• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    2016-11-28 08:06:56牟占軍張馨穎郝贠洪武朝軍
    無機化學(xué)學(xué)報 2016年11期
    關(guān)鍵詞:化工學(xué)院呼和浩特高嶺土

    李 健 李 巖 牟占軍 張馨穎 郝贠洪 武朝軍*,

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    李健1李巖2牟占軍1張馨穎1郝贠洪2武朝軍*,1

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    成功合成了一種高嶺土基新型多孔硅材料(ASM)并以FTIR,XRD,F(xiàn)E-SEM和N2吸附-脫附進行了系統(tǒng)的表征。ASM的制備過程涉及兩步:SiO32-提取和ASM的制備。SiO32-提取的最優(yōu)條件為煅燒溫度為960℃,NaOH濃度為20%,反應(yīng)溫度為90℃,反應(yīng)時間為90 min,在此條件下SiO32-提取率為60.45%(w/w)。以此提取液為原材料,調(diào)整提取液中SiO32-的濃度為12 g·L-1,反應(yīng)溫度為90℃,反應(yīng)時間為60 min,然后再攪拌2 h可制得ASM。以此ASM對Ca2+和Mg2+進行吸附研究,脫除率分別可達94.99%和62.32%。

    多孔硅材料;制備;高嶺土;吸附

    0 Introduction

    Silica material,a kind of white appearance, qualitative light,and fluffy amorphous porous material[1], can be expressed as SiO2·n H2O,wherein n H2O exists in the form of surface hydroxyl groups.The silica material was widely used in industry as reinforcing agent,white pigment and stabilizer[2].Currently,severalmethods were reported to prepare silica material, including chemical vapor deposition,precipitation process,sol-gel process,hydrothermal technique and dissociation of silicate minerals[3-4].Specially,Martinez et al.[5-6]had prepared amorphous SiO2by the sol-gel procedure,which presented high specific surface area, but the process parameters were difficultly controlled and only stayed at research stage.Therefore,silicate chemicals was paid more attention to reducing the cost of production by using inexpensive non-metallic minerals as silicon source.Recently,the silica material was produced from kaolin,chlorite,vermiculite,and chrysotile[7-9].Although the reserves of kaolin were largely and widely distributed,the further processing products from kaolin were less reported[10].As one of important fillers,kaolin was often used in many industries,including paper,rubber,cement,adhesives, ceramic industries,molecular sieves,and polyaluminum chloride production[11-12].Kaolin was rich in silica(Al2O3·2SiO2·2H2O,about 46.51%(w/w)in theory) and was an economically variable raw material for amorphous silica production[13].

    In this work,kaolin was used as the raw material,which was calcined at high temperature and treated with sodium hydroxide solution.The optimum condition of the choosing alkaline fusion process was systematically investigated.Then the as-prepared SiO32-leachate was used as silica source,reacting with acid to produce the amorphous silica material (ASM).In the process,CO2gas was used as acid to synthesize high quality silica material.

    The silica material with porosity and surface hydroxyl groups showed the possibility for adsorption of metal ions[14-17].Therefore,the performance of ASM for removal of Ca2+and Mg2+from aqueous solution were systemically studied.

    1 Experimental

    1.1Materials

    Kaolin from Inner Mongolia autonomous region (China)was used as the initial raw material. Commercially produced CO2(purity>99.9%),sodium hydroxide(purity>97%),dibutyl phthalate(purity>97.0%),calcium chloride anhydrous(purity>96%), magnesium chloride(purity>98%),and ethylenediaminetetra-acetic acid disodium salt dehydrate(purity>99%)were used in this work.All the other reagents used were analytic grade.

    1.2Extraction of SiO32-leachate from kaolin

    Firstly,the raw kaolin was crushed,milled,and sieved,and then heated in a muffle furnace up to 400~1 000℃with a rate of 20℃·min-1for 2 h. Secondly,the calcined kaolin powder was mixed with NaOH solution(10%~25%)in a thermostat water bath at 90℃for 1~2 h.Thirdly,the suspension liquid was filtered and washed to obtain SiO32-leachate.To evaluate the SiO32-leaching rate,the concentration of SiO32-in the filtrate was determined with silico-fluoride natrium volumetric method.The principle was shown as follows:

    The concentration of SiO2(g·mL-1)in the filtrate was calculated as the following formula:

    c1:Concentration of HCl standard solution,mol·L-1;

    c2:Concentration of NaOH standard solution,mol·L-1;

    V1:Consumption of HCl standard solution,mL;

    V2:Consumption of NaOH standard solution,mL;

    V3:Consumption of HCl standard solution in blank test,mL;

    V4:Consumption of NaOH standard solution in blank test,mL;

    M:Molar mass of SiO2,g·mol-1.

