高 健,呂學琴
(哈爾濱師范大學)
?
奇異一階線性偏微分方程的一種新算法*
高 健,呂學琴
(哈爾濱師范大學)
為研究變系數(shù)奇異一階線性偏微分方程而提出了一種新的算法并且在再生核空間中給出精確解的表達式,其近似解可以由截斷級數(shù)而得到.在‖·‖W(2.2)(D)的意義下近似解的誤差是單調(diào)遞減的.文中的數(shù)值算例說明了該方法的有效性.
近似解;線性偏微分方程;再生核空間.
該文研究了如下帶有變系數(shù)的線性偏微分方程:
A(x,t)Dxu(x,t)+B(x,t)D1u(x,t)+
C(x,t)u(x,t)=F(x,t)
(1)
系數(shù)A,B,C和F在點(x,t)=(0,0)∈C2時是奇異的,方程(1)符合以下四個基本條件:
A(x,0)≡0,
(2)
(3)
(4)
C(0,0)≠0.
(5)
注記:情況(2)和(3)表明
A(0,0)=B(0,0)=0,
(6)
在文獻[1]中,作者證明了在(2)~(5)的條件下解u(x,t)的存在唯一性.
在最近幾年,由Zhou[2]提出的微分轉(zhuǎn)換概念(DT)作為解決偏微分方程的一種最有效的方法而得到廣泛關(guān)注.多網(wǎng)格法是解決偏微分方程最有效方法之一,在20世紀60年代首次出現(xiàn)并且從20世紀80年代后快速發(fā)展,詳見文獻[8-9].瀑布型多重網(wǎng)格方法是多重網(wǎng)格方法的一種新類型,在文獻[11]中提出,文獻[12]中的算例證明了這種方法的有效性,作者改進了瀑布型多重網(wǎng)格方法,詳見文獻[13-14].
在文獻[1]中,作者已經(jīng)研究了變系數(shù)奇異一階線性偏微分方程解的存在性,而在文獻中并未對其給出數(shù)值算法,因此,該文將給出如上帶有條件(2)~(5)的方程(1)的一種新的求解算法.
1.1 再生核空間W2[-m,m]
W2[-m,m]={u(x)|u,u' 在[-m,m]內(nèi)是絕對連續(xù)的實值函數(shù), u″∈L2[-m,m]},W2[-m,m]中的內(nèi)積定義為:
(7)
(8)
再生核Rx(y)的表達式在附錄A中給出.
1.2 再生核空間W1[-m,m]
W1[-m,m]={u(x)|u在[-m,m]內(nèi)是絕對連續(xù)的實值函數(shù), u'∈L2[-m,m]},
W1[-m,m]中的內(nèi)積和范數(shù)分別定義為
cosh(|x-y|-2m)].
1.3 再生核空間W(2,2)(D)
命題1.1[16]如果 u(x,t)=u1(x)u2(t),v(x,t)=v1(x)v2(t)∈W(2,2)(D),那么
〈u(x,t),v(x,t)〉W(2,2)=〈u1(x),v1(x)〉W2〈u2(t),v2(t)〉W2.
(9)
命題1.2[16]W(2,2)(D)是一個再生核空間并且再生核為
K(ξ,η)(x,t)=Rξ(x)Rη(t),
(10)
其中Rξ(x),Rη(t)詳見(8).類似W(2.2)(D)的定義,可以定義W(1,1)(D)并且W(1,1)(D)是再生核空間.
該節(jié)在再生核W(2.2)(D)中給出方程(1)的解.在方程(1)中,
Lu(x,t)=A(x,t)Dxu(x,t)+
B(x,t)Dtu(x,t)+C(x,t)u(x,t),
那么等式(1)可以轉(zhuǎn)化成如下形式:
Lu(x,t)=F(x,t),
(11)
其中L:W(2,2)(D)→W(1,1)(D)是一個有界線性算子.
(12)
證明 ?u(M)∈M(2,2)(D),令〈u(M),ψi(M)〉=0,(i=1,2,…),即
〈u(M),(L*φi)(M)〉=〈Lu(M),φi(M)〉=(Lu)(Mi)=0.
(13)
(14)
其中F(M)=A(M)Dxu(M)+B(M)Dtu(M)+C(M)u(M).
?v(M)∈W(1,1)(D),有〈v(M),φi(M)〉=v(Mi),令u(M)是方程(1)的唯一解,因此有
定義u(m)的n項近似解為 un(M)
(16)
定理2.3 假設u(M)是方程(1)的解并且rn(M)是un(M)的近似誤差,其中un(M)是由(16)給出,那么在‖·‖W(2,2)(D)的意義下誤差rn(M)是單調(diào)遞減的.
證明 由(15)(16),可知
(17)
(17)表明在‖·‖W(2,2)(D)的意義下誤差Rn(M)是單調(diào)遞減的.
該節(jié)通過一些數(shù)值算例來證明所提出方法的精確性.在計算過程中,所有的符號和數(shù)值計算是由Mathematica5.0演示的.
