of Applied Mathematics 2016年2期

    Yan Zhang,Weiping Zhang,Xiao Guo(Dept.of Statistics and Finance,University of Science and Technology of China,Anhui 230026,PR China)

    EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES??

    Yan Zhang,Weiping Zhang?,Xiao Guo
    (Dept.of Statistics and Finance,University of Science and Technology of China,Anhui 230026,PR China)

    Missing data and time-dependent covariates often arise simultaneously in longitudinal studies,and directly applying classical approaches may result in a loss of efficiency and biased estimates.To deal with this problem,we propose weighted corrected estimating equations under the missing at random mechanism,followed by developing a shrinkage empirical likelihood estimation approach for the parameters of interest when time-dependent covariates are present.Such procedure improves efficiency over generalized estimation equations approach with working independent assumption,via combining the independent estimating equations and the extracted additional information from the estimating equations that are excluded by the independence assumption. The contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries.We show that the estimators are asymptotically normally distributed and the empirical likelihood ratio statistic and its profile counterpart follow central chi-square distributions asymptotically when evaluated at the true parameter.The practical performance of our approach is demonstrated through numerical simulations and data analysis.

    empirical likelihood;estimating equations;longitudinal data; missing at random

    2000 Mathematics Subject Classification 62G05

    1 Introduction

    Longitudinal data frequently occur in many studies such as medical follow-up studies.A key characteristic of longitudinal data is that outcomes measured repeatedly on the same subject are typically correlated.Regression methods for such datasets accounting for within-subject correlation is abundant in the literatures[3,4]. Among which,the generalized estimating equations (GEEs) method by[12]has been widely used since it considers the mean structure and the correlation structure separately.When the marginal mean outcome given the covariates at current time is the same as that on all the past,present and future covariate values,the GEEs method assures consistency of the mean estimates even if the correlation is misspecified,and achieves efficiency if the correlation is correctly specified.

    In practice,however,it is common that some covariates may vary over time in a longitudinal study,that is,some of the covariates may be time-dependent.For example,in the Mother’s Stress and Children’s Morbidity Study (MSCM,[1]) ,the daily ratings of child illness Yitand maternal stress Xitare measured during a 28-day follow-up period.Obviously,Yitand Xitare time-dependent,both of which vary over time and may correlate with the other measurements.It has been noted that the consistency of GEEs is not assured with arbitrary working correlation structures when there are time-dependent covariates[17].The reason is that the estimating functions generated by the longitudinal data are no longer unbiased under an arbitrary correlation structure unless the marginal mean outcome given the covariates at the current time is the same as that on all the past,present and future covariate values.Clearly,the use of an independence assumption guarantees the consistency of GEEs but can result in a substantial loss in efficiency due to the fact that, only a subset of all the unbiased estimating functions is used.Some methods have been developed for such situations,for example,[10]classified the time-dependent covariates into three different types based on the moment conditions that are valid to the covariates.They then introduced a generalized method of moments (GMM) to combine all available valid estimating equations optimally.In general,the basic idea is to select estimating functions by minimizing some criteria,see[9,15,24] among others.Recently,[10]proposed a shrinkage empirical likelihood (EL,[16]) approach by including all the estimating functions under the independence correlation assumption and/or those are known to be unbiased a priori,and shrinking all other estimating functions according to the likelihood of each being a biased,uninformative or informative estimating equation.Their approach avoids identifying the uninformative and biased estimating functions and allows different shrinkage parameters for different estimating functions.

    Another common problem in the longitudinal data analysis is the missing data problem.For example,there were approximately 4%of dropout in the illness record during the 4 weeks in MSCM study.Statistical methods are available to handle such issue by incorporating missing data mechanisms to provide valid statistical inference,including complete-case analysis method,imputation method,inverseprobability weighted method and likelihood based method[13].Among which,the complete-case method is a straight forward way to handle missing data and has been widely used.It excludes all units in the dataset with one or more unobserved values.This can dramatically decrease the amount of data to be analyzed since a small percentage of missing values can lead to a considerable proportion of excluded units.Additionally,to be valid,it also requires data to be strictly MCAR (missing completely at random) ,that is,the probability of missingness is independent of all the covariates and observations at other measurement occasions.This is a rather strong assumption and is seldom met,especially for longitudinal data.Therefore,it often leads to biased or misleading results when directly applying the complete-case method in longitudinal data analysis.The GEEs method also encounters such embarrassment for missing data.[20]proposed a weighting method for rendering GEEs analysis correct under missing-at-random (MAR) mechanisms,that is,the probability of missingness does not depend on the unobserved data given the observed data.

