• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    2016-11-28 08:06:56牟占軍張馨穎郝贠洪武朝軍
    無機化學(xué)學(xué)報 2016年11期
    關(guān)鍵詞:化工學(xué)院呼和浩特高嶺土

    李 健 李 巖 牟占軍 張馨穎 郝贠洪 武朝軍*,

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    李健1李巖2牟占軍1張馨穎1郝贠洪2武朝軍*,1

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    成功合成了一種高嶺土基新型多孔硅材料(ASM)并以FTIR,XRD,F(xiàn)E-SEM和N2吸附-脫附進行了系統(tǒng)的表征。ASM的制備過程涉及兩步:SiO32-提取和ASM的制備。SiO32-提取的最優(yōu)條件為煅燒溫度為960℃,NaOH濃度為20%,反應(yīng)溫度為90℃,反應(yīng)時間為90 min,在此條件下SiO32-提取率為60.45%(w/w)。以此提取液為原材料,調(diào)整提取液中SiO32-的濃度為12 g·L-1,反應(yīng)溫度為90℃,反應(yīng)時間為60 min,然后再攪拌2 h可制得ASM。以此ASM對Ca2+和Mg2+進行吸附研究,脫除率分別可達94.99%和62.32%。

    多孔硅材料;制備;高嶺土;吸附

    0 Introduction

    Silica material,a kind of white appearance, qualitative light,and fluffy amorphous porous material[1], can be expressed as SiO2·n H2O,wherein n H2O exists in the form of surface hydroxyl groups.The silica material was widely used in industry as reinforcing agent,white pigment and stabilizer[2].Currently,severalmethods were reported to prepare silica material, including chemical vapor deposition,precipitation process,sol-gel process,hydrothermal technique and dissociation of silicate minerals[3-4].Specially,Martinez et al.[5-6]had prepared amorphous SiO2by the sol-gel procedure,which presented high specific surface area, but the process parameters were difficultly controlled and only stayed at research stage.Therefore,silicate chemicals was paid more attention to reducing the cost of production by using inexpensive non-metallic minerals as silicon source.Recently,the silica material was produced from kaolin,chlorite,vermiculite,and chrysotile[7-9].Although the reserves of kaolin were largely and widely distributed,the further processing products from kaolin were less reported[10].As one of important fillers,kaolin was often used in many industries,including paper,rubber,cement,adhesives, ceramic industries,molecular sieves,and polyaluminum chloride production[11-12].Kaolin was rich in silica(Al2O3·2SiO2·2H2O,about 46.51%(w/w)in theory) and was an economically variable raw material for amorphous silica production[13].

    In this work,kaolin was used as the raw material,which was calcined at high temperature and treated with sodium hydroxide solution.The optimum condition of the choosing alkaline fusion process was systematically investigated.Then the as-prepared SiO32-leachate was used as silica source,reacting with acid to produce the amorphous silica material (ASM).In the process,CO2gas was used as acid to synthesize high quality silica material.

    The silica material with porosity and surface hydroxyl groups showed the possibility for adsorption of metal ions[14-17].Therefore,the performance of ASM for removal of Ca2+and Mg2+from aqueous solution were systemically studied.

    1 Experimental

    1.1Materials

    Kaolin from Inner Mongolia autonomous region (China)was used as the initial raw material. Commercially produced CO2(purity>99.9%),sodium hydroxide(purity>97%),dibutyl phthalate(purity>97.0%),calcium chloride anhydrous(purity>96%), magnesium chloride(purity>98%),and ethylenediaminetetra-acetic acid disodium salt dehydrate(purity>99%)were used in this work.All the other reagents used were analytic grade.

    1.2Extraction of SiO32-leachate from kaolin

    Firstly,the raw kaolin was crushed,milled,and sieved,and then heated in a muffle furnace up to 400~1 000℃with a rate of 20℃·min-1for 2 h. Secondly,the calcined kaolin powder was mixed with NaOH solution(10%~25%)in a thermostat water bath at 90℃for 1~2 h.Thirdly,the suspension liquid was filtered and washed to obtain SiO32-leachate.To evaluate the SiO32-leaching rate,the concentration of SiO32-in the filtrate was determined with silico-fluoride natrium volumetric method.The principle was shown as follows:

    The concentration of SiO2(g·mL-1)in the filtrate was calculated as the following formula:

    c1:Concentration of HCl standard solution,mol·L-1;

    c2:Concentration of NaOH standard solution,mol·L-1;

    V1:Consumption of HCl standard solution,mL;

    V2:Consumption of NaOH standard solution,mL;

    V3:Consumption of HCl standard solution in blank test,mL;

    V4:Consumption of NaOH standard solution in blank test,mL;

    M:Molar mass of SiO2,g·mol-1.

    1.3Synthesis of the ASM

    The ASM was prepared by precipitation method using the as-prepared SiO32-leachate reacting with CO2with flow rate of 100 mL·min-1at 90℃for 60 min under stirring at 200 r·min-1.Finally,the silica products formed after carbonation processes were thoroughlywashed with absolute alcohol and dried at 105℃for 10 h to attain the ultimate ASM.

