• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TRAVELING WAVE SOLUTIONS AND THEIR STABILITY OF NONLINEAR SCHR¨ODINGER EQUATION WITH WEAK DISSIPATION??

    2016-11-29 01:18:34YancongXuTianzhuLanYongliLiuDeptofMathHangzhouNormalUniversityZhejiang310036PRChina
    Annals of Applied Mathematics 2016年2期

    Yancong Xu,Tianzhu Lan,Yongli Liu(Dept.of Math.,Hangzhou Normal University,Zhejiang 310036,PR China)

    TRAVELING WAVE SOLUTIONS AND THEIR STABILITY OF NONLINEAR SCHR¨ODINGER EQUATION WITH WEAK DISSIPATION??

    Yancong Xu?,Tianzhu Lan,Yongli Liu
    (Dept.of Math.,Hangzhou Normal University,Zhejiang 310036,PR China)

    In this paper,several new constant-amplitude and variable-amplitude wave solutions (namely,traveling wave solutions) of a generalized nonlinear Schr¨odinger equation are investigated by using the extended homogeneous balance method,where the balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation,respectively.In addition, stability analysis of those solutions are also conducted by regular phase plane technique.

    nonlinear Schr¨odinger equation;extended homogeneous balance method;amplitude wave solutions;stability

    2000 Mathematics Subject Classification 35B40;35K58;35B32

    1 Introduction

    The investigation of temporal or spatial dynamics for nonlinear Schr¨odinger equations is an important and interesting subject,see,for example,[1-11,13-18,20] for details.In particular,there are many papers which have paid more attention to the dynamics of the following (2+1) -dimensional cubic nonlinear Schr¨odinger (NLS) equation without dissipation

    where u=u (x,y,t) is a complex-valued function,α,β,and γ are real constants,and subscripts represent partial derivatives.As we know,the NLS equation is referred to as an approximate model of the evolution of a nearly monochromatic wave of small amplitude of pulse propagation in Langmuir waves in a plasma,optical fibers and gravity waves on deep water with different values of parameters.

    Recently,modulational instability of many extended versions of the NLS equation with different dissipations have been investigated in[14,15,17].In particular, there is a nonlinear dissipative Schr¨odinger (DissNLS) equation as follows:

    where u=u (x,y,t) (x,y∈R) is a complex-valued function,α,β,γ,a,b,c and d are real constants with a,b and c being all nonnegative,d represents dissipation.Note that,this equation is regarded as a model of weakly nonlinear surface wave,and it can also be regarded as a generalized version of the complex Ginzburg-Landau equation.

    Actually,modulational instability corresponds to temporal stability.However, the investigation of traveling wave solutions also plays an important role in the dynamics of nonlinear physical phenomena,see,for example,Zhang et al.[16],Feng and Meng[19],Nguyen[21].To my best,except for particular parameters,there are no exact analytical solutions of (2+1) -dimensional NLS equation,so sometimes one has to resort to computer numerical simulations in order to investigate the dynamics of NLS,thus it is necessary to obtain exact solutions by certain analytic technique.Therefore,in order to better understand the dynamical behavior of the dissipative nonlinear Schr¨odinger equation (1.2) ,in this paper,we will focus on its exact traveling wave solutions and their spatial stability.

    The rest of this paper is outlined as follows.Section 2 contains two kinds of exact amplitude traveling wave solutions obtained by the homogeneous balance method. In Section 3,we study the stability of traveling wave solutions of NLS equation by using the regular phase plane method.

    Now,we introduce the homogenous balance method and use it to look for special exact solutions of some nonlinear equations.Consider a general partial differential equation

    where H is a polynomial function of its arguments,subscripts denote the partial derivatives.We will solve (1.3) by the homogeneous balance method with the following four steps:

    Step 1Firstly,take

    where m and n are nonnegative integers,the functions f=f (φ) and φ=φ (x,t) , and the coefficients Aijare all to be determined.Substituting (1.4) into (1.3) ,the integers m and n will be determined.

    Step 2Secondly,substituting the linear combination chosen in Step 1 into (1.3) , collecting all terms with the highest order derivatives of φ and setting its coefficient to be zero,we obtain an ordinary differential equation to get the function f.

