• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DIAGNOSABILITY OF CAYLEY GRAPH NETWORKS GENERATED BY TRANSPOSITION TREES UNDER THE COMPARISON DIAGNOSIS MODEL??

    2016-11-29 01:18:32MujiangshanWangSchoolofElectricalEngineeringComputerScienceTheUniversityofNewcastleNSW2308AustraliaShiyingWangHenanEngineeringLaboratoryforBigDataStatisticalAnalysisandOptimalControlSchoolofMathandnformationScienceHenanN
    Annals of Applied Mathematics 2016年2期

    Mujiangshan Wang(School of Electrical Engineering&Computer Science, The University of Newcastle NSW 2308,Australia)Shiying Wang(Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Math.andⅠnformation Science,Henan Normal University, Xinxiang,Henan 453007,PR China)

    DIAGNOSABILITY OF CAYLEY GRAPH NETWORKS GENERATED BY TRANSPOSITION TREES UNDER THE COMPARISON DIAGNOSIS MODEL??

    Mujiangshan Wang?
    (School of Electrical Engineering&Computer Science, The University of Newcastle NSW 2308,Australia)
    Shiying Wang
    (Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Math.andⅠnformation Science,Henan Normal University, Xinxiang,Henan 453007,PR China)

    Diagnosability of a multiprocessor system is one important study topic. Cayley graph network Cay (Tn,Sn) generated by transposition trees Tnis one of the attractive underlying topologies for the multiprocessor system.In this paper,it is proved that diagnosability of Cay (Tn,Sn) is n?1 under the comparison diagnosis model for n≥4.

    interconnection network;graph;diagnosability;comparison diagnosis model;Cayley graph

    2000 Mathematics Subject Classification 05C25

    1 Introduction

    Many multiprocessor systems take interconnection networks (networks for short) as underlying topologies and a network is usually represented by a graph where vertices represent processors and edges represent communication links between processors.We use graphs and networks interchangeably.For a system,study on the topological properties of its network is important.Furthermore,some processors may fail in studying the system,so processor fault identification plays an important role for reliable computing.The first step to deal with faults is to identify the faulty processors from the testing of the fault-free ones.The identification process is calledthe diagnosis of the system.A system is said to be t-diagnosable if all faulty processors can be identified without replacement,provided that the number of presenting faults does not exceed t.The diagnosability of a system G is the maximum value of t such that G is t-diagnosable[4,5,7,11,19,20].

    Several diagnosis models were proposed to identify the faulty processors.One major approach is the PMC diagnosis model introduced by Preparata et al.[13]. The diagnosis of the system was achieved through two linked processors by testing each other.Another important model,namely the comparison diagnosis model (MM model) ,was proposed by Maeng and Malek[12].In the MM model,to diagnose a system,a vertex sends the same task to two of its neighbors,and then compares their responses.Cayley graph network Cay (Tn,Sn) generated by transposition trees Tnis one of the attractive underlying topologies for the multiprocessor system.The star graph and the bubble-sort graph are two special cases of Cay (Tn,Sn) [1].In [18],Zheng et al.proved the n-dimensional star graph is (n?1) -diagnosable under the comparison diagnosis model when n≥4.In[8],Lee and Hsieh proved the ndimensional bubble-sort is (n?1) -diagnosable under the comparison diagnosis model when n≥4.In this paper,the diagnosability of Cay (Tn,Sn) under the comparison diagnosis model is studied.It is proved that Cay (Tn,Sn) is (n?1) -diagnosable under the comparison diagnosis model when n≥4.

    2 Preliminaries

    2.1The MM?model

    In the MM model[12,17],to diagnose a system G,a vertex sends the same task to two of its neighbors,and then compares their responses.To be consistent with the MM model,we have the following assumptions:

    a.All faults are permanent.

    b.A faulty processor produces incorrect outputs for each of its given tasks.

    c.The output of a comparison performed by a faulty processor is unreliable.

    d.Two faulty processors given the same input and task do not produce the same output.

    The comparison scheme of a system G is modeled as a multigraph,denoted by M (V (G) ,L) ,where L is the labeled-edge set.A labeled edge (u,v)w∈L represents a comparison in which two vertices u and v are compared by a vertex w,which implies uw,vw∈E (G) .The collection of all comparison results in M (V (G) ,L) is called the syndrome,denoted by σ?,of the diagnosis.If the comparison (u,v)wdisagrees, then σ?( (u,v)w) =1;otherwise,σ?( (u,v)w) =0.Hence,a syndrome is a function from L to {0,1} .The MM*model,denoted by M (V (G) ,L?) ,is a special case of theMM model.In the MM*model,all comparisons of G are in the comparison scheme of G,that is,if uw,vw∈E (G) ,then (u,v)w∈L.