    Since it is very common in longitudinal study that some measurements may be missing and some of the covariates are time-dependent simultaneously,and available statistical methods are insufficient to deal with such situation,it is of great interest to jointly study the missing data and time-dependent covariates issues.In this paper, we propose a shrinkage empirical likelihood (EL) approach to estimate the regression parameters under the MAR mechanism and the existence of time-dependent covariates at the same time.The empirical likelihood approaches have been proved to be advantageous in combing multiple sources of information and flexibly formulating models when dealing with missing data,see,for example,[2,19,22,26].Recently, [14]proposed an EL approach to construct the confidence intervals for the parameters of interest in linear regression models under nonignorable missing mechanism. When some covariates are missing at random,[7]introduced an augmented inverse probability weighted-type empirical likelihood ratio for the parameters of interest for single index model.To deal with missing data,we first multiply impute the missing values by the inverse probability weighting method similar to[22],which was shown to be a key to achieve semiparametric efficiency in their case.Then the estimating equations are partitioned into two groups.The first group contains those unbiased estimating functions and are always used,the second group consists of all other estimating functions which need to be appropriately shrank by the shrinkage parameters.The shrinkage parameters are given according to the likelihood of each estimating equation being unbiased.Finally the EL approach is employed by combining these two groups of estimating functions to gain efficiency.

    The rest of this paper is organized as follows.Section 2 describes the models andthe missing mechanism.We describe the details of the shrinkage empirical likelihood estimation approach in Section 3.Numerical studies and real data analysis are presented in Sections 4 and 5 respectively.All technical proofs are relegated to the appendix.

    2 Models and Missing Data

    Consider a longitudinal study with data set

    The probability p (xit) is called the propensity score or selection probability function.

    Let the marginal mean outcome at the tth time point for the ith observation be

    where g is a known monotone link function and β= (β1,···,βp)τis a p-vector of unknown parameters.Let Vibe an estimate of var (yi) or a“working”covariance matrix and,T be the (s,t) th entry of.Then the GEEs estimate of β is obtained by solving the following equations

    whereμi= (μi1,···,μiT)τ.Under the assumption of (asymptotic) unbiasedness of the estimating equations,[3]showed that the estimate of β by GEEs is nearly efficient relative to the maximum likelihood estimates of β in many practical situations,provided that var (yi) has been reasonably approximated.However, when time-dependent covariates are present,the unbiasedness assumption might not hold for arbitrary working correlation structure and consequently the GEEs estimate of β is not necessarily consistent[17].Note that we do not assume thatwhich means that the conditional mean outcome given the covariates at current time is the same as that on all the past, present and future covariate values.Although such condition guarantees unbiasedness of GEEs analysis,it is too strict in many situations.For example in MSCM study,captures the association of the current daily rating of child illness and maternal stress,butincludes,among others,the association between maternal stress history and current daily ratings of child illness.So even though we may have a marginal model for the outcome and current maternal stress,the influence from historical maternal stress could render the GEEs analysis biased.

    In case of missing data occurring in some estimating equations under working independence,we use the inverse probability weighted estimating equations approach similar to[23]and[22]to get a weighted estimating function with multiple imputations:

    Since we have a total of pT2estimating functions available,selecting the appropriate estimating functions for parameter estimation becomes a key to produce consistent and more efficient estimates than the class of usual GEEs estimators.To improve efficiency over a GEEs estimate with an independence correlation assumption,we introduce an EL with moment shrinkage approach in next section,as EL allows the easy incorporation of additional information and the number of estimating equations can be greater than the number of parameters.

    3 Empirical Likelihood with Moment Shrinkage

    Under the independence correlation assumption,a subject-wise empirical likelihood for the regression parameters β is

    Similar to[25]and[22],we can easily have the following result.

    Theorem 1 Under Conditions 1-5 in the appendix,as n→∞and nl→∞,converges in distribution to a normal random vector with mean zero and variancewhere

    To extract additional information from the estimating equations that are excluded by the independence assumption,and to improve efficiency over a GEEs estimate and subject-wise EL estimate with independence correlation assumption, denote bythe main estimating functions which are always selected and are known a priori to be unbiased,and other estimating functions are denoted as auxiliary estimating functions,We introduce a vector γ of shrinkage parameters withdimensions;each element of γ is a real number in[0,1]that depends on the data.LetIdeally, the shrinkage parameters should down weight those biased or un-informative estimating functions in SA.For a particular choice of γ,we have estimating functionsapplied tois similarly defined.Thus,consider the maximizerof the following empirical likelihood ratio function

    In application,we need to choose appropriate γ.Without loss of generality,let the estimating functions inLet each element ofvector c,,take 1 if the corresponding estimating functionis deemed unbiased by the testing procedure of[10]and be 0 otherwise.Then the shrinkage parameteris defined as

    Let c0and γ0be the true parameters of c and γ,respectively.Ifis truly unbiased,we haveotherwise.Defineand letbe the estimator of γ by (14) .We can obtain the following result similar to Theorem 1.

    Theorem 2 Under Conditions 1-5 in the appendix,asconverges in distribution to a normal random vector with mean zero and varianceevaluated at β0,where

    Because of unknown nuisance parameters in the limiting variances,it is difficult to make statistical inference using the above theorem.For this purpose,we consider the properties of the empirical likelihood ratios induced from L2(β) .Let R (β0) =We have the following theorem.

    Theorem 3 Under Conditions 1-5,as n→∞and nl→∞,R (β0) converges in distribution to a chi-square random variable with p degrees of freedom.

    The profile empirical likelihood ratio can be used to test a subvector of parameters when existing nuisance parameters.dimensional subvector of β.To test H0:β1=β01,denote the profile empirical likelihood ratiois the maximizer under the null hypothesis.We have the following theorem for the profile empirical likelihood ratio statistic.