    Step 3Thirdly,substituting the linear combination chosen in Step 2 into (1.3) , the nonlinear terms of various derivatives of f can be replaced by the corresponding higher order derivatives of f.Then collecting all terms with the same order derivatives of f and setting the coefficient of each order derivatives of f to be zero, respectively,we obtain a set of equations for φ and the coefficients of the linear combination in Step 1.If the equations are solved,then φ and the coefficients of the combination can be determined.

    Step 4Finally,substituting f,φ,m,n and some constants obtained in Steps 2 and 3 into (1.4) ,we obtain exact solutions of (1.3) .

    2 Amplitude Wave Solutions in Terms of Explicit Functions

    Now we consider the traveling wave solutions in the variable ξ=kx+ly?vt of the form

    where k∈R,l∈R,ω and v represent the frequency and translation speed,respectively,ρ (ξ) and ? (ξ) are real functions of the pseudo-time ξ.After substituting (2.1) into (1.2) and setting the real part and imaginary part to be zero,respectively,we have

    where the subscript ξ denotes

    Take ?ξ=ψ,then (2.2) can be restated as

    Remark 1 Note that,the function ρ (ξ) is a solution of (2.3) ,then?ρ (ξ) is also a solution of (2.3) .So in what follows,we just consider ρ (ξ) >0 satisfying (2.3) .

    Then we solve (2.3) by the above homogeneous balance method.Let

    where φ=φ (ξ) ,f=f (φ) and g=g (φ) are real functions,Ai,Bi,A,B are real constants to be determined,m and n are positive integers to be determined.

    We will solve the functions ρ>0 and ψ by three steps.

    Step 1To obtain m and n in (2.4) .

    By substituting (2.4) into (2.3) and balancing the highest-order derivative term and the leading nonlinear term in (2.3) ,one yields

    In the following,we shall obtain ρ>0,ψ and ?.

    Step 2To solve functions f and g in (2.5) .

    Based on (2.5) ,it is easy to get the equalities as follows:

    Substituting the above equations into (2.3) and setting the coefficient of the highest power in φξequal to be zero,we have ordinary differential equations about f and g as follows:

    where b1,b2are constants to be given.

    Now we compute constants b1,b2.Substituting (2.8) into (2.7) ,we obtain the following system of algebraic equations with respect to b1and b2,

    (i) When b1=0,b2is an arbitrary constant;

    then it is easy to obtain the following solutions of (2.9) :

    Actually,in view of (γS+cQ)2≥0, (2.10b) will not be satisfied,here it can not be considered.

    Step 3To solve functions ρ (ξ) and ? (ξ) .

    We turn to find ρ (ξ) and ψ (ξ) with two cases:b1=0 and b1/=0.

    Case Ab1=0.From (2.8) ,we know

    Substituting the above two equations into (2.6) ,one obtains

    Substituting the above equations into (2.3) ,collecting all terms with the same order derivative of g,that is,g,g′and g′′,and setting whose coefficients to be zero respectively,we have

    We can easily obtain two solutions of (2.13) as follows:

    where v,ω satisfying

    Therefore from (2.5) and (2.9) ,we have

    where ξ0is an arbitrary constant,A,B are given by (2.14) and (2.16) ,respectively.

    In addition,from (2.5) and (2.8) ,we have

    Substituting the above equations into (2.6) ,it follows that

    Substituting the above equations into (2.3) ,collecting all terms with the same order derivative of f,namely,f′,f′′and f′′,and setting whose coefficients to be zero respectively and noticing (2.19) ,we know that the following equalities hold,

    Now we solve the above system as well as the functions ρ (ξ) and ψ (ξ) in three cases.

    We can obtain a solution of (2.21) as follows:

    where ω,v,d satisfies the following relations:

    Substituting (2.22) into (2.5) ,it is easy to find that

    Remark 2 By letting ξ2=0,ξ1=1 in (2.23) ,it follows that

    Then we can obtain a solution of (2.25) as follows:

    where v,ω satisfies (2.15) and (2.17) ,respectively.

    Substituting (2.26) into (2.5) ,it is easy to find that

    Now,we can obtain two types of traveling wave solutions in terms of explicit functions:

    Type 1 Constant-amplitude traveling wave solutions.

    From (2.14) , (2.16) and (2.18) ,in view of the symmetry u→?u,we obtain the following constant-amplitude solutions

    Remark 3Note that,in L¨u et al.[12],u1and u2are actually the same solutions,as well as u3and u4,u5and u6by noting that if u is a solution of (1.2) , then?u is also a solution of (1.2) .