    2.2Definitions and notations

    Given a system G= (V,E) and the comparison scheme M (V (G) ,L) ,for a vertex u∈V,let Xube the set of vertices such that Xu= {v:either uv∈E or (u,v)w∈L} .That is,a vertex in Xuis either linked to u or compared with u by some other vertex.Let Yube the set of edges among vertices of Xu,such that Yu= {vw:v,w∈Xuand (u,v)w∈L} .Define Gu= (Xu,Yu) .

    For a graph G= (V,E) ,a subset K of V is called a vertex cover of G if every edge of E has at least one end in K.A vertex cover of minimum cardinality in G is called minimum vertex cover.For a vertex u∈V,the cardinality of a minimum vertex cover of Guis called the order of vertex u.

    Denote T (X) to be the set of vertices that are outside of X and are compared with some vertices of X by some vertices of X (Fig.1) .Given G and M (V (G) ,L) , for a subset of vertices X?V,

    Figure 1:An example and its T (X) .

    2.3Cayley graphs generated by transposition trees

    Let Q be a finite group,and S be a spanning set of Q such that S has no identical element.Directed Cayley graph Cay (S,Q) is defined as follows:its vertex set is Q,its arc set is { (g,gs) :g∈Q,s∈S} .Given t∈S,we call every arc in { (g,gt) :g∈Q} a t-arc.If for each s∈S we also have s?1∈S,then we say that this Cayley graph is an undirected Cayley graph.Every Cayley graph in this paper is an undirected Cayley graph.Suppose that every element of S is a transposition.Then the permutation group generated by S is a subgroup of the symmetric group Sn,whose identical element is denoted by (1) .It is easy to see that every undirected Cayley graph is vertex-transitive.The product στ of two permutations is the composition function τ followed by σ,that is, (1,2) (1,3) = (1,3,2) .For terminology and notation not defined here please see[6].The transposition set could be illustrated by a simple graph,and the following concepts are introduced.

    Let H be a simple connected graph whose vertex set is {1,2,···,n} (n≥3) . Every edge of H can be considered as a transposition in Sn,and so the edge set of H corresponds to a transposition set S in Sn.In this sense,H is called a transposition simple graph.Cayley graph Cay (S,〈S〉) is called the corresponding Cayley graph of H.By[1],〈S〉=Sn.We denote Cay (S,〈S〉) by Cay (H,Sn) .When the transposition simple graph is a tree,it is called a transposition tree[1].When the transposition simple graph is a path,the corresponding Cayley graph is called a bubble-sort graph[1].When the transposition simple graph is a star,the corresponding Cayley graph is called a star graph[1].

    Theorem 2.1[15,16]Let H be a simple connected graph with n=|V (H) |≥3.Ⅰf H1and H2are two different labelled graphs obtained by labelling H with {1,2,···,n} ,then Cay (H1,Sn) is isomorphic to Cay (H2,Sn) .

    By Theorem 2.1,a simple connected graph H can be labelled properly.When n≥ 4,Cay (H,Sn) can be decomposed into smaller Cay (S?,Sn?1) ’s as follows, where S?is a spanning set of Sn?1.Given an integer p with 1≤p≤n,let Hibe the subgraph of Cay (H,Sn) induced by vertices with i in the pth position for 1≤i≤n.We say Cay (H,Sn) is decomposed along the pth position.When H is a transposition tree Tn,we assume that one vertex of degree one is labelled by n in Tn. If we decompose Cay (H,Sn) along the last position,then Hiand Cay (Tn?n,Sn?1) are isomorphic.The edges whose end vertices in different Hi’s are the cross-edges with respect to the given decomposition.For graph-theoretical terminology and notation not defined here please see[2].

    Lemma 2.1[1]κ (Cay (Tn,Sn) =n?1.

    Lemma 2.2[1]For any integer n≥1,Cay (Tn,Sn) is (n?1) -regular and vertex transitive.