    Theorem 4 Under Conditions 1–5,asconverges in distribution to a chi-square random variable with q degrees of freedom.

    The central chi-square distributions in Theorems 3 and 4 are convenient for hypotheses testing and constructing confidence regions for β and its components.

    4 Simulations

    In this section,we present simulation studies to compare the finite sample properties of our proposed method with the other two alternative methods in terms of the bias and the root mean squared error (RMSE) .The three methods are:

    1.GEEs using an independence working correlation (GEE1) ,where the missing data yitis generated from the conditional distribution F (y|xit) ;

    2.Subject-wise empirical likelihood method in (11) using an independence working correlation (EL1,EL with no shrinkage) ;

    3.Using the empirical likelihood approach in (13) ,with the vector of shrinkage parameters (EL2,EL with shrinkage) .

    The data are generated by two different models under four different percentages of missing.We consider sample sizes n=150 and 300,and T=6 throughout the simulation.The number of replications is 1000 for each situation.The following two models are used by many other authors,see[10,27,11]for example.We are mainly interested in the regression coefficients ofin each case.

    Model 1 A TypeⅠⅠtime-dependent covariate.The data generating process is

    Model 2 Three TypeⅠⅠⅠtime-dependent covariates.The data generating process is

    We use product Gaussian kernels with possible bandwidth when computing (6) , (7) and (8) .It is well known that selecting a suitable bandwidth is a critical issue in nonparametric or semiparametric inferences.The classical optimal rate for the bandwidth is h=O (n?1/5) ,see[21].However,as[27]pointed out,the optimal rate h=O (n?1/5) is not allowed here since we require nh2m→ 0 for the mth order kernel in Condition 5.Hence,we use a simple bandwidthin model 1in model 2 respectively.Set nl=20 in (9) and (10) .

    The simulation results are tabulated in the following two tables.We only give results for the time-dependent slope parameter in each model as the intercept is a time-independent covariate and is seldom of interest.Table 1 corresponds to the situation where there is a single Type II time-dependent covariate,and shows that all estimators are approximately unbiased for n=150 and 300,and our approach outperforms the other two methods especially in the case with higher missing percentage in the response.

    Table 1:Bias and RMSE for estimates of β1=ζ1+ζ2ρ using three methods under Model 1

    Table 2 corresponds to the situation with three Type III time-dependent covariates.Obviously,our approach performs better than the other two methods especially in cases with relatively higher missing percentages.Both simulation results under these two models show that our method works much better than GEE1 and EL1 which simply use an independence working correlation,especially under the situations with relatively higher missing percentage.

    Table 2:Bias and RMSE for estimatesusing three methods under Model 2

    Table 2:Bias and RMSE for estimatesusing three methods under Model 2

    ?

    Figure 1 shows the plots of the empirical quantiles of empirical likelihood ratios for EL2 evaluated at the true parameters versus the theoretical quantiles offor model 1 andfor model 2,respectively.Both plots indicate the validity of Theorems 3 and 4.

    Figure 1:Quantile-Quantile plot ofrelative todistribution withbeing the true parameters of the time-dependent covariates,where the missing percentage is aboutthe empirical quantiles of EL2 relative toin Model 1; (b) the empirical quantiles of EL2 relative toin Model 2.

    5 Analysis of Morbidity Study

    We apply the methods in the previous section to the data from the Mothers’Stress and Children’s Morbidity Study (MSCM,[1]) .This study enrolled n=167 preschool children between the ages of 18 months and 5 years that attended an inner-city paediatric clinic.During 4 weeks of follow-up daily measures of maternal stress and child illness were recorded.Additional baseline covariates including child race,maternal educational attainment,marital status,and household size were also available (see[3]for example) .Time-dependent measures for household i included daily ratings of child illness Yitand maternal stress Xitduring a 28-day follow-up period t=1,2,···,28.Here we only focus on maternal educational attainment among all the other time-independent covariates to examine the effect of mothers’stress on paediatric care utilization.

    In this study,the child illness is missing at random during the 4 weeks of follow-up daily record for each child.We first divide the 28-day follow-up period into 4 weeks. Hence Yitdenotes the number of days that the ith child was ill in the tth week,and is missing if some daily records in that week are missing.Data with missing covariates are excluded.There were approximately 4%of dropout in the illness record during the 4 weeks.Similarly,Xitdenotes the number of days the ith child’s mother felt stressful in the tth week and there is no missingness in Xit,t=1,···,4.Since we are interested in a time-dependent covariate,stress and a time-independent covariate, education,that is,β= (β1,β2,β3)τ,where β1is the intercept,β2and β3are the coefficients for stress and education,respectively.We apply the three methods in the previous section to this dataset.The estimates︿β are (0.7860,0.2765,?0.0390)τ,and (0.7813,0.3195,?0.0423)τand (0.7960,0.3180,?0.0477)τby EL2,EL1 and GEE1 respectively.These estimates are very close as they are all consistent estimates.