    1.4Characterization

    Mineral composition of kaolin and calcined kaolin was analyzed using XRD analyses(Rigaku Ultima IV,Japan),which were collected on a powder X-ray diffractometer(Siemens D/max-RB)with Cu Kα (λ=0.154 06 nm)radiation and scanning rate of 0.05° ·s-1operated at working voltage of 40 kV and working current of 40 mA.Differential scanning calorimetry (DSC)measurements were conducted at a heating rate of 10℃·min-1from room temperature to 1200℃in N2atmosphere.The presence of kaolin and calcined kaolin special bands in the samples were confirmed through FTIR technology,using KBr as back ground (Nicolet,Nexus 670),in the region of 4 000~400 cm-1at room temperature.The morphology of ASM was analyzed by the scanning electron microscopy(SEM, Quanta FEG 650,China)with an accelerating voltage of 20 kV.The specific surface area of ASM was characterized by nitrogen gas adsorption-desorption at 77 K by using 3H-2000PS1/2 Specific surface and pore size analysis instrument.

    1.5Adsorption of Ca2+and Mg2+

    Different solutions of Ca2+and Mg2+were prepared by dissolving their chloride salts in deionized water. Mixing a certain amount of silica in 50 mL of prepared solution at 25℃and stirring at 250 r·min-1in shaking table[18].Then,the mixed solution was separated by filter.The Ca2+and Mg2+concentration in the filtrate were measured using EDTA titration method[19].The effect of response times,initial solution concentration, and adsorbent mass were systemically investigated.

    2 Results and discussion

    2.1Characterization of kaolin

    The thermal analysis result of kaolin was shown in Fig.1.As illustrated in Fig.1,the sharp endothermic peak at 533℃represented the dehydroxylation process, in which the crystalline kaolin was turned into amorphous metakaolin[20].The sharp exothermic peak at 994℃indicated that the mullite(γ-Al2O3)was appeared in the calcination temperature range of 900 to 1 000℃.

    Fig.1 DSC curve of kaolin

    XRD patterns of kaolin and calcined kaolin were shown in Fig.2.From Fig.2,the crystal structure of kaolin was intact and orderly,narrow sharp,and good symmetry(PDF No.14-0164)[22].When calcination temperature was controlled at 400℃,the characteristic diffraction peaks of kaolin were still evident,although the strength of peak slightly decreased.However, when calcination temperature was controlled at 600~900℃,the kaolin diffraction peaks disappeared[23], indicating that the kaolin completely lost its original crystal structure and converted into amorphous metakaolin.At 1 000℃,the new peaks of mullite were obviously observed[24].

    Fig.2 XRD patterns of raw kaolin and kaolin calcined at different temperatures

    FTIR spectra of kaolin before and after calcination were presented in Fig.3and 4.As shown in Fig.3,the bands at 3 692 cm-1and 3 614 cm-1(Si-OH),3 431 cm-1and 1 629 cm-1(H-OH),1 030 cm-1, 1 100 cm-1,1 008 cm-1and 473 cm-1(Si-O),and 913 cm-1(Al-OH)and 540 cm-1(Si-O-AlⅥ)were typicalabsorption peaks of kaolin[25-26].From Fig.4,the peaks at 3 692 cm-1,3 614 cm-1,913 cm-1and 540 cm-1completely disappeared after calcined at 600℃, confirming that the dehydration reaction of kaolin was completed and the kaolin was converted into metakaolin[27].The bands at 1 030 cm-1,1 100 cm-1and 1 008 cm-1(Si-O)still existed after calcined at 400℃,but the bands changed into one broad peak at 1 068~1 196 cm-1when the calcination temperature changed from 500 to 900℃,which was due to the collapse of kaolin structure.As temperature increased to 930℃,the two new peaks at 565 cm-1(AlⅣ)and 739 cm-1(AlⅣ) appeared,indicating that the new γ-Al2O3phase was generated[26].

    Fig.3 FTIR spectrum of kaolin

    Fig.4 FTIR spectra of kaolin calcined at different temperatures

    2.2Choice ofappropriate calcination temperature of kaolin

    15 g kaolin at different calcination temperature reacted with 15%NaOH solution at 90℃for 90 min, then the influence of calcination temperature on leaching rate ofin kaolin was studied.leaching rate under different calcination temperature was shown in Fig.5.

    Kaolin was converted into metakaolin dehydrated after 600℃.The transformation process was shown as follows: When the calcination temperature was higher than 930℃,the amorphous SiO2and inert γ-Al2O3increased significantly resulting in the evident increasing ofleaching rate(Fig.5):

    Fig.5 Silica leaching quantity under different activation temperature of kaolin

    At 1 100℃,a small amount of mullite was generated making theleaching rate decrease gradually:

    Comprehensive the above,the suitable calcination temperature was confirmed at 930~960℃.