    2.4Components-composition graphs

    Definition 2.1[3]The class of m-dimensional components-composition graphs, denoted by CCGm,is defined recursively as follows:1) CCG1= {K1} .2) Let m≥2 be a positive integer.Given l CCGm?1s G1,G2,···,Gl,where

    a connected graph G constructed from G1,G2,···,Glby adding a perfect matching PM inis a graph in CCGm.For convenience,we use the notation PM (G1,G2,···,Gl) to represent such a graph.Note that

    2.5 Relationshipbetweencomponents-compositiongraphs and Cayley graphs generated by transposition trees

    Let Tnbe a transposition tree and i∈V (Tn) .Adding a new vertex n+1 and an edge i (n+1) to Tn,we obtain a new transposition tree,denoted by Tn+1.

    Theorem 2.2Ⅰf Cay (Tn,Sn) ∈CCGn,then Cay (Tn+1,Sn+1) ∈CCGn+1.

    Proof We decompose Sn+1along the last position.Let Hibe defined as above. Then Hiand Cay (Tn,Sn) are isomorphic,where i=1,2,···,n+1.It is easy to see that all cross-edges are a perfect matching PM of Cay (Xn+1,Sn+1) .Therefore, Cay (Xn+1,Sn+1) =PM (H1,H2,···,Hn+1) ∈CCGn+1.The proof is completed.

    Let Tn(≥3) be a transposition tree and v be a vertex of degree one in Tn.Then Tn? {v} is still a transposition tree.Repeating the above procedures,we can obtain a transposition tree T3.Note that Cay (T3,S3) ∈CCG3.By Theorem 2.2,we have the following theorem.

    Theorem 2.3 Cay (Tn,Sn) ∈CCGn.

    3 Diagnosability of Cayley Graphs Generated by Transposition Trees under the Comparison Model

    In this section,we will give the diagnosability of Cayley graphs generated by transposition trees under the comparison model.

    Theorem 3.1[8]Let t≥3 be a positive integer and G1,G2,···,Glbe l components of a CCG G=PM (G1,G2,···,Gl) .Then,G is (t+1) -diagnosable under the MM?model if,for each i∈ {1,2,···,l} ,the following three conditions hold: (1) orderGi(v) ≥t for each vertex v∈V (Gi) ; (2) ν (V (Gi) ) ≥2t;and (3) κ (Gi) ≥t.

    Theorem 3.2[10](P.Hall’s theorem) Let G= (U;W) be a bipartite graph.Then G has a matching covering U if and only if

    Proposition 3.1 Let n≥3 be a positive integer.Then a vertex of Cay (Tn,Sn) has order n?1.

    ProofBy Lemma 2.2,without loss of generality,it is sufficient to check the order for a vertex u= (1) .By the definition of Cay (Tn,Sn)u= (Xu,Yu) ,Xuconsists of those vertices that are either linked to u,denoted by X1,or being compared to u,denoted by X2.So,Xuis the union of two sets X1and X2.The total number of vertices in X1is n?1,and the total number of vertices in X2is at most (n?1) (n?2) . Yuconsists of all edges vw such that w is a comparator of u and v,that is,w is linked to u and v is linked to w.That is,Yu= {vw:w∈X1,v∈X2} .It can be seen that Cay (Tn,Sn)uis a bipartite graph.To find the order of u,we need to find the size of the minimum vertex cover.From the Konig-Egervary theorem,in a bipartite graph,the size of the minimum vertex cover is equal to the size of the maximum matching.A matching is a set of edges of the graph such that no two edges in the set share a common vertex.The matching is maximum if it has the maximum number of edges over all matchings in the graph.

    Claim Let v,w∈X1with

    In this case,u= (1) ∈N (v) ∩N (w) .Suppose,on the contrary,that|N (v) ∩ N (w) |≥3.Let a,b∈N (v) ∩N (w) withThen uvawu and uvbwu are cycles of length 4.Since u= (1) ,v and w are two transpositions.Let v= (ij) and w= (rt) .Since uvawu is a cycle of length 4,a= (ij) (rt) ,and (ij) and (rt) are disjoint.Thus,b= (ij) (rt) .This contradictsThe proof of this claim is complete.

    Theorem 3.3 Cayley graphs Cay (Tn,Sn) generated by transposition trees Tnis (n?1) -diagnosable under the MM?model for n≥4.