    Table 3:Bias (RMSE) for the timedependent covariate

    We use the bootstrap method to obtain the bias of the estimator.Table 3 shows the bias and the root mean squared error (RMSE) of estimator for each method based on 500 bootstrap sampling.It can be seen that EL2 outperforms GEE and EL1.For model testing H0:β=0,the p-value is smaller than 1%by Theorem 3,that is,the model is significant.Using Theorem 4,we can test H0:βi=0 for i=1,2,3,the p-values are 4.51×10?5,1.96×10?6and 0.614 for i=1,2,3respectively.While the p-value for testing H0:β2=β3=0 is 9.89×10?6,we can conclude that the covariate stress is significant while education is nonsignificant.

    6 Conclusion

    In this paper,we have proposed a shrinkage empirical likelihood estimate for the parameters of interests when the response might be missing at random and the covariates may vary at time.After imputing the missing values,the estimating equations that are known a priori to be unbiased are always selected in the estimation procedure,and the contribution of other estimating functions is controlled by the shrinkage parameters.The shrinkage parameters put the appropriate weights on the additional information from the estimating equations that are excluded by the independence assumption,and therefore we obtain guaranteed improved efficiency over classical generalized estimating equations approach and subject-wise empirical likelihood approach.

    Acknowledgements We would like to thank the editor and two referees for all the constructive comments and detailed suggestions,which lead to a substantially improvement of our paper.

    References

    [1]C.S.Alexander and R.Markowitz,Maternal employment and use of pediatric clinic services,Medical Care,24 (1986) ,134-147.

    [2]S.X.Chen and P.Zhong,ANOVA for longitudinal data with missing values,The Annals of Statistics,38 (2010) ,3630-3659.

    [3]P.J.Diggle,P.J.Heagerty,K.Y.Liang and S.L.Zeger,Analysis of longitudinal data, 2nd ed.,Oxford University Press,New York,2002.

    [4]G.M.Fitzmaurice,M.Davidian,G.Verbeke and G.Molenberghs,Longitudinal Data analysis,Boca Raton,Florida:Chapman&Hall/CRC,2008.

    [5]A.N.Glynn and K.M.Quinn,An introduction to the augmented inverse propensity weighted estimator,Political Analysis,18 (2010) ,36-56.

    [6]X.Guo,T.Wang,W.Xu and L.Zhu,Dimension reduction with missing response at random,Computational Statistics&Data Analysis,69 (2014) ,228-242.

    [7]X.Guo,C.Niu,Y.Yang and W.Xu,Empirical likelihood for single index model with missing covariates at random,Statistics,49 (2015) ,588-601.

    [8]N.M.Laird,Missing data in longitudinal studies,Statics in Medicine,7 (1988) ,305-315.

    [9]T.Lai,D.Small and J.Liu,Statistical inference in dynamic panel data models,Journal of Statistical Planning andⅠnference,138 (2008) ,2763-2776.

    [10]T.L.Lai and D.Small,Marginal regression analysis of longitudinal data with timedependent covariates:A generalized method-of-moments approach,Journal of the Royal Statistical Society Series B,69 (2007) ,79-99.

    [11]D.H.Leung,D.S.Small,J.Qin and M.Zhu,Shrinkage empirical likelihood estimator in longitudinal analysis with time-dependent covariates–an application to modeling the health of filipino children,Biometrics,69 (2013) ,624-632..

    [12]K.Y.Liang and S.L.Zeger,Longitudinal data analysis using generalized linear models, Biometrika,73 (1986) ,13-22.

    [13]R.J.A.Little and D.B.Rubin,Statistical Analysis with Missing Data,2nd ed.,Wiley, 2002.

    [14]C.Niu,X.Guo,W.Xu and L.Zhu,Empirical likelihood inference in linear regression with nonignorable missing response,Computational Statistics&Data Analysis, 79 (2014) ,91-112.

    [15]R.Okui,Instrumental variable estimation in the presence of many moment conditions, Journal of Econometrics,165 (2011) ,70-86.

    [16]A.B.Owen,Empirical Likelihood,Chapman and Hall-CRC,New York,2001.

    [17]M.S.Pepe and G.L.Anderson,A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data,Communications in Statistics,Simulations and Computation,23 (1994) ,939-951.

    [18]J.Qin and J.Lawless,Empirical likelihood and general estimating equations,The Annals of Statistics,22 (1994) ,300-325.

    [19]J.Qin,B.Zhang and D.H.Y.Leung,Empirical likelihood in missing data problems, Journal of the American Statistical Association,104 (2009) ,1492-503.

    [20]J.M.Robins,A.Rotnitzky and L.P.Zhao,Analysis of semiparametric regression models for repeated outcomes in the presence of missing data,Journal of the American Statistical Association,90 (1995) ,106-121.

    [21]J.H.Sepanski,R.Knickerbocker and R.J.Carroll,A semiparametric correction for attenuation,Journal of the American Statistical Association,89 (1994) ,1366-1373.

    [22]C.Y.Tang and Y.Qin,An efficient empirical likelihood approach for estimating equations with missing data,Biometrika,99 (2012) ,1001-1007.

    [23]D.Wang and S.X.Chen,Empirical likelihood for estimating equations with missing values,The Annals of Statistics,37 (2009) ,490-517.