    2.3Effect of reaction conditions on leaching rate

    The effect of NaOH concentration onleaching rate was shown in Fig.6.From Fig.6,the SiO32-leaching rate increased with the increasing NaOH concentration from 10%to 25%.When the NaOH concentration was less than 20%,chemical balance was in favor of generating the sodium metasilicate with the increasing chemical reaction rate and the diffusion velocity increasing[28-29].When the NaOH concentration continued to increase by 25%,the SiO32-leaching rate sharply decreased due to a side reaction intensifies.So the optimum NaOH concentration of 20%was chosen.

    Fig.6 Effect of alkalinity on leaching rate

    Temperature was an important factor,which might affect the chemical reaction process[30].When alkali concentration was 20%,the effect of reaction temperature and time onleaching rate was shown in Fig.7and 8.As shown in Fig.7,theleaching rate was gradually increased when temperature increased from 80 to 90℃and reached the maximum of 60.45%at 90℃.Theleaching rate would not significantly increase even if the reaction temperature was extended,so the optimum reaction temperature was set at 90℃.As shown in Fig.8,the optimum reaction time was 90 min.

    Fig.7 Effect of reaction temperature on leaching rate

    Fig.8 Effect of reaction time on leaching rate

    2.4Characterization of the ASM

    FTIR spectra of the ASM were shown in Fig.9. The bands at 3 427 and 1 637 cm-1were separately assigned to the stretching vibration and bending vibration of adsorbed water[31].The peaks at 1 092 and 800 cm-1corresponded to asymmetric and symmetric Si-O stretching vibration,respectively.The sharp absorption peak at 470 cm-1was assigned to the bending vibration of Si-O-Si.

    Fig.9 FTIR spectrum of the ASM

    In the XRD pattern of the ASM(Fig.10),a wide shape and low intensity peak at 2θ=20°~25°[32-33]indicated that the ASM was amorphous.

    FE-SEM was utilized to study the morphology and size distribution of the amorphous silica.Aggregations consisting of small particles were shown in Fig. 11.From Fig.11(a),ASM were mostly in the form of aggregates.After amplification for further observation (Fig.11(b)),it could be found that the aggregates were form by small spherical particles.And the average size of these spherical particles was 51 nm.

    Fig.10 XRD pattern of the ASM

    Fig.11 FE-SEM images of the ASM

    As shown in Fig.12,the adsorption-desorption curve showed that ASM was a typical mesoporous materials.When the relatively pressure was low,the single molecular layer adsorption occurred.And capillary condensation had occurred when the pressure was high,this led to a jump in the adsorption isotherms.Additionally,the BET surface area of ASM was 127 m2·g-1and the average pore diameter of ASM was 3.968 nm.

    Fig.12 Nitrogen adsorption-desorption isotherm of the ASM

    2.5Removal of Ca2+and Mg2+

    The effect of adsorbent dose(2,4 and 6 g·L-1) on the removal of Ca2+(200 mg·L-1)was presented in Fig.13(a).From Fig.13(a),a rapid decline of Ca2+concentration was observed from 0 to 10 min and the adsorption equilibrium was obtained from 10 to 60 min.With the increasing adsorbent dosage,Ca2+concentration in the solution decreased gradually.When the adsorbent dose was 4 g·L-1,Ca2+concentration dropped to 10.02 mg·L-1,adsorption rate reached 95%and adsorption quantity reached 47.50 mg·g-1.

    The effect of adsorbent dose(4 and 8 g·L-1)on the removal of Mg2+(100 mg·L-1)was presented in Fig.13(b).From Fig.13(b),the Mg2+concentration rapidly declined from 0 to 10 min and the adsorption equilibrium reached after 6 h,demonstrating that the capability of the ASM on adsorbing Mg2+was weakerthan Ca2+.When the adsorbent dose was 8 g·L-1,Mg2+concentration dropped to 37.68 mg·L-1,adsorption rate reached 62.32%and adsorption quantity reached 7.80 mg·g-1.

    Effect of contact time and initial concentrations of metal ions on the adsorption capability of the ASM are shown in Fig.14.As could be seen in Fig.14,the concentration of metal ions declined with the prolonging contact time.The adsorbent dose on adsorbed Ca2+and Mg2+were 4 and 8 g·L-1,respectively.The experimental results in Fig.14(a)showed that the adsorption mainly took place within 10 min.Fig.14(b)showed that just half of Mg2+were adsorbed within 10 min, and then the concentration of Mg2+gradually declined from 10 to 360 min until the adsorption reached equilibrium after 6 h.The adsorption was due to the porous structure and surface hydroxyl of the ASM.An increase of the initial Ca2+and Mg2+concentrations lead to an increase in the adsorption capacity.When the initial Ca2+concentration increased from 50 to 300 mg·L-1in Fig.14(a),the adsorption capacity of Ca2+on adsorbent changed from 11.2 to 64.0 mg·g-1.When the initial Mg2+concentration increased from 50 to 200 mg·L-1in Fig.14(b),the adsorption capacity of Mg2+on adsorbent changed from 4.75 to 9.50 mg·g-1. Maximum sorption capacities for Ca2+and Mg2+adsorption using various natural adsorbents were listed in Table1to compare with the results from the present work.Maximum sorption capacities by ASM was 64.0 mg·g-1for Ca2+and 9.50 mg·g-1for Mg2+respectively, namely higher than those reported in Table 1.The results also showed that the ASM owned a higher removal capacity for Ca2+than Mg2+.