    Type 2 Variable-amplitude traveling wave solutions.

    From (2.23) and (2.27) ,we obtain two variable-amplitude traveling wave solutions,

    where A,λ and B are given by (2.22) ,see Fig.1.

    where A,λ and B are given by (2.26a) and (2.26b) .ξ0,ξ1and ξ2are arbitrary constants withare given by (2.10a) .Note that,in view of different parameter values,there should be eight kinds of solutions.For simplicity, here we only consider four kinds of variable-amplitude traveling wave solutions by numerical simulation.See,for example,Figs.2 and 3.

    Remark 4 (1) If the real parameter c approaches to zero,then we know that the amplitudes of solutions ui(i=1,2) tend to a constant,therefore all solutions will tend to a special periodic solution.

    (2) If we take γ→+∞,then the amplitude of u3will tend to zero,while u4will tend to infinity when λ→+∞.

    Figure 1: (a) Traveling wave (2.30) whenTraveling wave (2.30) when

    Figure 2: (a) Traveling wave (2.31) when(b) Traveling wave (2.31) when

    Figure 3: (a) Traveling wave (2.31) whenTraveling wave (2.31) when

    3 Stability Analysis for Individual Traveling Wave Solutions

    Setting ρξ=z, (2.3) can be rewritten as the following three-mode dynamical system:

    From (2.1) ,a fixed point (ρ0,0,ψ0) of (3.1) corresponds to a plane wave solution of (1.2)

    where ξ0is an arbitrary constant.

    The individual fixed points of (3.1) may be obtained by substituting z=0 into the right hand sides of (3.1) .This leads to the following equations:

    In fact,the constant-amplitude traveling wave solutions ui(i=1,2) obtained in Section 2,are the traveling wave solutions of (1.2) ,that is,they correspond to the following individual fixed points of (3.1) ,

    respectively,where

    where v and ω satisfies (2.15) .

    Remark 5 Actually,using the symmetry, (ρ1,0,ψ1) and (ρ2,0,ψ2) correspond to the same solution u1.Likewise, (ρ3,0,ψ3) and (ρ4,0,ψ4) correspond to the same solution u2.

    We now begin to consider the stability of the traveling wave solutions of (1.2) by using the regular phase plane techniques.

    By using (3.3) ,it is easy to obtain that the Jacobian matrices of (3.1) at the fixed point Piare of the form

    The characteristic equation of the Jacobian matrix at the point of (3.1) may be expressed,after some calculations,as

    By using the Routh-Hurwitz conditions,the real parts of all roots of (3.8) are negative if and only if

    (3.15) is thus the condition for the stability of the plane wave solution corresponding to the fixed point Pi.

    Theorem 3.1 Assume v>0,ω satisfy (2.15) .Ⅰf Λ>0 and

    then the traveling wave solutions u1,u2are asymptotically stable.

    Proof Firstly,if v>0,then obviously we have δ2>0.

    Secondly,according to (3.6) and (3.15) ,it is easy to obtain (Sω?dQ) (cQ+γS) >0.It follows that δ1>0.

    Finally,

    Substituting (3.4) and (3.6) , (3.7) and (3.9) into (3.20) ,respectively,we have

    It follows that δ3δ2?δ1>0.The proof is completed.

    Theorem 3.2Assume (2.15) or (2.17) is satisfied,also Sv<0,Q>0 and cQ+γS<0,then the traveling wave solutions u1,u2in Section 2 are all unstable.

    Proof If Sv<0,then we have δ3<0.Meanwhile,if Q>0 and cQ+γS<0, it is easy to know δ0<0.Then there will be at least one eigenvalue with positive real part according to Routh-Hurwitz criterion.

    Remark 6 Note that,if a=b=0,then it follows that δ3=0,which means one root of (3.10) will be non-hyperbolic,then the solution will always be unstable, and it will go through a pitch-fork or transcritical bifurcation with subcritical or supercritical.If δ3δ2?δ1=0,then there will be a pair of purely imaginary roots, and a Hopf bifurcation will lead to the onset of periodic solutions of (3.1) .

    References

    [1]D.J.Benney,G.J.Roskes,Wave instabilities,Stud.Appl.Math.,48 (1969) ,377-385.

    [2]E.Topkara,D.Milovic,A.K.Sarma,E.Zerrad,A.Biswas,Optical solition perturbation with full nonlinearity in non-Kerr law media,J.Opt.Fiber Commun.Res.,7 (2010) ,43-59.