    Proof By Theorem 2.3,

    By Proposition 3.1,orderCay (Tn?1,Sn?1)(v) ≥n?2 for each vertex v∈Sn?1where n≥4.By the definition of Cay (Tn?1,Sn?1) ,By Lemma 2.1,κ (Cay (Tn,Sn) ) =n?2.Thus,by Theorem 3.1 Cay (Tn,Sn) is (n?2) +1= (n?1) -diagnosable for n≥4.The proof is completed.

    There are several different ways to characterize a t-diagnosable system under the comparison approach[14].In this study,we use one particular characterization givenin[14]which gives the three sufficient conditions for a system to be t-diagnosable.

    Finally,we point out that Cay (T4,S4) is the least Cay (Tn,Sn) satisfying the three sufficient conditions in Theorem 3.1.Because Cay (T3,S3) is isomorphic to the star graph,by[18]Cay (T3,S3) is not 2-diagnosable.

    Theorem 3.4[9]Let G= (V,E) be a graph representation of a system,where V represents the processors and E represents their interconnections.Then,d (G) ≤δ (G) under the MM?model.

    Theorem 3.5 Diagnosability of Cay (Tn,Sn) is n?1 under the MM?model for n≥4.

    Proof By Theorem 3.3,d (Cay (Tn,Sn) ) ≥n?1 for n≥4.Because Cay (Tn,Sn) (n≥1) is regular with the common degree n?1,δ (Cay (Tn,Sn) ) =n?1.By Theorem 3.4,d (Cay (Tn,Sn) ) ≤δ (Cay (Tn,Sn) ) =n?1.Therefore d (Cay (Tn,Sn) ) = n?1 for n≥4.

    4 Conclusion

    The diagnosability of Cayley graph network Cay (Tn,Sn) generated by transposition trees under the comparison diagnosis model is studied in this paper.Under this model,the system is self-diagnosable if we know the diagnosability of the system. We prove that a system with the Cay (Tn,Sn) structure is (n?1) -diagnosable under the comparison model if n≥4.Based on the result,a polynomial-time algorithm proposed in[14]can be directly used to diagnose the system if there are at most (n?1) faulty processors.The diagnosis involves only one test phase to identify the faulty processors and one repair/replacement phase.Thus it is applicable in the environment that the components are reliable and periodic and quick testings are affordable.Furthermore,the algorithm can be used as a component of a larger diagnosis scheme to perform a given phase of fault location,as opposed to being used as a stand-alone diagnosis tool.

    References

    [1]S.B.Akers,B.Krishnamurthy,A group-theoretic model for symmetric interconnection networks,ⅠEEE Transactions on Computers,38:4 (1989) ,555-566.

    [2]J.A.Bondy,U.S.R.Murty,Graph Theory,Springer,New York,2007.

    [3]C.Chen,S.Hsieh, (t,k) -diagnosis for component-composition graphs under the MM* model,ⅠEEE Transactions on Computers,60:12 (2011) ,1704-1717.

    [4]A.T.Dahbura,G.M.Masson,An O (n2.5) faulty identification algorithm for diagnosable systems,ⅠEEE Transactions on Computers,33:6 (1984) ,486-492.

    [5]J.Fan,Diagnosability of crossed cubes under the comparison diagnosis model,ⅠEEE Transactions on Parallel and Distributed Systems,13:10 (2002) ,1099-1104.

    [6]T.W.Hungerford,Algebra,Springer,New York,1974.

    [7]P.Lai,J.J.M.Tan,C.Chang,L.Hsu,Conditional diagnosability measures for large multiprocessor systems,ⅠEEE Transactions on Computers,54:2 (2005) ,165-175.

    [8]C.Lee,S.Hsieh,Diagnosability of component-composition graphs in the MM?model, ACM Transactions on Design Automation of Electronic Systems 19 (3) ,Article 27.

    [9]C.W.Lee and S.Y.Hsieh,Diagnosabiltiy of multiprocessor systems,In Scalable Computing and Communications:Theory and Practice,Wiley,2013.

    [10]L.Lov′asz,M.D.Plummer,Matching Theory,Elsevier Science Publishing Company, Inc.,New York,1986.

    [11]L.Lin,L.Xu,S.Zhou,Relating the extra connectivity and the conditional diagnosability of regular graphs under the comparison model,Theoretical Computer Science, 618 (2016) ,21-29.

    [12]J.Maeng,M.Malek,A comparison connection assignment for self-diagnosis of multiprocessor systems,in:Proceeding of 11th International Symposium on Fault-Tolerant Computing,1981,pp.173-175.