    [24]L.Wang and A.Qu,Consistent model selection and datadriven smooth tests for longitudinal data in the estimating equations approach,Journal of the Royal Statistical Society Series B,71 (2009) ,177-190.

    [25]S.Wang,L.Qian and R.J.Carroll,Generalized empirical likelihood methods for analyzing longitudinal data,Biometrika,97 (2010) ,79-93.

    [26]Q.Wang and J.N.K.Rao,Empirical likelihood-based inference under imputation for missing response data,The Annals of Statistics,30 (2002) ,896-924.

    [27]Y.Zhou,A.T.K.Wan and X.J.Wang,Estimating equations inference with missing data,Journal of the American Statistical Association,103 (2008) ,1187-1199.

    Appendix

    This supplement contains necessary regularity conditions and proofs of the lemmas and Theorems 2-4.The proof of Theorem 1 is similar to that of Theorem 1 in [22]Therefore we focus on the proofs of Theorems 2-4.

    In the following conditions,lemmas and theorems,we are interested in these estimating equations:

    respectively,where

    Conditions

    Before stating the lemmas,we impose the following regularity conditions.For simplicity,we denote all the estimating functions as a generic term g (Y,X;β) ,which includes S (Y,X;β) ,SM(Y,X;β) and SA(Y,X;β) .Let f (x) be the probabilitydensity function ofwhich therefore includes

    Condition 2 The true parameter value β0is the unique solution to=0,and all the estimating functions denoted by g (y,x;β0) have bounded qth order partial derivatives with respect to x,

    Condition 4 The matrices Γ1and Γ2are positive definite andhas full column rank.

    Condition 5 The functions W,K and Koare mth order kernels when p>4.are bandwidths for (6) , (7) and (8) respectively.

    Lemmas

    For simplicity,we use C to denote a generic positive constant independent of n in the proofs.We present the proofs of Theorems 2-4 as consequences of the following lemmas.

    hence,we have the estimator of γ.Let c0and γ0be the true parameters of c and γ,respectively.Ifis truly unbiased,we haveotherwise.Let

    Lemma 1 Suppose Conditions 1-5 are satisfied,then aswe have for

    Following Lemma 2 in[22],we have

    Therefore (A.5) is proved by noting that

    Lemma 2 Under Conditions 1-5,as

    in distribution and

    Proof Since

    Now we prove (A.10) ,

    Following Lemma 2 in[22],we have

    (A.10) can be concluded from (A.11) to (A.13) .This completes the proof of Lemma 2.

    Lemma 3 Under Conditions 1-5,as n→∞and nl→∞,

    in distribution and

    where Γ2is given in (A.2) .

    Proof Following the approach of Lemma 1 in[22],we can easily show that

    in distribution and

    where ΓMis defined in (A.3) .Note that

    The lemma can then be proved by directly following the approach of Lemma 1 in [22].

    Given a particular choice of γ,we denote a profile log-EL of

    Differentiating (A.20) with respect to (β,λ) ,we obtain the empirical likelihood equation

    which leads to the maximum EL estimatesof L2(β) in (A.19) .

    Lemma 4 Suppose Conditions 1-5 are satisfied,then aswith the proper choice ofdepending on the data by cross-validation,which therefore gives less weights to those estimating functions that are likely to be biased,and with probability tending to 1,the likelihood equation (A.20) has a solutionwithin the open balland L2(β) attains its local maximum at

    Proof As a consequence of Lemma 3 and the proof of Lemma 1 in[18],we can establish this lemma for the existence of a local maximizer of L2(β) .

    Based on the above conditions and lemmas,we are dedicated to prove Theorems 2-4.

    Proof of Theorem 2

    Proof The results can follow directly from the proof of Theorem 1 in[22].First, we differentiate lγ (β,λ) with respect to (β,λ) in (A.20) ,let

    Inverting a Taylor’s expansion on (A.22) near (β0,0)τ,we show that

    in distribution.This completes the proof of Theorem 2.

    Proofs of Theorems 3 and 4

    Proof By expanding the logarithm function in (A.20) at 1 for β and β0respectively,we establish the following expansion of the empirical likelihood ratio:

    and therefore

    Theorem 3 follows from (A.25) by applying Lemma 3.Noting thatand

    Similar to the proof of (A.26) ,we have

    (edited by Mengxin He)

    ?This work was supported by the NNSF of China (No.11271347) and the Fundamental Research Funds for the Central Universities.