    [3]P.J.Blennerhassett,On the generation of waves by wind,Philos.Trans.R.Soc.Lond. Ser.A Math.Phys.Sci.,298 (1980) ,451-494.

    [4]J.L.Yin,S.Y.Ding,L.X.Tian,X.H.Fan,Butterfly-like waves in the nonlinear Schr¨odinger equation with a combined dispersion term,Nonlinear Anal.,14 (2013) , 1276-1285.

    [5]A.Davey,K.Stewartson,On three-dimensional packets of surface waves,Proc.R.Soc. Ser.A,338 (1974) ,101-110.

    [6]E.P.Gross,Hydrodynamics of a superfluid condensate,J.Math.Phys.,4 (1963) ,10-14.

    [7]A.A.Gelash and V.E.Zakharov,Superregular solitonic solutions:a novel scenario for the nonlinear stage of modulation instability,Nonlinearity,27 (2014) ,3642-3651.

    [8]S.V.Manakov,On the theory of two-dimensional stationary self-focusing of electromagnetic waves,Sov.Phys.JETP,38 (1974) ,75-86.

    [9]A.Bouard,A.Debussche,The nonlinear Schr¨odinger equation with white noise dispersion,J.Funct.Anal.,259 (2010) ,1300-1321.

    [10]H.L.Pecseli,Solitons and weakly nonlinear waves in plasmas,ⅠEEE Tran.Plasma Sci., 13 (1985) ,53-86.

    [11]A.Biswas,C.M.Khalique,Stationary solutions for nonlinear dispersive Schr¨odinger equation,Nonlinear Dyn.,63 (2011) ,623-626.

    [12]S.J.L¨u,et al.,Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation,Discrete Contin.Dyn.Syst.Ser.B,16 (2011) ,507-527.

    [13]L.P.Pitaevskii,Vortex lines in an imperfect Bose gas,Sov.Phys.JETP,13 (1961) ,23-28.

    [14]Z.Rapti,P.G.Kevrekidis,D.J.Frantzeskakis,B.A.Malomed,On the modulational instability of the nonlinear Schr¨odinger equation with dissipation,Phys.Scripta T., 113 (2004) ,74-77.

    [15]H.Segur,D.Henderson,J.D.Carter,J.Hammack,C.Li,D.Pheiff,K.Socha,Stabilizing the Benjamin-Feir instability,J.Fluid Mech.,539 (2005) ,229-271.

    [16]Z.Zhang,Z.Liu,X.Miao,Y.Chen,Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schr¨odinger equation with Kerr law nonlinearity,Physics Letters A,375 (2011) ,1275-1280.

    [17]J.D.Carter,C.C.Contreras,Stability of plane-wave solutions of a dissipative genralization of the nonlinear Schr¨odinger equation,Physica D,237 (2008) ,3292-3296.

    [18]J.W.Miles,Surface-wave damping in closed basins,Proc.R.Soc.Lond.A,297 (1967) , 459-475.

    [19]Z.Feng and Q.G.Meng,Exact solution for a two-dimensional Kdv-Burgers-type equation with nonlinear terms of any order,Discrete Contin.Dyn.Syst.Ser.B,9 (2008) ,397-413.

    [20]E.Yomba,Traveling-waves and solitons in a generalized time-variable coefficients nonlinear Schr¨odinger equation with higher-order terms,Physics Letters A,377 (2013) ,167-175.

    [21]L.T.K.Nguyen,Modified homogeneous balance method:applications and new solutions,Chaos Solitons&Fractals,73 (2015) ,148-155.

    (edited by Liangwei Huang)

    ?This project was supported by the National NSF of China (11571088) ,NSF of Zhejiang Province (LY13A010020) and Program (HNUEYT2013) .