    [13]F.P.Preparata,G.Metze,R.T.Chien,On the connection assignment problem of diagnosable systems,ⅠEEE Transactions on Computers,16 (1967) ,448-454.

    [14]A.Sengupta,A.T.Dahbura,On self-diagnosable multiprocessor systems:diagnosis by the comparison approach,ⅠEEE Transactions on Computers,41:11 (1992) ,1386-1396.

    [15]M.Wang,W.Yang,and S.Wang,Conditional matching preclusion number for the Cayley graph on the symmetric group,Acta Math.Appl.Sin. (Chinese Series) , 36:5 (2013) ,813-820.

    [16]M.Wang,W.Yang,Y.Guo,S.Wang,Conditional fault tolerance in a class of Cayley graphs,Ⅰnternational Journal of Computer Mathematics,93:1 (2016) ,67-82.

    [17]J.Yuan,A.Liu,X.Ma,X.Liu,X.Qin,J.Zhang,The g-good-neighbor conditional diagnosability of k-ary n-cubes under PMC model and MM?,ⅠEEE Transactions on Parallel and Distributed Systems,26 (2015) ,1165-1177.

    [18]J.Zheng,S.Latifi,E.Regentova,K.Luo,X.Wu,Diagnosability of star graphs under the comparison diagnosis model,Ⅰnformation Processing Letters,93:1 (2005) ,29-36.

    [19]S.Zhou,L.Lin,L.Xu,D.Wang,The t/k-diagnosability of star graph networks,ⅠEEE Transactions on Computers,62:2 (2015) ,547-555.

    [20]S.Zhou,J.Xu,Fault diagnosability of arrangement graphs,Ⅰnformation Sciences, 246 (2013) ,177-190.

    (edited by Liangwei Huang)

    ?This work was supported by the National Natural Science Foundation of China (61370001,U1304601) .