    1.3Synthesis of the ASM

    The ASM was prepared by precipitation method using the as-prepared SiO32-leachate reacting with CO2with flow rate of 100 mL·min-1at 90℃for 60 min under stirring at 200 r·min-1.Finally,the silica products formed after carbonation processes were thoroughlywashed with absolute alcohol and dried at 105℃for 10 h to attain the ultimate ASM.

    1.4Characterization

    Mineral composition of kaolin and calcined kaolin was analyzed using XRD analyses(Rigaku Ultima IV,Japan),which were collected on a powder X-ray diffractometer(Siemens D/max-RB)with Cu Kα (λ=0.154 06 nm)radiation and scanning rate of 0.05° ·s-1operated at working voltage of 40 kV and working current of 40 mA.Differential scanning calorimetry (DSC)measurements were conducted at a heating rate of 10℃·min-1from room temperature to 1200℃in N2atmosphere.The presence of kaolin and calcined kaolin special bands in the samples were confirmed through FTIR technology,using KBr as back ground (Nicolet,Nexus 670),in the region of 4 000~400 cm-1at room temperature.The morphology of ASM was analyzed by the scanning electron microscopy(SEM, Quanta FEG 650,China)with an accelerating voltage of 20 kV.The specific surface area of ASM was characterized by nitrogen gas adsorption-desorption at 77 K by using 3H-2000PS1/2 Specific surface and pore size analysis instrument.

    1.5Adsorption of Ca2+and Mg2+

    Different solutions of Ca2+and Mg2+were prepared by dissolving their chloride salts in deionized water. Mixing a certain amount of silica in 50 mL of prepared solution at 25℃and stirring at 250 r·min-1in shaking table[18].Then,the mixed solution was separated by filter.The Ca2+and Mg2+concentration in the filtrate were measured using EDTA titration method[19].The effect of response times,initial solution concentration, and adsorbent mass were systemically investigated.

    2 Results and discussion

    2.1Characterization of kaolin

    The thermal analysis result of kaolin was shown in Fig.1.As illustrated in Fig.1,the sharp endothermic peak at 533℃represented the dehydroxylation process, in which the crystalline kaolin was turned into amorphous metakaolin[20].The sharp exothermic peak at 994℃indicated that the mullite(γ-Al2O3)was appeared in the calcination temperature range of 900 to 1 000℃.

    Fig.1 DSC curve of kaolin

    XRD patterns of kaolin and calcined kaolin were shown in Fig.2.From Fig.2,the crystal structure of kaolin was intact and orderly,narrow sharp,and good symmetry(PDF No.14-0164)[22].When calcination temperature was controlled at 400℃,the characteristic diffraction peaks of kaolin were still evident,although the strength of peak slightly decreased.However, when calcination temperature was controlled at 600~900℃,the kaolin diffraction peaks disappeared[23], indicating that the kaolin completely lost its original crystal structure and converted into amorphous metakaolin.At 1 000℃,the new peaks of mullite were obviously observed[24].

    Fig.2 XRD patterns of raw kaolin and kaolin calcined at different temperatures

    FTIR spectra of kaolin before and after calcination were presented in Fig.3and 4.As shown in Fig.3,the bands at 3 692 cm-1and 3 614 cm-1(Si-OH),3 431 cm-1and 1 629 cm-1(H-OH),1 030 cm-1, 1 100 cm-1,1 008 cm-1and 473 cm-1(Si-O),and 913 cm-1(Al-OH)and 540 cm-1(Si-O-AlⅥ)were typicalabsorption peaks of kaolin[25-26].From Fig.4,the peaks at 3 692 cm-1,3 614 cm-1,913 cm-1and 540 cm-1completely disappeared after calcined at 600℃, confirming that the dehydration reaction of kaolin was completed and the kaolin was converted into metakaolin[27].The bands at 1 030 cm-1,1 100 cm-1and 1 008 cm-1(Si-O)still existed after calcined at 400℃,but the bands changed into one broad peak at 1 068~1 196 cm-1when the calcination temperature changed from 500 to 900℃,which was due to the collapse of kaolin structure.As temperature increased to 930℃,the two new peaks at 565 cm-1(AlⅣ)and 739 cm-1(AlⅣ) appeared,indicating that the new γ-Al2O3phase was generated[26].