    ?Manuscript October 31,2015,Revised April 12,2016

    ?.E-mail:yancongx@163.com

    免费看十八禁软件| 免费观看精品视频网站| 免费在线观看亚洲国产| 中国美女看黄片| 极品教师在线免费播放| 亚洲精品美女久久av网站| 国产淫语在线视频| 亚洲专区中文字幕在线| 国产亚洲精品久久久久久毛片 | 啦啦啦 在线观看视频| 另类亚洲欧美激情| videos熟女内射| 精品国产亚洲在线| 亚洲色图av天堂| 国产激情欧美一区二区| 91麻豆av在线| 中文字幕色久视频| 日本黄色视频三级网站网址 | 亚洲国产毛片av蜜桃av| 少妇粗大呻吟视频| 欧美国产精品va在线观看不卡| 天天躁日日躁夜夜躁夜夜| 脱女人内裤的视频| 亚洲欧美日韩高清在线视频| 色尼玛亚洲综合影院| 久久久久视频综合| 精品熟女少妇八av免费久了| 亚洲五月婷婷丁香| 久久人妻熟女aⅴ| 亚洲性夜色夜夜综合| 19禁男女啪啪无遮挡网站| 宅男免费午夜| 久久亚洲精品不卡| tube8黄色片| 精品人妻1区二区| 大型黄色视频在线免费观看| 亚洲五月色婷婷综合| 91九色精品人成在线观看| 亚洲精品久久午夜乱码| 男女高潮啪啪啪动态图| 777米奇影视久久| 女人被狂操c到高潮| 首页视频小说图片口味搜索| 视频区图区小说| 99热国产这里只有精品6| 久久午夜亚洲精品久久| 超色免费av| 又大又爽又粗| 人成视频在线观看免费观看| 国产主播在线观看一区二区| videos熟女内射| 极品少妇高潮喷水抽搐| 大型黄色视频在线免费观看| 亚洲国产欧美日韩在线播放| 麻豆乱淫一区二区| 黄色成人免费大全| 欧美国产精品va在线观看不卡| 精品卡一卡二卡四卡免费| 一级毛片女人18水好多| 国产精品电影一区二区三区 | avwww免费| 久久天堂一区二区三区四区| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 精品乱码久久久久久99久播| 国产精品久久久人人做人人爽| 亚洲第一av免费看| 精品亚洲成国产av| 丝瓜视频免费看黄片| 精品人妻1区二区| av中文乱码字幕在线| 一区二区三区激情视频| 国产一区二区三区视频了| 男人舔女人的私密视频| 午夜免费成人在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 乱人伦中国视频| 日韩制服丝袜自拍偷拍| 女人被躁到高潮嗷嗷叫费观| 韩国精品一区二区三区| 精品亚洲成国产av| 91成人精品电影| 国产不卡一卡二| 波多野结衣av一区二区av| 国产又爽黄色视频| 亚洲美女黄片视频| 精品久久久久久,| 国产男靠女视频免费网站| 日韩制服丝袜自拍偷拍| 免费黄频网站在线观看国产| 美女午夜性视频免费| 午夜福利视频在线观看免费| 午夜影院日韩av| 男女午夜视频在线观看| 在线视频色国产色| 啦啦啦免费观看视频1| 日韩欧美一区二区三区在线观看 | 久久精品国产亚洲av高清一级| 男女下面插进去视频免费观看| 午夜亚洲福利在线播放| 交换朋友夫妻互换小说| 夜夜爽天天搞| av超薄肉色丝袜交足视频| 麻豆国产av国片精品| 久久久精品国产亚洲av高清涩受| 精品久久久久久电影网| 夜夜夜夜夜久久久久| av一本久久久久| 免费av中文字幕在线| 黄色a级毛片大全视频| 亚洲国产欧美网| 午夜福利影视在线免费观看| 午夜激情av网站| 亚洲精品在线美女| 看免费av毛片| 成熟少妇高潮喷水视频| 国产区一区二久久| 免费久久久久久久精品成人欧美视频| 夫妻午夜视频| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品人妻蜜桃| 制服人妻中文乱码| 国产99久久九九免费精品| 99国产精品99久久久久| 欧美日韩国产mv在线观看视频| 一级毛片高清免费大全| 一级毛片精品| 亚洲欧美一区二区三区久久| 曰老女人黄片| 亚洲中文字幕日韩| www.自偷自拍.com| av天堂在线播放| 日韩精品免费视频一区二区三区| 国产蜜桃级精品一区二区三区 | 国产精品 欧美亚洲| 50天的宝宝边吃奶边哭怎么回事| 久久人妻av系列| 国产成人免费无遮挡视频| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕在线视频| 国产男靠女视频免费网站| 久久久久精品人妻al黑| 青草久久国产| 黑人猛操日本美女一级片| 91av网站免费观看| 亚洲黑人精品在线| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 久久婷婷成人综合色麻豆| 1024香蕉在线观看| 