    Fig.13 Effect of contact time and adsorbent dose on the adsorption capability

    Fig.14 Effect of contact time and initial concentration of metal ion on the adsorption capability

    The increasing in initial solution concentration results in an increase in removal capacity,which could be attributed to the increase of driving forcethat caused by the increase of concentration gradient. Surface adsorption and chemical deposition could be considered as two important driving forces for the removal of Ca2+and Mg2+[44-45].On the one hand,ASM contained a large number of surface silicon hydroxyl silanol,and hydrogen of surface silicon hydroxyl could be free since ionization[46].This made the surface of ASM present negative charge in aqueous solution,and further promoted the ASM adsorbing Ca2+and Mg2+ions by electrostatic interaction[44].On the other hand, a large number of hydroxyl groups at the ASM surface could complex with Ca2+and Mg2+ions on the ASM surface[45].It was this way that the ASM have a higher adsorption capacity to Ca2+and Mg2+ions.

    Table1 Maximum sorption capacity of some adsorbents for Ca2+and Mg2+

    3 Conclusions

    In summary,the optimum synthetic condition of as-prepared SiO32-leachate was confirmed as follows: calcination temperature of 960℃,alkali concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under the optimum condition,the SiO32-leaching rate could arrive at 60.50%.The main factors influencing the SiO32-leaching rate is the calcination temperature.The ASM was prepared from the SiO32-leachate with 100 mL·min-1CO2,and 12 g·L-1silica at 90℃for 60 min,and aged for 2 h.The ASM showed strong adsorption capability to Ca2+and Mg2+,and the removal rate of Ca2+(200 mg·L-1)and Mg2+(100 mg· L-1)on the ASM(4 g·L-1and 8 g·L-1,respectively) arrived at 94.99%and 62.32%,respectively.

    References:

    [1]Okada K,Shimai A,Takei T.Microporous Mesoporous Mater., 1998,21:289-296

    [2]Awaji N,Ohkubo S,Nakanishi T,et al.Appl.Phys.Lett., 1997,71:1954-1956

    [3]Music S,Filipovic-Vincekovic N,Sekovanic L.Braz.J.Chem. Eng.,2011,28:89-94

    [4]Sarawade P B,Kim J K,Hilonga A.Microporous Mesoporous Mater.,2011,139:138-147

    [5]Adeogun M J,Hay J N.Chem.Mater.,2000,12:767-775

    [6]Martinez J R,Palomares-Sánchez S,Ortega-Zarzosa G.Mater. Lett.,2006,60:3526-3529

    [7]Okada K,Arimitsu N,Kameshima Y.Appl.Clay Sci.,2005, 30:116-124

    [8]Temuujin J,Okada K,MacKenzie K J D.Appl.Clay Sci., 2003,22:187-195

    [9]Liu K,Feng Q,Yang Y.J.Non-Cryst.Solids,2007,353:1534 -1539

    [10]Conceicao S I,Velho J L,Ferreira J M F.Appl.Clay Sci., 2003,23:257-264

    [11]Gendy A E,Khiari R,Bettaieb F,et al.Appl.Clay Sci., 2014,101:626-631

    [12]Tang A,Su L,Li C C.Powder Technol.,2012,218:86-89

    [13]Temuujin J,Burmaa G,Amgalan J,et al.J.Porous Mater., 2001,8:233-238

    [14]Cai X,Hong R Y,Wang L S,et al.Chem.Eng.J.,2009,151: 380-386

    [15]Zhang J L,Liu Z M,Han B X.Microporous Mesoporous Mater.,2005,87:10-14

    [16]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [17]Chiang Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [18]Rida K,Bouraoui S,Hadnine S.Appl.Clay Sci.,2013,83: 99-105

    [19]Sepehr M N,Zarrabi M,Kazemian H,et al.Appl.Surf.Sci., 2013,274:295-305

    [20]Fabbri B,Gualtieri S,Leonardi C.Appl.Clay Sci.,2013,73: 2-10

    [21]Diffo B B K,Elimbi A,Cyr M,et al.J.Asian Ceram.Soc., 2015,42:130-138

    [22]Wang M R,Jia D C,He P G,et al.Mater.Lett.,2010,64: 2551-2554

    [23]Badogiannis E,Kakali G,Tsivilis S.J.Therm.Anal.Calorim., 2005,81:457-462

    [24]Fernandez R,Marrena F,Scrivener K L.Cem.Concr.Res., 2011,41:113-122

    [25]Kakali G,Perraki T,Tsivilis S,et al.Appl.Clay Sci.,2001, 20:73-80

    [26]San Cristóbal A G,Castelló R,Martín Luengo M A,et al. Appl.Clay Sci.,2010,49:239-246