    ?Manuscript March 24,2015;Revised April 27,2016

    ?.E-mail:wmjsdr@126.com

    99热这里只有是精品在线观看| 国产高清激情床上av| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 久久国产精品人妻蜜桃| 欧美不卡视频在线免费观看| 亚洲自拍偷在线| 色哟哟·www| 嫁个100分男人电影在线观看| 精品日产1卡2卡| 搡老熟女国产l中国老女人| 两个人的视频大全免费| 久久久久久国产a免费观看| 日韩亚洲欧美综合| 国产色婷婷99| 中文字幕av成人在线电影| 亚洲熟妇中文字幕五十中出| 在线免费十八禁| 在线免费十八禁| 精品久久久久久久久久免费视频| 亚洲人成网站在线播放欧美日韩| 深夜精品福利| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 久久久色成人| av在线老鸭窝| 国产高清视频在线播放一区| 丰满乱子伦码专区| 少妇人妻精品综合一区二区 | 91久久精品国产一区二区成人| 色视频www国产| 亚洲精华国产精华液的使用体验 | 日本成人三级电影网站| 婷婷六月久久综合丁香| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 身体一侧抽搐| 国产精品免费一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 久久久久久久亚洲中文字幕| 国产精品综合久久久久久久免费| 我要看日韩黄色一级片| 国产精品伦人一区二区| 亚洲专区国产一区二区| 国产精品人妻久久久影院| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| av中文乱码字幕在线| 中文字幕熟女人妻在线| 亚洲欧美激情综合另类| 国产在视频线在精品| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| www日本黄色视频网| 69av精品久久久久久| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 内地一区二区视频在线| 欧美三级亚洲精品| 九九热线精品视视频播放| 欧美xxxx性猛交bbbb| 成人精品一区二区免费| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 听说在线观看完整版免费高清| 久久精品国产亚洲网站| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验 | 两个人的视频大全免费| 深爱激情五月婷婷| 亚洲国产精品久久男人天堂| 国产一区二区三区视频了| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 亚洲精华国产精华液的使用体验 | 12—13女人毛片做爰片一| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 看片在线看免费视频| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 国产中年淑女户外野战色| 国产午夜精品论理片| 美女大奶头视频| 欧美zozozo另类| 成熟少妇高潮喷水视频| 精品一区二区三区视频在线观看免费| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 欧美区成人在线视频| 亚洲精品色激情综合| 别揉我奶头~嗯~啊~动态视频| 淫妇啪啪啪对白视频| 1000部很黄的大片| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 小说图片视频综合网站| 九九热线精品视视频播放| 国产69精品久久久久777片| 不卡视频在线观看欧美| 一区福利在线观看| 校园人妻丝袜中文字幕| 免费看av在线观看网站| 少妇高潮的动态图| 国产精品综合久久久久久久免费| 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 国产极品精品免费视频能看的| 久久人人爽人人爽人人片va| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 国产男人的电影天堂91| 午夜爱爱视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产蜜桃级精品一区二区三区| 99久久精品国产国产毛片| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 全区人妻精品视频| 综合色av麻豆| 亚洲国产精品久久男人天堂| 永久网站在线| 欧美日韩乱码在线| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| 亚洲av美国av| 日本一二三区视频观看| 精品一区二区三区av网在线观看| 日本成人三级电影网站| 国产精品一及| 最近最新免费中文字幕在线| 国产精品美女特级片免费视频播放器| 老女人水多毛片| 少妇熟女aⅴ在线视频| 国产三级中文精品| 亚洲av美国av| 欧美zozozo另类| 成人鲁丝片一二三区免费| 色综合婷婷激情| 国产精品1区2区在线观看.| av中文乱码字幕在线| 亚洲熟妇熟女久久| 欧美成人一区二区免费高清观看| 欧美成人免费av一区二区三区| 午夜视频国产福利| 99视频精品全部免费 在线| 亚洲精品成人久久久久久| 淫秽高清视频在线观看| 给我免费播放毛片高清在线观看| 国产精品永久免费网站| h日本视频在线播放| 在线观看一区二区三区| 国产精品精品国产色婷婷| 真人一进一出gif抽搐免费| 国产精品久久电影中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产乱人视频| 国产成年人精品一区二区| 夜夜爽天天搞| 91麻豆av在线| 在线播放无遮挡| 国语自产精品视频在线第100页| 欧美区成人在线视频| 神马国产精品三级电影在线观看| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 亚洲第一电影网av| 看十八女毛片水多多多| 男人舔女人下体高潮全视频| 少妇猛男粗大的猛烈进出视频 | 三级毛片av免费| 成熟少妇高潮喷水视频| 尤物成人国产欧美一区二区三区| 国产精品98久久久久久宅男小说| 久久人人精品亚洲av| 日韩欧美精品v在线| 俄罗斯特黄特色一大片| 亚洲人成伊人成综合网2020| 国产在线男女| 国产午夜精品久久久久久一区二区三区 | 国产视频一区二区在线看| 99久久中文字幕三级久久日本| 