    Fig.3 FTIR spectrum of kaolin

    Fig.4 FTIR spectra of kaolin calcined at different temperatures

    2.2Choice ofappropriate calcination temperature of kaolin

    15 g kaolin at different calcination temperature reacted with 15%NaOH solution at 90℃for 90 min, then the influence of calcination temperature on leaching rate ofin kaolin was studied.leaching rate under different calcination temperature was shown in Fig.5.

    Kaolin was converted into metakaolin dehydrated after 600℃.The transformation process was shown as follows: When the calcination temperature was higher than 930℃,the amorphous SiO2and inert γ-Al2O3increased significantly resulting in the evident increasing ofleaching rate(Fig.5):

    Fig.5 Silica leaching quantity under different activation temperature of kaolin

    At 1 100℃,a small amount of mullite was generated making theleaching rate decrease gradually:

    Comprehensive the above,the suitable calcination temperature was confirmed at 930~960℃.

    2.3Effect of reaction conditions on leaching rate

    The effect of NaOH concentration onleaching rate was shown in Fig.6.From Fig.6,the SiO32-leaching rate increased with the increasing NaOH concentration from 10%to 25%.When the NaOH concentration was less than 20%,chemical balance was in favor of generating the sodium metasilicate with the increasing chemical reaction rate and the diffusion velocity increasing[28-29].When the NaOH concentration continued to increase by 25%,the SiO32-leaching rate sharply decreased due to a side reaction intensifies.So the optimum NaOH concentration of 20%was chosen.

    Fig.6 Effect of alkalinity on leaching rate

    Temperature was an important factor,which might affect the chemical reaction process[30].When alkali concentration was 20%,the effect of reaction temperature and time onleaching rate was shown in Fig.7and 8.As shown in Fig.7,theleaching rate was gradually increased when temperature increased from 80 to 90℃and reached the maximum of 60.45%at 90℃.Theleaching rate would not significantly increase even if the reaction temperature was extended,so the optimum reaction temperature was set at 90℃.As shown in Fig.8,the optimum reaction time was 90 min.

    Fig.7 Effect of reaction temperature on leaching rate

    Fig.8 Effect of reaction time on leaching rate

    2.4Characterization of the ASM

    FTIR spectra of the ASM were shown in Fig.9. The bands at 3 427 and 1 637 cm-1were separately assigned to the stretching vibration and bending vibration of adsorbed water[31].The peaks at 1 092 and 800 cm-1corresponded to asymmetric and symmetric Si-O stretching vibration,respectively.The sharp absorption peak at 470 cm-1was assigned to the bending vibration of Si-O-Si.

    Fig.9 FTIR spectrum of the ASM

    In the XRD pattern of the ASM(Fig.10),a wide shape and low intensity peak at 2θ=20°~25°[32-33]indicated that the ASM was amorphous.

    FE-SEM was utilized to study the morphology and size distribution of the amorphous silica.Aggregations consisting of small particles were shown in Fig. 11.From Fig.11(a),ASM were mostly in the form of aggregates.After amplification for further observation (Fig.11(b)),it could be found that the aggregates were form by small spherical particles.And the average size of these spherical particles was 51 nm.

    Fig.10 XRD pattern of the ASM

    Fig.11 FE-SEM images of the ASM

    As shown in Fig.12,the adsorption-desorption curve showed that ASM was a typical mesoporous materials.When the relatively pressure was low,the single molecular layer adsorption occurred.And capillary condensation had occurred when the pressure was high,this led to a jump in the adsorption isotherms.Additionally,the BET surface area of ASM was 127 m2·g-1and the average pore diameter of ASM was 3.968 nm.