    [27]Shu Z,Li T,Zhou J,et al.Appl.Clay Sci.,2014,102:33-40

    [28]Gasparini E,Tarantino S C,Ghigna P,et al.Appl.Clay Sci.,2013,80:417-425

    [29]Kahraman S,?nal M,Sarkaya Y,et al.Anal.Chim.Acta, 2005,552:201-206

    [30]Zhao Q J,Yang Q F,Chen Q Y.Trans.Nonferrous Met. Soc.China,2010,20:1-6

    [31]Brahmi D,Merabeta D,Belkacemia H,et al.Ceram.Int., 2014,40:10499-10503

    [32]Okada K,Arimitsu N,Kameshima Y,et al.Appl.Clay Sci., 2005,30:116-124

    [33]Jesionowski T.Powder Technol.,2002,127:56-65

    [34]Witoon T,Tepsarn S,Kittipokin P,et al.J.Non-Cryst.Solids, 2011,357:3513-3519

    [35]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [36]Guzel F,Yakut H,Topal G.J.Hazard.Mater.,2008,153: 1275-1287

    [37]Taffarel S R,Rubio J.Miner.Eng.,2010,23:1131-1138

    [38]Soliman E M,Ahmed S A,Fadl A A.Desalination,2011, 278:18-25

    [39]Garcia-Mendieta A,Olguin M T,Solache-Rios M.Desalination,2012,284:167-174

    [40]Jinior O K,Gurgel L V A,Gil L F.Carbohyd.Polym.,2010, 79:184-191

    [41]Krishnani K K,Meng X,Christodoulatos C,et al.J.Hazard. Mater.,2008,153:1222-1234

    [42]Vaghetti J C P,Lima E C,Royer B,et al.J.Hazard.Mater., 2009,162:270-280

    [43]Yavuz O,Altunkaynak Y,Guzel F.Water Res.,2003,37: 948-952

    [44]Chiang C Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [45]Auta M,Hameed B H.Chem.Eng.J.,2012,198:219-227

    [46]Wang Y F,Li L,Liu Y,et al.Mater.Sci.Eng.C,2016,69: 1075-1080

    Amorphous Silica Material Prepared from Kaolin and Its Adsorption Properties to Ca2+and Mg2+

    LI Jian1LI Yan2MOU Zhan-Jun1ZHANG Xin-Ying1HAO Yun-Hong2WU Zhao-Jun*,1
    (1College of Chemical Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)
    (2College of Civil Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)

    A novel amorphous silica material(ASM)was successfully prepared from kaolin and characterized by several techniques,including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),and N2adsorption-desorption.The preparation procedure of ASM involved two aspects:SiO32-leaching from kaolin and preparation of ASM.The optimum SiO32-leaching condition was confirmed at calcination temperature of 960℃,NaOH concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under this condition,SiO32-leaching yield arrived at 60.45%(w/w).The ASM was then easily prepared from SiO32-leaching at the silica concentration of 12 g·L-1,reaction temperature of 90℃,reaction time of 60 min and aging time of 2 h.The removal behavior of Ca2+and Mg2+revealed that the removal rate of Ca2+and Mg2+on the ASM could arrived at 94.99%and 62.32%,respectively.