欧美成人a在线观看| 午夜久久久久精精品| 亚洲成人久久性| or卡值多少钱| 91麻豆av在线| 一个人看的www免费观看视频| 国产精品一及| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 精品人妻视频免费看| or卡值多少钱| 欧美成人免费av一区二区三区| h日本视频在线播放| 亚洲综合色惰| 久久九九热精品免费| 日日夜夜操网爽| 成人国产一区最新在线观看| a级毛片a级免费在线| 两人在一起打扑克的视频| 日韩国内少妇激情av| 久久久午夜欧美精品| 极品教师在线免费播放| 极品教师在线视频| 白带黄色成豆腐渣| 日本与韩国留学比较| 床上黄色一级片| a在线观看视频网站| 亚洲男人的天堂狠狠| 成人精品一区二区免费| 日本五十路高清| 久久亚洲真实| 久久精品国产鲁丝片午夜精品 | 欧美成人a在线观看| 精品一区二区三区av网在线观看| 22中文网久久字幕| 欧美性感艳星| 久久精品国产亚洲av天美| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产| 亚洲国产色片| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| 亚洲狠狠婷婷综合久久图片| 免费看av在线观看网站| 亚洲国产精品合色在线| 久久久久久久久大av| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| ponron亚洲| 日韩欧美免费精品| 欧美极品一区二区三区四区| 免费av观看视频| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 亚洲精品粉嫩美女一区| 欧美xxxx性猛交bbbb| 久久久久久九九精品二区国产| 男女做爰动态图高潮gif福利片| 成人无遮挡网站| 中文字幕免费在线视频6| 午夜精品一区二区三区免费看| 精品人妻1区二区| 啪啪无遮挡十八禁网站| 精品人妻一区二区三区麻豆 | 男女那种视频在线观看| 国产精品综合久久久久久久免费| av在线天堂中文字幕| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 动漫黄色视频在线观看| 亚洲av日韩精品久久久久久密| 如何舔出高潮| 精品不卡国产一区二区三区| 亚洲18禁久久av| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱 | 99热这里只有是精品50| 99久久久亚洲精品蜜臀av| 国产精品自产拍在线观看55亚洲| 午夜福利成人在线免费观看| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放| 窝窝影院91人妻| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 欧美潮喷喷水| 亚洲乱码一区二区免费版| 亚洲精品久久国产高清桃花| 91在线观看av| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 小说图片视频综合网站| 精品久久久久久久久av| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻| www.色视频.com| 日本黄色片子视频| 国产精品一区二区性色av| 狠狠狠狠99中文字幕| 看片在线看免费视频| 黄片wwwwww| 免费观看的影片在线观看| 中国美白少妇内射xxxbb| 久久中文看片网| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 五月玫瑰六月丁香| 99久国产av精品| 久久精品91蜜桃| 观看美女的网站| 国产高清三级在线| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产 | 毛片女人毛片| 不卡视频在线观看欧美| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 亚洲美女黄片视频| a在线观看视频网站| 国产亚洲精品综合一区在线观看| 97人妻精品一区二区三区麻豆| 最近最新免费中文字幕在线| 国产亚洲精品av在线| 国产国拍精品亚洲av在线观看| 亚洲第一电影网av| 精品人妻视频免费看| 国产成人av教育| 小说图片视频综合网站| 亚洲性夜色夜夜综合| 国产色爽女视频免费观看| 国产真实伦视频高清在线观看 | 悠悠久久av| 丝袜美腿在线中文| 日日摸夜夜添夜夜添小说| 午夜福利欧美成人| 男人和女人高潮做爰伦理| 尾随美女入室| 97超视频在线观看视频| 免费看av在线观看网站| 日本黄大片高清| 国产黄色小视频在线观看| 赤兔流量卡办理| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看| 亚州av有码| 一本精品99久久精品77| 国产成年人精品一区二区| 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 老司机福利观看| 无遮挡黄片免费观看| 日本黄色片子视频| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| 国产不卡一卡二| 精品日产1卡2卡| 久久精品国产自在天天线| 精品午夜福利视频在线观看一区| 热99在线观看视频| 老师上课跳d突然被开到最大视频| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 久久亚洲精品不卡| 国产大屁股一区二区在线视频| 丰满的人妻完整版| 久久精品国产鲁丝片午夜精品 | 精品国内亚洲2022精品成人| 亚洲av日韩精品久久久久久密| 小蜜桃在线观看免费完整版高清| 18禁在线播放成人免费| 亚洲欧美日韩东京热| av视频在线观看入口| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 婷婷亚洲欧美| www.www免费av| 成人特级黄色片久久久久久久| 国产亚洲av嫩草精品影院| 日本黄大片高清| 亚洲精华国产精华精| 久久久久久久久久成人| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 动漫黄色视频在线观看| 嫩草影院新地址| 欧美潮喷喷水| 久久精品久久久久久噜噜老黄 | 国产精品电影一区二区三区| 亚洲美女视频黄频| 国产视频内射| av在线蜜桃| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 国产精品国产三级国产av玫瑰| 蜜桃亚洲精品一区二区三区| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 