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| ponron亚洲| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 午夜影院日韩av| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 美国免费a级毛片| 国产成人欧美| 亚洲精品美女久久av网站| 久久九九热精品免费| 国产高清国产精品国产三级| 曰老女人黄片| 韩国精品一区二区三区| 大香蕉久久网| 一进一出抽搐动态| 亚洲av成人一区二区三| 亚洲 国产 在线| 成人免费观看视频高清| 久9热在线精品视频| 国产精品一区二区免费欧美| 在线观看www视频免费| 一二三四社区在线视频社区8| 成人手机av| 黄色a级毛片大全视频| 亚洲精品国产区一区二| 岛国毛片在线播放| 后天国语完整版免费观看| 国产日韩一区二区三区精品不卡| 亚洲午夜精品一区,二区,三区| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女 | 超碰97精品在线观看| 岛国在线观看网站| 日韩成人在线观看一区二区三区| 亚洲中文av在线| 免费观看a级毛片全部| 一级片'在线观看视频| 一级毛片高清免费大全| 超碰97精品在线观看| 国产欧美日韩一区二区三| 久久精品国产亚洲av高清一级| 国产成人av教育| 黄片播放在线免费| 国产在视频线精品| 国产xxxxx性猛交| 国产亚洲精品久久久久5区| 18禁裸乳无遮挡动漫免费视频| 男男h啪啪无遮挡| 在线观看66精品国产| 一a级毛片在线观看| 少妇裸体淫交视频免费看高清 | 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 老鸭窝网址在线观看| 国产单亲对白刺激| 在线观看免费高清a一片| 每晚都被弄得嗷嗷叫到高潮| 丰满的人妻完整版| 在线看a的网站| 久久精品国产99精品国产亚洲性色 | 精品国产乱码久久久久久男人| 国产精品秋霞免费鲁丝片| 国产激情欧美一区二区| 欧美亚洲日本最大视频资源| 超碰成人久久| 国产免费现黄频在线看| 久久久久久久久免费视频了| 国产精品免费大片| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 看黄色毛片网站| 国产欧美日韩一区二区三| 精品一区二区三区四区五区乱码| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| av一本久久久久| 极品少妇高潮喷水抽搐| 日韩有码中文字幕| 一区二区三区激情视频| 黄频高清免费视频| 亚洲av片天天在线观看| 99re6热这里在线精品视频| 精品午夜福利视频在线观看一区| 国产精品影院久久| 成人黄色视频免费在线看| 色婷婷久久久亚洲欧美| videosex国产| 丰满迷人的少妇在线观看| 精品久久久久久,| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区二区三区在线观看 | 国产欧美日韩一区二区三区在线| 国产成人影院久久av| 国产精品亚洲一级av第二区| 欧美日韩亚洲高清精品| 超碰成人久久| 看免费av毛片| 男人舔女人的私密视频| 久久亚洲精品不卡| 最近最新中文字幕大全免费视频| 精品午夜福利视频在线观看一区| 久久午夜综合久久蜜桃| 在线观看www视频免费| 欧美黑人欧美精品刺激| 中亚洲国语对白在线视频| 在线播放国产精品三级| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 后天国语完整版免费观看| 啦啦啦在线免费观看视频4| 伊人久久大香线蕉亚洲五| 国产有黄有色有爽视频| 精品午夜福利视频在线观看一区| 成年人午夜在线观看视频| 在线永久观看黄色视频| 国产精品偷伦视频观看了| 我的亚洲天堂| 老熟妇仑乱视频hdxx| 精品久久久久久久毛片微露脸| 亚洲精品乱久久久久久| 欧美日韩瑟瑟在线播放| 啦啦啦免费观看视频1| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 一级毛片精品| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全电影3 | 国产精品九九99| av一本久久久久| 天天影视国产精品| 国产单亲对白刺激| 色在线成人网| 在线观看免费午夜福利视频| 欧美亚洲日本最大视频资源| 超色免费av| 亚洲色图av天堂| 亚洲中文av在线| 国产在线精品亚洲第一网站| 一进一出好大好爽视频| √禁漫天堂资源中文www| 在线视频色国产色| 国产区一区二久久| 国产野战对白在线观看| 日韩一卡2卡3卡4卡2021年| 黄色 视频免费看| 亚洲一区二区三区欧美精品| 不卡av一区二区三区| 