    amorphous silica material;preparation;kaolin;adsorption

    O611.4

    A

    1001-4861(2016)11-2049-09

    10.11862/CJIC.2016.254

    2016-06-05。收修改稿日期:2016-09-20。*通信聯(lián)系人。E-mail:nmzhjwu@163.com

    猜你喜歡
    化工學(xué)院呼和浩特高嶺土
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    呼和浩特之旅
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    工商企業(yè)管理的知識與操作實例
    高嶺土加入量對Al2O3-SiC質(zhì)修補料熱震性能的影響
    山東冶金(2019年1期)2019-03-30 01:35:02
    呼和浩特
    草原歌聲(2017年4期)2017-04-28 08:20:43
    美麗的呼和浩特
    小主人報(2016年1期)2016-12-01 06:22:57
    《化工學(xué)報》贊助單位
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 99香蕉大伊视频| 久久久精品94久久精品| 美女国产高潮福利片在线看| 又黄又爽又刺激的免费视频.| 国产又色又爽无遮挡免| 国产欧美亚洲国产| 狠狠精品人妻久久久久久综合| 亚洲情色 制服丝袜| 国产精品女同一区二区软件| 欧美另类一区| 十分钟在线观看高清视频www| 我的女老师完整版在线观看| 亚洲欧美日韩另类电影网站| 国产精品嫩草影院av在线观看| 下体分泌物呈黄色| 麻豆乱淫一区二区| 纯流量卡能插随身wifi吗| 欧美日韩亚洲高清精品| 在线观看人妻少妇| 久久久欧美国产精品| 精品少妇黑人巨大在线播放| 亚洲精品自拍成人| 国产男女内射视频| 欧美精品亚洲一区二区| 80岁老熟妇乱子伦牲交| 亚洲精品,欧美精品| 黑人猛操日本美女一级片| 老司机影院成人| 国产色爽女视频免费观看| 黑丝袜美女国产一区| 欧美bdsm另类| 午夜91福利影院| 国产深夜福利视频在线观看| 性高湖久久久久久久久免费观看| 日本午夜av视频| 人人澡人人妻人| 青春草国产在线视频| 久久毛片免费看一区二区三区| 午夜福利网站1000一区二区三区| www.熟女人妻精品国产 | 国产免费现黄频在线看| 草草在线视频免费看| 高清不卡的av网站| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 色哟哟·www| 亚洲精品日本国产第一区| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 2021少妇久久久久久久久久久| 久久久a久久爽久久v久久| 插逼视频在线观看| 久久久国产一区二区| 日本欧美国产在线视频| 精品视频人人做人人爽| 蜜臀久久99精品久久宅男| 激情五月婷婷亚洲| 亚洲成人一二三区av| 午夜福利,免费看| 最新的欧美精品一区二区| 欧美少妇被猛烈插入视频| 黄色视频在线播放观看不卡| 午夜福利,免费看| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 97在线人人人人妻| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 免费黄色在线免费观看| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 人妻少妇偷人精品九色| 久久这里有精品视频免费| 天天躁夜夜躁狠狠久久av| 多毛熟女@视频| 在线免费观看不下载黄p国产| 国产午夜精品一二区理论片| 欧美日韩视频精品一区| 午夜91福利影院| av在线老鸭窝| 亚洲国产精品一区二区三区在线| 久久久久人妻精品一区果冻| 成人二区视频| www.av在线官网国产| 最黄视频免费看| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 波野结衣二区三区在线| 中国三级夫妇交换| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美视频二区| 免费大片黄手机在线观看| 视频区图区小说| 免费观看性生交大片5| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 久久婷婷青草| 国产熟女午夜一区二区三区| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产精品免费大片| 少妇熟女欧美另类| 看十八女毛片水多多多| xxx大片免费视频| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 国产成人91sexporn| 国产精品久久久久成人av| 亚洲国产看品久久| 日本av免费视频播放| 在线观看免费高清a一片| 亚洲国产精品国产精品| 一级片免费观看大全| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| 亚洲av日韩在线播放| 午夜久久久在线观看| 美女国产高潮福利片在线看| 久久鲁丝午夜福利片| 国产一区二区在线观看av| 一本大道久久a久久精品| 国产淫语在线视频| 日本色播在线视频| 热99国产精品久久久久久7| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 久久 成人 亚洲| 在线观看人妻少妇| 国产精品无大码| 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 22中文网久久字幕| 国产成人a∨麻豆精品| 国产成人精品一,二区| 日韩一本色道免费dvd| 免费大片18禁| av在线app专区| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 男女午夜视频在线观看 | 国产乱来视频区| 岛国毛片在线播放| 少妇的逼好多水| 亚洲内射少妇av| 欧美成人午夜精品| 香蕉丝袜av| 97在线视频观看| 成人二区视频| 精品福利永久在线观看| 男男h啪啪无遮挡| 天天影视国产精品| 美女主播在线视频| 国产精品99久久99久久久不卡 | 免费人成在线观看视频色| 丝袜人妻中文字幕| 午夜老司机福利剧场| 精品视频人人做人人爽| 少妇人妻 视频| 中文乱码字字幕精品一区二区三区| 亚洲精华国产精华液的使用体验| av片东京热男人的天堂| 久久久精品区二区三区| 天堂中文最新版在线下载| www.