综合色av麻豆| 亚洲av美国av| 日韩欧美在线二视频| 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 亚洲无线观看免费| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 国产一级毛片七仙女欲春2| 国产精品嫩草影院av在线观看 | 桃红色精品国产亚洲av| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 久久人人精品亚洲av| 欧美成人免费av一区二区三区| 搡女人真爽免费视频火全软件 | 少妇的逼水好多| 国产精品精品国产色婷婷| 免费看光身美女| 性插视频无遮挡在线免费观看| 国产高清不卡午夜福利| 别揉我奶头~嗯~啊~动态视频| 亚洲av中文av极速乱 | 美女黄网站色视频| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 亚洲午夜理论影院| 亚洲狠狠婷婷综合久久图片| 色5月婷婷丁香| 国内毛片毛片毛片毛片毛片| 亚洲无线观看免费| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区 | 亚洲欧美日韩高清在线视频| 国产精品一及| 亚洲欧美日韩高清在线视频| 91久久精品国产一区二区三区| 波多野结衣巨乳人妻| 床上黄色一级片| 国产激情偷乱视频一区二区| 国产一区二区亚洲精品在线观看| 国产精品野战在线观看| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 我要看日韩黄色一级片| 欧美日本视频| 国产精品女同一区二区软件 | 观看美女的网站| 亚洲无线观看免费| 一区二区三区四区激情视频 | 久久精品影院6| 国产日本99.免费观看| 欧美+日韩+精品| 五月玫瑰六月丁香| 午夜福利成人在线免费观看| 午夜福利在线观看免费完整高清在 | 久久久久国内视频| 熟妇人妻久久中文字幕3abv| 亚洲18禁久久av| 亚洲图色成人| 人人妻,人人澡人人爽秒播| 春色校园在线视频观看| 亚洲av五月六月丁香网| 国产亚洲91精品色在线| 亚洲欧美精品综合久久99| 国产女主播在线喷水免费视频网站 | 2021天堂中文幕一二区在线观| 中国美女看黄片| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9| 国产成人aa在线观看| 91狼人影院| 亚洲欧美日韩无卡精品| 真人一进一出gif抽搐免费| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 免费在线观看成人毛片| 成人av一区二区三区在线看| 久久午夜福利片| 日韩,欧美,国产一区二区三区 | 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区 | 亚洲成a人片在线一区二区| 中文字幕av成人在线电影| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一小说| 在线观看66精品国产| 色精品久久人妻99蜜桃| 在线观看66精品国产| videossex国产| 亚洲av二区三区四区| 精品久久久久久久末码| 婷婷亚洲欧美| 性插视频无遮挡在线免费观看| 黄色日韩在线| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 午夜老司机福利剧场| 人妻夜夜爽99麻豆av| 欧美丝袜亚洲另类| 日韩制服骚丝袜av| 人人妻人人看人人澡| 嫩草影院入口| 日韩av不卡免费在线播放| 免费黄网站久久成人精品| 国产精品免费大片| 国产精品.久久久| 下体分泌物呈黄色| 精品久久久久久久久亚洲| 一级爰片在线观看| 国产黄片视频在线免费观看| 寂寞人妻少妇视频99o| 男人狂女人下面高潮的视频| 大码成人一级视频| 国产一区二区三区综合在线观看 | 日韩一区二区视频免费看| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 国产在线男女| 美女福利国产在线 | 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 大码成人一级视频| 欧美极品一区二区三区四区| 国产 一区精品| 色视频www国产| 国产精品偷伦视频观看了| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 亚洲精品乱码久久久v下载方式| 99热网站在线观看| 国产大屁股一区二区在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产成人a区在线观看| 九色成人免费人妻av| 国产精品国产av在线观看| 丰满迷人的少妇在线观看| 国产成人freesex在线| 午夜福利视频精品| 精品国产露脸久久av麻豆| 亚洲av免费高清在线观看| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美 | 少妇被粗大猛烈的视频| 丝瓜视频免费看黄片| 国产欧美另类精品又又久久亚洲欧美| tube8黄色片| 高清日韩中文字幕在线| 欧美+日韩+精品| 久久久久网色| 亚洲av成人精品一二三区| 亚洲精华国产精华液的使用体验| 婷婷色综合www| 哪个播放器可以免费观看大片| 成年女人在线观看亚洲视频| 大片免费播放器 马上看| 国产精品国产三级专区第一集| 国产色爽女视频免费观看| 免费观看性生交大片5| 亚洲av欧美aⅴ国产| 久久精品国产鲁丝片午夜精品| 欧美性感艳星| 人妻夜夜爽99麻豆av| 欧美成人午夜免费资源| 久久久久人妻精品一区果冻| 永久网站在线| 内地一区二区视频在线| 精品一区在线观看国产| 欧美日韩综合久久久久久| 亚洲av综合色区一区| 有码 亚洲区| 最近中文字幕2019免费版| 国产精品伦人一区二区| 亚洲欧洲日产国产| 九九在线视频观看精品| 久热久热在线精品观看| 黑人猛操日本美女一级片| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 男女国产视频网站| 亚洲第一区二区三区不卡| 精品99又大又爽又粗少妇毛片| 国产高清国产精品国产三级 | 99热这里只有是精品在线观看| av又黄又爽大尺度在线免费看| 黄色一级大片看看| 97精品久久久久久久久久精品| 一本色道久久久久久精品综合| 九草在线视频观看| 麻豆乱淫一区二区| 一级片'在线观看视频| 国产男女超爽视频在线观看| 国产精品伦人一区二区| 久久久精品94久久精品| 成年美女黄网站色视频大全免费 | 婷婷色av中文字幕| 免费av中文字幕在线|