算例1 考慮方程
A(x,t)Dxu(x,t)+B(x,t)Dtu(x,t)+
C(x,t)u(x,t)=F(x,t)
(18)
圖1 精確解(1)和近似解(2)
3tsinxsintx).精確解u(x,t)=3sinxcosxt,應用該方法在D=[-1,1]×[-1,1]內(nèi)選取121個點并且在D內(nèi)得到近似解u121(x,t),數(shù)值計算結(jié)果見圖1.
算例2 考慮方程
A(x,t)Dxu(x,t)+B(x,t)Dtu(x,t)+
C(x,t)u(x,t)=F(x,t)
(19)
其中-1≤t≤1,-1≤x≤1,A(x,t)=2-6sint,B(x,t)=xt2,C(x,t)=cost+xt,F(x,t)=t2xcost+txsint+costsint,真解u(x,t)=sint.應用該方法在D=[-1,1]×[-1,1] 內(nèi)選擇121個點并且在D上得到近似解u121(x,t),數(shù)值計算結(jié)果見表1.
表1 u(x,t)與un(x,t)的誤差比較
再生核空間W2[-m,m]
定理4.1 W2[-m,m]是一個再生核空間, ?u(y)∈W2[-m,m]和定點x∈[-m,m],?Rx(y)∈W2[-m,m],其中y∈[0,1],例如(u(y),Rx(y))W2[-m,m]=u(x),再生核Rx(y)可以表示為
(20)
證明 (u(y),Rx(y))W2[-m,m]=
假設Rx(y)滿足下面的廣義微分方程:
(21)
接下來,將會得到再生核Rx(y)的表達式.
將Rx(y)表示為
Rx(y)=
(22)
由再生核空間 W2[-m,m]的定義,系數(shù) c1,…,c4,d1,…,d4滿足
(23)
即可得到(21)的系數(shù).
[1] Masaki Hibino. Borel summability of divergent solutions for singular first-order partial differential equations with variable coefficients. Part I, J Di-fferential Equations,2006, 227(2):499-533.
[2] Ayaz F. On the two-dimensional differential transform method. Appl Math Compu,2003, 143(2-3):361-374.
[3] Ayaz F. Solution of the system of differential equations by differential transform method. Appl Math Compu,2004,147(2):547-567.
[4] Biazar J, Ebrahimi H. An approximation to the solution of hyperbolic equ-ations by Adomian decomposition method and comparison with characteristics met-hod. Appl Math Compu,2005,163:633-638.
[5] Chen C K, Ho S H. Solving partial differential equations by two-dimens-ional differential transform method.Appl Math Compu,1999,106(2-3):171-179.
[6] Jang M J, Chen C L, Liu Y C.Two-dimensional differential transform f-or partial differential equations.Appl Math Compu,2001,121(2-3):261-270.
[7] Yang Xiaofan, Liu Yaoxin, Bai Sen. A numerical solution of second-order li-near partial differential equations by differential transform. Appl Math Compu, 2006,173:792-802.
[8] McCormics S(Ed.). Multigrid Methods. SIAM, Philadelphia, PA, 1987.
[9] Bramble J H. Multigrid Methods, Pitman Research Notes in Mathematics Series (Longman Sci. Tech, London). Copublished with Wiley, New York, 1993.
[10] Xu J. Iterative methods by space decompasition and subspace correction.S-IAM Review,1992,34(4):581-613.
[11] Deuflhard P. Cascadic conjugate gradient methods for elliptic partial dif-ferential equations, in: D.Keys,J.Xu(Eds.),Proc of DDMT, AMS, Providence, 1994,30:29-42.
[12] Bornemann F A, Deuflhard P. The cascadic multigrid method for elliptic prob-lems. Numer Math,1996,75:135152.
[13] Shi Z, Xu X. Cascadic multigrid method for parabolic problem. J C M,2000,815:551-560.
[14] Shi Z C, Xu X J. A new cascadic multigrid Sci, 2001,44(1):21-30.
[15] Li Chunli, Cui Minggen. The exact solution for solving a class nonlinear operator equations in the reproducing kernel space. Appl Math Compu, 2003,143(2-3):393-399.
[16] Aronszajn N. Theory of Reproducing kernel. Trans, A M S, 1950,68:337-404.
(責任編輯:季春陽)
New Algorithm For Singular First-Order Linear PartialDifferential Equations
Gao Jian, Lv Xueqin
(Harbin Normal University)
In this paper, a new method is given in order to solving singular first-order linear partial differential equation with variable coefficients. Represen- tation of the exact solution is given in the reproducing kernel space. Its app- roximate solution is obtained by truncating the series. The error of the app- roximate solution is monotone deceasing in the sense of . The numerical experiment shows that the new method given in the paper is valid.
Approximate Solution; Linear Partial Differential Equation; Reproducing Kernel Space.
2016-01-19
*國家自然科學基金項目(11401145)
O241
A
1000-5617(2016)02-0008-04