亚洲第一青青草原| tocl精华| netflix在线观看网站| 十八禁高潮呻吟视频| 俄罗斯特黄特色一大片| 校园春色视频在线观看| 国产精品99久久99久久久不卡| 国产精品免费一区二区三区在线 | 日日摸夜夜添夜夜添小说| 日本五十路高清| 一夜夜www| 国产片内射在线| 中文字幕制服av| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3 | 国产在线一区二区三区精| cao死你这个sao货| 曰老女人黄片| 女性生殖器流出的白浆| 在线av久久热| 757午夜福利合集在线观看| 日本五十路高清| 狠狠婷婷综合久久久久久88av| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 久久精品人人爽人人爽视色| 校园春色视频在线观看| 国产无遮挡羞羞视频在线观看| 免费高清在线观看日韩| 国产激情久久老熟女| 亚洲欧美激情在线| 色94色欧美一区二区| 大片电影免费在线观看免费| 国产一区二区三区视频了| 久久人妻福利社区极品人妻图片| 色尼玛亚洲综合影院| 91字幕亚洲| 国产精品 国内视频| 看黄色毛片网站| 日韩欧美三级三区| 欧美黄色淫秽网站| 午夜视频精品福利| 欧美日韩一级在线毛片| 婷婷成人精品国产| 国产精品成人在线| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 69精品国产乱码久久久| 大型黄色视频在线免费观看| 免费在线观看亚洲国产| 男女午夜视频在线观看| 女人被狂操c到高潮| 91成人精品电影| 夜夜夜夜夜久久久久| 亚洲少妇的诱惑av| 在线av久久热| 精品亚洲成国产av| 国产单亲对白刺激| 亚洲国产看品久久| 伊人久久大香线蕉亚洲五| 国产真人三级小视频在线观看| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| xxx96com| 真人做人爱边吃奶动态| 91成人精品电影| 在线观看免费日韩欧美大片| 欧美激情久久久久久爽电影 | 国精品久久久久久国模美| av在线播放免费不卡| 在线观看日韩欧美| 亚洲五月色婷婷综合| 国产成人精品在线电影| 黄色a级毛片大全视频| 99re在线观看精品视频| 性少妇av在线| 黄色 视频免费看| av网站免费在线观看视频| 色综合婷婷激情| 天堂√8在线中文| 国产成人免费无遮挡视频| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 欧美日韩乱码在线| 欧美精品亚洲一区二区| 久久性视频一级片| 免费在线观看影片大全网站| 久久久精品国产亚洲av高清涩受| 欧美av亚洲av综合av国产av| 一级片'在线观看视频| 成年动漫av网址| 成人18禁在线播放| 99re6热这里在线精品视频| 国产精品电影一区二区三区 | 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 精品国产亚洲在线| 人人妻人人澡人人看| 欧美+亚洲+日韩+国产| 国产麻豆69| 午夜免费成人在线视频| 成人三级做爰电影| 热99久久久久精品小说推荐| 脱女人内裤的视频| 久久国产精品大桥未久av| 亚洲专区字幕在线| 一级片免费观看大全| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 韩国精品一区二区三区| 欧美成人免费av一区二区三区 | 老司机午夜福利在线观看视频| 久久狼人影院| 久久人妻av系列| 成年人免费黄色播放视频| 王馨瑶露胸无遮挡在线观看| 大型av网站在线播放| 少妇 在线观看| 两性夫妻黄色片| 一进一出抽搐gif免费好疼 | 不卡av一区二区三区| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 女人高潮潮喷娇喘18禁视频| 久久久久视频综合| 久久精品国产清高在天天线| 啦啦啦视频在线资源免费观看| 老司机影院毛片| 热99国产精品久久久久久7| 精品免费久久久久久久清纯 | 女警被强在线播放| 欧美精品高潮呻吟av久久| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 色播在线永久视频| 高清黄色对白视频在线免费看| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器 | 欧美最黄视频在线播放免费 | 国产黄色免费在线视频| 999久久久国产精品视频| 女人被狂操c到高潮| 两个人免费观看高清视频| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 精品国产美女av久久久久小说| 国产精品免费大片| 天堂√8在线中文| 美国免费a级毛片| 久久亚洲真实| 飞空精品影院首页| 久久精品国产99精品国产亚洲性色 | 高潮久久久久久久久久久不卡| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 国产精品成人在线| 男女午夜视频在线观看| www.