熟女人妻精品国产 | 2018国产大陆天天弄谢| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 亚洲国产精品国产精品| 亚洲美女黄色视频免费看| 国产精品久久久久久av不卡| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 国产69精品久久久久777片| 老司机影院毛片| 精品久久国产蜜桃| 免费黄网站久久成人精品| 中文天堂在线官网| 男男h啪啪无遮挡| h视频一区二区三区| 日本色播在线视频| 久久精品夜色国产| 中文字幕人妻丝袜制服| 久久97久久精品| 在线观看一区二区三区激情| 看非洲黑人一级黄片| 中文乱码字字幕精品一区二区三区| 99国产精品免费福利视频| 桃花免费在线播放| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 欧美日韩精品成人综合77777| 亚洲av免费高清在线观看| 99re6热这里在线精品视频| 中国三级夫妇交换| 熟妇人妻不卡中文字幕| 国产精品无大码| 免费日韩欧美在线观看| 国产探花极品一区二区| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 男女下面插进去视频免费观看 | 在线看a的网站| 国产综合精华液| 国产日韩欧美在线精品| 极品人妻少妇av视频| 欧美精品亚洲一区二区| 日本免费在线观看一区| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 亚洲欧洲国产日韩| 欧美丝袜亚洲另类| 国产永久视频网站| 欧美 亚洲 国产 日韩一| 99re6热这里在线精品视频| 啦啦啦在线观看免费高清www| 国产精品蜜桃在线观看| 只有这里有精品99| a 毛片基地| av有码第一页| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 日韩av免费高清视频| 中文字幕免费在线视频6| 日韩人妻精品一区2区三区| 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 色吧在线观看| 纯流量卡能插随身wifi吗| 男女啪啪激烈高潮av片| 最近手机中文字幕大全| 国产在线视频一区二区| 9色porny在线观看| 久久久精品免费免费高清| 国产成人91sexporn| 性色av一级| 在线看a的网站| 啦啦啦中文免费视频观看日本| 午夜福利乱码中文字幕| 日韩伦理黄色片| 一区二区三区四区激情视频| 人妻 亚洲 视频| 国产黄色免费在线视频| 91精品国产国语对白视频| 日韩在线高清观看一区二区三区| 久久久国产一区二区| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 亚洲性久久影院| 啦啦啦在线观看免费高清www| 久久人人97超碰香蕉20202| 男女啪啪激烈高潮av片| 人妻少妇偷人精品九色| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 久久这里有精品视频免费| 99热网站在线观看| 99久久人妻综合| 制服诱惑二区| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久com| 大香蕉久久网| 天美传媒精品一区二区| 欧美激情 高清一区二区三区| 国产成人精品婷婷| 亚洲第一av免费看| 久久久久视频综合| 国产日韩欧美亚洲二区| 亚洲国产av新网站| 成年av动漫网址| 欧美精品一区二区免费开放| a 毛片基地| 你懂的网址亚洲精品在线观看| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 久久人人爽人人爽人人片va| 少妇精品久久久久久久| 女人精品久久久久毛片| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩综合在线一区二区| 晚上一个人看的免费电影| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| av.在线天堂| 国产成人免费无遮挡视频| 亚洲性久久影院| 丰满乱子伦码专区| 国产av一区二区精品久久| 国产精品国产三级国产av玫瑰| 晚上一个人看的免费电影| av在线观看视频网站免费| 国产精品一区www在线观看| 国产熟女欧美一区二区| 国产在视频线精品| 最近中文字幕2019免费版| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱| 搡老乐熟女国产| 免费人成在线观看视频色| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 老司机亚洲免费影院| 最近中文字幕2019免费版| 男男h啪啪无遮挡| 日韩一本色道免费dvd| 中文字幕精品免费在线观看视频 | 欧美国产精品va在线观看不卡| 波野结衣二区三区在线| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 久久午夜综合久久蜜桃| 蜜桃在线观看..| 国产精品免费大片| 国产av一区二区精品久久| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 国产精品免费大片| 午夜视频国产福利| 亚洲精品国产色婷婷电影| 一区二区日韩欧美中文字幕 | 国产在线一区二区三区精| 日韩精品有码人妻一区| 亚洲精品一区蜜桃| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 美女国产视频在线观看| 国产高清三级在线| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 伦理电影免费视频| kizo精华| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 搡老乐熟女国产| kizo精华| 人人妻人人添人人爽欧美一区卜| 捣出白浆h1v1| 黄色毛片三级朝国网站| 久久精品人人爽人人爽视色| 一级毛片我不卡| 欧美最新免费一区二区三区| 亚洲精品国产av成人精品| 全区人妻精品视频| 国产片特级美女逼逼视频| 免费观看在线日韩| 在线 av 中文字幕| 精品人妻偷拍中文字幕| 欧美成人午夜精品| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 五月伊人婷婷丁香| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 日韩三级伦理在线观看| h视频一区二区三区| 亚洲欧洲日产国产| 热99久久久久精品小说推荐| 免费大片18禁| 伦理电影大哥的女人| 91精品国产国语对白视频| 国产白丝娇喘喷水9色精品| 嫩草影院入口| 成年美女黄网站色视频大全免费| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 九色亚洲精品在线播放| 最新的欧美精品一区二区| 