    ?Manuscript September 25,2015;Revised March 31,2016

    ?.E-mail:zwp@ustc.edu.cn

    亚洲激情五月婷婷啪啪| 99热这里只有是精品在线观看| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 免费观看a级毛片全部| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| av在线app专区| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 大码成人一级视频| 高清欧美精品videossex| 免费黄网站久久成人精品| 伦精品一区二区三区| 久久免费观看电影| 国产高清国产精品国产三级| 韩国av在线不卡| 日韩视频在线欧美| av网站免费在线观看视频| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频 | 午夜福利在线观看免费完整高清在| 看非洲黑人一级黄片| 日韩成人av中文字幕在线观看| 97精品久久久久久久久久精品| 日本欧美视频一区| 国产福利在线免费观看视频| 久久久精品94久久精品| 韩国高清视频一区二区三区| 91精品三级在线观看| 这个男人来自地球电影免费观看 | 亚洲国产精品专区欧美| 久久精品久久精品一区二区三区| 亚洲美女搞黄在线观看| 99国产综合亚洲精品| 人人妻人人澡人人看| 亚洲色图综合在线观看| 亚洲图色成人| 你懂的网址亚洲精品在线观看| 99热网站在线观看| 老司机亚洲免费影院| 国产亚洲精品第一综合不卡 | 久久久久精品性色| 国产伦理片在线播放av一区| 波多野结衣一区麻豆| 青青草视频在线视频观看| 韩国av在线不卡| 咕卡用的链子| 国产xxxxx性猛交| 天堂中文最新版在线下载| 精品久久久久久电影网| 欧美人与性动交α欧美软件 | 激情五月婷婷亚洲| 久久人人爽人人片av| 久久久精品免费免费高清| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频 | 精品第一国产精品| 国产亚洲一区二区精品| 九草在线视频观看| av免费在线看不卡| 咕卡用的链子| 久久婷婷青草| 国产精品成人在线| 91在线精品国自产拍蜜月| 丝袜在线中文字幕| 大陆偷拍与自拍| 少妇人妻久久综合中文| 在线 av 中文字幕| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级| 18禁观看日本| 精品国产露脸久久av麻豆| 极品人妻少妇av视频| 久久午夜福利片| 久久精品国产鲁丝片午夜精品| 亚洲成人av在线免费| 少妇人妻久久综合中文| 9热在线视频观看99| 成人午夜精彩视频在线观看| 香蕉国产在线看| 久久综合国产亚洲精品| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 午夜av观看不卡| 看免费av毛片| 91成人精品电影| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲av电影在线观看一区二区三区| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 欧美激情国产日韩精品一区| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| h视频一区二区三区| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 丰满饥渴人妻一区二区三| 深夜精品福利| 久久这里只有精品19| 久久精品国产综合久久久 | 91久久精品国产一区二区三区| 国产日韩欧美视频二区| 国产精品.久久久| 日韩制服骚丝袜av| 日本欧美国产在线视频| a级片在线免费高清观看视频| 两性夫妻黄色片 | 日韩在线高清观看一区二区三区| 亚洲国产av影院在线观看| 精品久久久精品久久久| 亚洲国产看品久久| 午夜av观看不卡| 热re99久久国产66热| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 一区二区日韩欧美中文字幕 | 大香蕉97超碰在线| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 啦啦啦视频在线资源免费观看| 韩国精品一区二区三区 | 久久人人爽人人片av| 国产一区二区三区综合在线观看 | 久久婷婷青草| 免费在线观看黄色视频的| 成人无遮挡网站| 夜夜爽夜夜爽视频| 日本午夜av视频| 精品卡一卡二卡四卡免费| 久久久a久久爽久久v久久| 肉色欧美久久久久久久蜜桃| 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 亚洲国产精品国产精品| 亚洲激情五月婷婷啪啪| 有码 亚洲区| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 国产在线一区二区三区精| 捣出白浆h1v1| 久久免费观看电影| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 99热全是精品| 午夜视频国产福利| 久久女婷五月综合色啪小说| 国产精品一国产av| 97在线视频观看| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 2021少妇久久久久久久久久久| 亚洲精品第二区| 最新中文字幕久久久久| a 毛片基地| 午夜福利视频精品| 欧美精品亚洲一区二区| 蜜桃在线观看..