熟女人妻精品国产| 国产精品九九99| 黄色毛片三级朝国网站| 亚洲精品中文字幕一二三四区| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 国产乱人伦免费视频| 午夜精品在线福利| 日韩成人在线观看一区二区三区| 久久午夜综合久久蜜桃| 天天添夜夜摸| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 精品一区二区三卡| 精品久久久久久久久久免费视频 | 最近最新免费中文字幕在线| 999久久久国产精品视频| 99久久综合精品五月天人人| 高清视频免费观看一区二区| 搡老熟女国产l中国老女人| 久久久久久久久久久久大奶| 国产欧美日韩一区二区三区在线| av网站在线播放免费| 中文字幕人妻丝袜一区二区| 国产成+人综合+亚洲专区| 中国美女看黄片| 好男人电影高清在线观看| 高清av免费在线| 男女床上黄色一级片免费看| 色综合婷婷激情| 69av精品久久久久久| 老司机靠b影院| 亚洲成国产人片在线观看| 午夜免费观看网址| 在线观看舔阴道视频| 久久精品成人免费网站| 乱人伦中国视频| 免费av中文字幕在线| 女人久久www免费人成看片| 激情在线观看视频在线高清 | 日本欧美视频一区| 久久久久久久久免费视频了| 国产亚洲精品久久久久5区| 建设人人有责人人尽责人人享有的| 国产成人av教育| 久热这里只有精品99| 又大又爽又粗| 十八禁高潮呻吟视频| 黑人猛操日本美女一级片| 国产午夜精品久久久久久| av不卡在线播放| 国产精华一区二区三区| 欧美av亚洲av综合av国产av| 人人妻人人添人人爽欧美一区卜| 日本a在线网址| 美女视频免费永久观看网站| e午夜精品久久久久久久| 亚洲成人国产一区在线观看| 国产亚洲精品一区二区www | 亚洲成人免费av在线播放| 久久人妻av系列| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址 | 国产精品香港三级国产av潘金莲| av国产精品久久久久影院| 国产成人精品久久二区二区91| 12—13女人毛片做爰片一| 777米奇影视久久| 亚洲精品美女久久av网站| 色老头精品视频在线观看| 国产欧美日韩一区二区精品| 美女午夜性视频免费| 一级毛片女人18水好多| 交换朋友夫妻互换小说| 亚洲专区中文字幕在线| 高清在线国产一区| 俄罗斯特黄特色一大片| 国产无遮挡羞羞视频在线观看| 大码成人一级视频| 日韩三级视频一区二区三区| 9热在线视频观看99| 精品国产一区二区久久| 欧美老熟妇乱子伦牲交| 亚洲专区字幕在线| 免费观看a级毛片全部| 国产淫语在线视频| 色综合婷婷激情| 欧美日韩成人在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人添人人爽欧美一区卜| 男女下面插进去视频免费观看| 纯流量卡能插随身wifi吗| svipshipincom国产片| 90打野战视频偷拍视频| 建设人人有责人人尽责人人享有的| 少妇的丰满在线观看| 国产欧美日韩精品亚洲av| 欧美激情久久久久久爽电影 | 一区在线观看完整版| 成年动漫av网址| 精品卡一卡二卡四卡免费| 大香蕉久久成人网| 天天影视国产精品| 91精品国产国语对白视频| 国产黄色免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国精品久久久久久国模美| 久久精品91无色码中文字幕| 99国产极品粉嫩在线观看| 9色porny在线观看| 香蕉丝袜av| 少妇 在线观看| 中文字幕人妻熟女乱码| 国产乱人伦免费视频| 日韩欧美一区二区三区在线观看 | 久久久久久久久免费视频了| 深夜精品福利| 免费观看a级毛片全部| av中文乱码字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品二区激情视频| 精品高清国产在线一区| 亚洲av熟女| 丰满饥渴人妻一区二区三| 美女 人体艺术 gogo| 久久国产精品男人的天堂亚洲| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 咕卡用的链子| 中亚洲国语对白在线视频| 欧美日韩亚洲高清精品| 国产精品亚洲av一区麻豆| 久久久精品免费免费高清| 我的亚洲天堂| 国产有黄有色有爽视频| 又紧又爽又黄一区二区| 欧美色视频一区免费| 天天躁狠狠躁夜夜躁狠狠躁|