久久久精品区二区三区| 久久精品国产自在天天线| 免费黄网站久久成人精品| 久久这里只有精品19| 亚洲少妇的诱惑av| 在线观看三级黄色| 国产成人午夜福利电影在线观看| 日韩成人av中文字幕在线观看| 在线天堂中文资源库| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| av卡一久久| 99国产综合亚洲精品| 大香蕉97超碰在线| 美女大奶头黄色视频| 亚洲精品成人av观看孕妇| 最新的欧美精品一区二区| 国产69精品久久久久777片| av免费观看日本| 天天躁夜夜躁狠狠躁躁| 日韩大片免费观看网站| 美女中出高潮动态图| 男女高潮啪啪啪动态图| 十八禁网站网址无遮挡| av国产久精品久网站免费入址| 国产熟女欧美一区二区| 国产免费一区二区三区四区乱码| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| av播播在线观看一区| 欧美国产精品va在线观看不卡| 两个人免费观看高清视频| 亚洲美女视频黄频| 国产精品久久久久成人av| 在线观看美女被高潮喷水网站| 狠狠精品人妻久久久久久综合| 国产精品一区二区在线观看99| 亚洲av.av天堂| 久久久久国产精品人妻一区二区| 国产白丝娇喘喷水9色精品| 久久午夜综合久久蜜桃| 夜夜爽夜夜爽视频| 日本wwww免费看| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 大香蕉久久网| 免费大片18禁| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 国产精品 国内视频| www日本在线高清视频| 久久久久久久久久人人人人人人| 精品少妇久久久久久888优播| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| 国产成人欧美| 飞空精品影院首页| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 亚洲精品,欧美精品| 久久久久精品性色| 精品熟女少妇av免费看| 嫩草影院入口| 欧美激情极品国产一区二区三区 | 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 免费黄频网站在线观看国产| 91久久精品国产一区二区三区| 国产一区二区三区综合在线观看 | 18在线观看网站| 国产精品蜜桃在线观看| 精品久久蜜臀av无| 午夜福利,免费看| 免费观看无遮挡的男女| 最近最新中文字幕大全免费视频 | 精品一区二区三区四区五区乱码 | 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 中文字幕最新亚洲高清| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 亚洲欧美色中文字幕在线| 搡老乐熟女国产| 国产白丝娇喘喷水9色精品| 国产精品嫩草影院av在线观看| 蜜臀久久99精品久久宅男| 免费黄网站久久成人精品| 国产男人的电影天堂91| 99re6热这里在线精品视频| 性色avwww在线观看| av网站免费在线观看视频| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 久热这里只有精品99| 午夜免费鲁丝| 肉色欧美久久久久久久蜜桃| 亚洲精品成人av观看孕妇| 成人国产麻豆网| 精品视频人人做人人爽| 9色porny在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费人妻精品一区二区三区视频| 在现免费观看毛片| 99视频精品全部免费 在线| 日日爽夜夜爽网站| 九草在线视频观看| 国产av国产精品国产| 国产在线视频一区二区| 天美传媒精品一区二区| 亚洲性久久影院| 天堂8中文在线网| 欧美+日韩+精品| 人人妻人人添人人爽欧美一区卜| 亚洲性久久影院| 欧美日韩视频高清一区二区三区二| 深夜精品福利| 欧美日韩视频高清一区二区三区二| 久久av网站| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 黄片播放在线免费| 亚洲在久久综合| av在线播放精品| 国产精品.久久久| 亚洲成人手机| 成人亚洲欧美一区二区av| 嫩草影院入口| 久久免费观看电影| 亚洲图色成人| 欧美另类一区| 久久国产精品大桥未久av| 亚洲欧美日韩另类电影网站| 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 欧美精品一区二区免费开放| 国产成人精品一,二区| 日本av手机在线免费观看| 肉色欧美久久久久久久蜜桃| 婷婷色av中文字幕| 黑人高潮一二区| 十八禁网站网址无遮挡| 美女国产高潮福利片在线看| 精品国产乱码久久久久久小说| 成年动漫av网址| 国产1区2区3区精品| 日韩人妻精品一区2区三区| 国产深夜福利视频在线观看| 国产高清国产精品国产三级| 国产av精品麻豆| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 在现免费观看毛片| 日韩伦理黄色片| 午夜视频国产福利| 日韩欧美精品免费久久| 91国产中文字幕| 亚洲国产毛片av蜜桃av| 啦啦啦中文免费视频观看日本| 纵有疾风起免费观看全集完整版| 免费黄网站久久成人精品| av一本久久久久| 亚洲人成77777在线视频| 97精品久久久久久久久久精品| 美女国产视频在线观看| 高清视频免费观看一区二区| 老司机亚洲免费影院| 26uuu在线亚洲综合色| 日韩电影二区| 国产免费视频播放在线视频| 这个男人来自地球电影免费观看 | 久久久久久人人人人人| 夫妻午夜视频| 久久国产精品大桥未久av| 久久久精品区二区三区| 啦啦啦在线观看免费高清www| 国产一区二区激情短视频 | 人人妻人人爽人人添夜夜欢视频| 国产精品嫩草影院av在线观看| 日韩伦理黄色片| 免费看不卡的av| 欧美 亚洲 国产 日韩一| 日韩中字成人| 久热这里只有精品99| 日韩欧美精品免费久久| 日本av免费视频播放| 久久婷婷青草| 午夜老司机福利剧场| 国产 一区精品| 人妻 亚洲 视频| 一本久久精品| 婷婷色综合大香蕉| 久久毛片免费看一区二区三区| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 国产精品人妻久久久久久| 99久国产av精品国产电影| 人人妻人人澡人人看| 免费在线观看完整版高清| 成年人午夜在线观看视频| 日韩精品有码人妻一区| 尾随美女入室| 国产精品久久久久久精品电影小说| 极品人妻少妇av视频| 91精品三级在线观看| 欧美精品亚洲一区二区| 中国三级夫妇交换| 黄色一级大片看看| a级毛色黄片| 九色成人免费人妻av| 大陆偷拍与自拍| 女的被弄到高潮叫床怎么办| 国产高清国产精品国产三级| 满18在线观看网站| 国产乱人偷精品视频|