| 精品人妻偷拍中文字幕| 国产成人免费观看mmmm| a 毛片基地| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 久久午夜综合久久蜜桃| 国产爽快片一区二区三区| 国产免费现黄频在线看| 一级片'在线观看视频| 免费黄色在线免费观看| 久久精品人人爽人人爽视色| 多毛熟女@视频| 在线免费观看不下载黄p国产| 亚洲性久久影院| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 亚洲色图综合在线观看| 日韩视频在线欧美| 日本午夜av视频| 咕卡用的链子| 日韩成人伦理影院| 免费观看a级毛片全部| 好男人视频免费观看在线| 美女中出高潮动态图| 只有这里有精品99| 好男人视频免费观看在线| 日韩精品免费视频一区二区三区 | 晚上一个人看的免费电影| 久久国产精品大桥未久av| 国产精品国产三级国产av玫瑰| 熟女人妻精品中文字幕| 免费av不卡在线播放| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看 | 精品卡一卡二卡四卡免费| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 97精品久久久久久久久久精品| 国产在线视频一区二区| 国产男女内射视频| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 久久久亚洲精品成人影院| av在线播放精品| 又黄又爽又刺激的免费视频.| a级毛片在线看网站| 国产成人免费无遮挡视频| 亚洲第一av免费看| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 久久精品国产亚洲av涩爱| 七月丁香在线播放| 亚洲成人一二三区av| 肉色欧美久久久久久久蜜桃| 久久久久久久精品精品| 久久婷婷青草| 一级毛片 在线播放| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 国产成人精品无人区| 日本爱情动作片www.在线观看| 午夜福利视频在线观看免费| 男人操女人黄网站| 九色亚洲精品在线播放| 免费观看在线日韩| 日日爽夜夜爽网站| 尾随美女入室| 日韩av免费高清视频| 黄色 视频免费看| 国产成人精品久久久久久| 天美传媒精品一区二区| 久热这里只有精品99| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区| 99国产精品免费福利视频| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品在线观看| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 丝袜脚勾引网站| 国产一区二区激情短视频 | 亚洲人与动物交配视频| 免费观看av网站的网址| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 亚洲av.av天堂| 人妻系列 视频| 久久久久久久久久久免费av| 在线观看美女被高潮喷水网站| 国产精品麻豆人妻色哟哟久久| av播播在线观看一区| 最近手机中文字幕大全| 看十八女毛片水多多多| 综合色丁香网| 熟女av电影| 99热网站在线观看| 久久久久久人人人人人| 汤姆久久久久久久影院中文字幕| 国产片特级美女逼逼视频| 九草在线视频观看| 天堂8中文在线网| 美女中出高潮动态图| 精品国产一区二区久久| 婷婷成人精品国产| 汤姆久久久久久久影院中文字幕| 97人妻天天添夜夜摸| 日本黄大片高清| 亚洲精品av麻豆狂野| 热99久久久久精品小说推荐| 亚洲综合色网址| 欧美 日韩 精品 国产| 男的添女的下面高潮视频| 国产免费福利视频在线观看| 精品少妇内射三级| 少妇高潮的动态图| 视频中文字幕在线观看| 尾随美女入室| av天堂久久9| 国产一区有黄有色的免费视频| 日本av免费视频播放| www日本在线高清视频| 国产成人精品福利久久| 成人影院久久| 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 丝袜喷水一区| 国产精品一国产av| 韩国av在线不卡| 男女下面插进去视频免费观看 | 午夜福利网站1000一区二区三区| 成人无遮挡网站| 日韩,欧美,国产一区二区三区| 有码 亚洲区| 精品亚洲乱码少妇综合久久| 久久久久精品久久久久真实原创| 999精品在线视频| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 国产亚洲一区二区精品| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 99久国产av精品国产电影| 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| 在线天堂最新版资源| 亚洲成国产人片在线观看| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 九草在线视频观看| 黄色毛片三级朝国网站| 免费大片黄手机在线观看| 青春草亚洲视频在线观看| 男女无遮挡免费网站观看| 各种免费的搞黄视频| 久久人人97超碰香蕉20202| 汤姆久久久久久久影院中文字幕| 亚洲精品成人av观看孕妇| 久久鲁丝午夜福利片| 国产精品人妻久久久影院| 国产乱人偷精品视频| 人成视频在线观看免费观看| 亚洲 欧美一区二区三区| 尾随美女入室| 青青草视频在线视频观看| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 久久久久人妻精品一区果冻| 免费看不卡的av| 色哟哟·www| 国产精品久久久av美女十八| 亚洲精品色激情综合| av在线app专区| 国产极品粉嫩免费观看在线| 熟妇人妻不卡中文字幕| 一区二区av电影网| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 少妇精品久久久久久久| 国产成人精品婷婷| 亚洲丝袜综合中文字幕| √禁漫天堂资源中文www| 亚洲国产看品久久| 日本猛色少妇xxxxx猛交久久| 亚洲三级黄色毛片| 国产国拍精品亚洲av在线观看| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 精品午夜福利在线看| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 97在线人人人人妻| 日韩中文字幕视频在线看片| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| 少妇的逼水好多| 亚洲欧洲日产国产| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频 | 久久精品久久精品一区二区三区| 午夜免费观看性视频| 国产成人精品婷婷| 少妇被粗大的猛进出69影院 | videos熟女内射| av免费在线看不卡| 亚洲国产看品久久| 伦理电影免费视频| 亚洲,欧美,日韩| 黄片播放在线免费| 国产欧美亚洲国产| 精品国产国语对白av| 美女脱内裤让男人舔精品视频| 美国免费a级毛片| 国产av码专区亚洲av| 丰满少妇做爰视频| 在线看a的网站| 国产 精品1| 1024视频免费在线观看| 免费看av在线观看网站| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 亚洲精品久久成人aⅴ小说| 精品久久国产蜜桃| 色5月婷婷丁香| 免费大片18禁| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 久久久久久久久久久久大奶| 丰满饥渴人妻一区二区三| 日本色播在线视频| 亚洲伊人色综图| 亚洲av.av天堂| 日本欧美视频一区| 国国产精品蜜臀av免费| 久久久久久久久久成人| 卡戴珊不雅视频在线播放| 色94色欧美一区二区| 美女内射精品一级片tv| 国产成人精品久久久久久| 大香蕉97超碰在线| 久久久久久久久久久久大奶| 欧美3d第一页| 26uuu在线亚洲综合色| 亚洲国产精品国产精品| 日韩中文字幕视频在线看片| 日韩电影二区| 精品一区在线观看国产| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 亚洲四区av| 亚洲成色77777| 黑人欧美特级aaaaaa片| 尾随美女入室| 一区二区三区四区激情视频| 18禁国产床啪视频网站| 国产国拍精品亚洲av在线观看| 建设人人有责人人尽责人人享有的| freevideosex欧美| 如何舔出高潮| 七月丁香在线播放| 两个人免费观看高清视频| 中国国产av一级| 国产在线免费精品| 热99国产精品久久久久久7| 日韩欧美一区视频在线观看| 校园人妻丝袜中文字幕| 99精国产麻豆久久婷婷| 最近2019中文字幕mv第一页| 亚洲天堂av无毛| 亚洲少妇的诱惑av| 欧美另类一区| 欧美人与善性xxx| 精品少妇内射三级| 成人毛片a级毛片在线播放| 久久精品久久久久久久性| 免费在线观看黄色视频的| 在线观看人妻少妇| 国产亚洲最大av| 国产成人精品福利久久| 免费日韩欧美在线观看| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 高清av免费在线| 久久亚洲国产成人精品v| 久久97久久精品| 熟女电影av网| 日韩一区二区三区影片| 精品一区二区免费观看| 精品一品国产午夜福利视频| 免费观看性生交大片5| 大陆偷拍与自拍| 日韩欧美精品免费久久| 满18在线观看网站| 欧美丝袜亚洲另类| 菩萨蛮人人尽说江南好唐韦庄| 成年动漫av网址| 视频中文字幕在线观看| 中文字幕人妻丝袜制服| 久久人人爽人人片av| 免费播放大片免费观看视频在线观看| 久久狼人影院| xxxhd国产人妻xxx| 全区人妻精品视频| 麻豆乱淫一区二区| 国产成人91sexporn| 欧美97在线视频| 成人18禁高潮啪啪吃奶动态图| 久久女婷五月综合色啪小说| a 毛片基地| 日韩中字成人| 一级爰片在线观看| 人人妻人人添人人爽欧美一区卜| 欧美日韩一区二区视频在线观看视频在线| 久久久久国产精品人妻一区二区| 久久精品国产自在天天线| 国产xxxxx性猛交| 人人妻人人添人人爽欧美一区卜| 亚洲第一区二区三区不卡| 久久99热6这里只有精品| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 久久午夜福利片| 男女边摸边吃奶| 高清毛片免费看| √禁漫天堂资源中文www| 国产一区二区激情短视频 | 国产淫语在线视频| av国产精品久久久久影院| 久久99一区二区三区| 亚洲av综合色区一区| 一本色道久久久久久精品综合| 欧美激情 高清一区二区三区| 丰满少妇做爰视频| 国产精品国产三级专区第一集| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 欧美最新免费一区二区三区| 一级黄片播放器| 一区二区av电影网| 国产又色又爽无遮挡免| 久久午夜福利片| 丝袜人妻中文字幕| 国产欧美日韩一区二区三区在线| 一级a做视频免费观看| 日韩,欧美,国产一区二区三区| www日本在线高清视频| av免费观看日本| 久久狼人影院| 久久韩国三级中文字幕| 22中文网久久字幕| 亚洲精品国产av蜜桃| 国产精品三级大全| 国产精品一区二区在线观看99| 国产黄色视频一区二区在线观看| 日韩制服骚丝袜av| 尾随美女入室| 热99国产精品久久久久久7| 欧美人与性动交α欧美精品济南到 | 亚洲国产色片| 欧美bdsm另类| 亚洲精品久久成人aⅴ小说| 男男h啪啪无遮挡| 午夜日本视频在线| 精品人妻一区二区三区麻豆| 久久人人爽av亚洲精品天堂| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久精品古装| xxx大片免费视频| 十八禁网站网址无遮挡| 热99国产精品久久久久久7| 男女边摸边吃奶| 男女午夜视频在线观看 | 波野结衣二区三区在线| 秋霞在线观看毛片| 亚洲av.av天堂| 亚洲久久久国产精品| av不卡在线播放| 久久精品国产自在天天线| 两个人免费观看高清视频| 成人无遮挡网站| 欧美精品一区二区免费开放| 精品国产一区二区三区四区第35| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠久久av| 亚洲少妇的诱惑av| 欧美日韩视频高清一区二区三区二| av.在线天堂| 中文字幕亚洲精品专区| 男女国产视频网站| 你懂的网址亚洲精品在线观看| 亚洲国产欧美日韩在线播放| 国产精品欧美亚洲77777| 免费高清在线观看日韩| a级毛色黄片| 国产成人精品婷婷| 亚洲成色77777| 久久久精品区二区三区| 一级片'在线观看视频| 国产精品一区二区在线观看99| 国产亚洲一区二区精品| 国产亚洲欧美精品永久| 久久女婷五月综合色啪小说| 在线观看www视频免费| 亚洲av福利一区| 国产成人精品在线电影| 欧美丝袜亚洲另类| 国产国拍精品亚洲av在线观看| 国产成人精品在线电影| 免费看av在线观看网站| 国产精品三级大全| 国产av码专区亚洲av| 在线亚洲精品国产二区图片欧美| 亚洲欧洲精品一区二区精品久久久 | 99九九在线精品视频| 成人手机av| 男人添女人高潮全过程视频| 国产精品久久久久久av不卡| 欧美日韩成人在线一区二区| 美女中出高潮动态图|