    Fig.12 Nitrogen adsorption-desorption isotherm of the ASM

    2.5Removal of Ca2+and Mg2+

    The effect of adsorbent dose(2,4 and 6 g·L-1) on the removal of Ca2+(200 mg·L-1)was presented in Fig.13(a).From Fig.13(a),a rapid decline of Ca2+concentration was observed from 0 to 10 min and the adsorption equilibrium was obtained from 10 to 60 min.With the increasing adsorbent dosage,Ca2+concentration in the solution decreased gradually.When the adsorbent dose was 4 g·L-1,Ca2+concentration dropped to 10.02 mg·L-1,adsorption rate reached 95%and adsorption quantity reached 47.50 mg·g-1.

    The effect of adsorbent dose(4 and 8 g·L-1)on the removal of Mg2+(100 mg·L-1)was presented in Fig.13(b).From Fig.13(b),the Mg2+concentration rapidly declined from 0 to 10 min and the adsorption equilibrium reached after 6 h,demonstrating that the capability of the ASM on adsorbing Mg2+was weakerthan Ca2+.When the adsorbent dose was 8 g·L-1,Mg2+concentration dropped to 37.68 mg·L-1,adsorption rate reached 62.32%and adsorption quantity reached 7.80 mg·g-1.

    Effect of contact time and initial concentrations of metal ions on the adsorption capability of the ASM are shown in Fig.14.As could be seen in Fig.14,the concentration of metal ions declined with the prolonging contact time.The adsorbent dose on adsorbed Ca2+and Mg2+were 4 and 8 g·L-1,respectively.The experimental results in Fig.14(a)showed that the adsorption mainly took place within 10 min.Fig.14(b)showed that just half of Mg2+were adsorbed within 10 min, and then the concentration of Mg2+gradually declined from 10 to 360 min until the adsorption reached equilibrium after 6 h.The adsorption was due to the porous structure and surface hydroxyl of the ASM.An increase of the initial Ca2+and Mg2+concentrations lead to an increase in the adsorption capacity.When the initial Ca2+concentration increased from 50 to 300 mg·L-1in Fig.14(a),the adsorption capacity of Ca2+on adsorbent changed from 11.2 to 64.0 mg·g-1.When the initial Mg2+concentration increased from 50 to 200 mg·L-1in Fig.14(b),the adsorption capacity of Mg2+on adsorbent changed from 4.75 to 9.50 mg·g-1. Maximum sorption capacities for Ca2+and Mg2+adsorption using various natural adsorbents were listed in Table1to compare with the results from the present work.Maximum sorption capacities by ASM was 64.0 mg·g-1for Ca2+and 9.50 mg·g-1for Mg2+respectively, namely higher than those reported in Table 1.The results also showed that the ASM owned a higher removal capacity for Ca2+than Mg2+.

    Fig.13 Effect of contact time and adsorbent dose on the adsorption capability

    Fig.14 Effect of contact time and initial concentration of metal ion on the adsorption capability

    The increasing in initial solution concentration results in an increase in removal capacity,which could be attributed to the increase of driving forcethat caused by the increase of concentration gradient. Surface adsorption and chemical deposition could be considered as two important driving forces for the removal of Ca2+and Mg2+[44-45].On the one hand,ASM contained a large number of surface silicon hydroxyl silanol,and hydrogen of surface silicon hydroxyl could be free since ionization[46].This made the surface of ASM present negative charge in aqueous solution,and further promoted the ASM adsorbing Ca2+and Mg2+ions by electrostatic interaction[44].On the other hand, a large number of hydroxyl groups at the ASM surface could complex with Ca2+and Mg2+ions on the ASM surface[45].It was this way that the ASM have a higher adsorption capacity to Ca2+and Mg2+ions.

    Table1 Maximum sorption capacity of some adsorbents for Ca2+and Mg2+

    3 Conclusions

    In summary,the optimum synthetic condition of as-prepared SiO32-leachate was confirmed as follows: calcination temperature of 960℃,alkali concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under the optimum condition,the SiO32-leaching rate could arrive at 60.50%.The main factors influencing the SiO32-leaching rate is the calcination temperature.The ASM was prepared from the SiO32-leachate with 100 mL·min-1CO2,and 12 g·L-1silica at 90℃for 60 min,and aged for 2 h.The ASM showed strong adsorption capability to Ca2+and Mg2+,and the removal rate of Ca2+(200 mg·L-1)and Mg2+(100 mg· L-1)on the ASM(4 g·L-1and 8 g·L-1,respectively) arrived at 94.99%and 62.32%,respectively.

    References:

    [1]Okada K,Shimai A,Takei T.Microporous Mesoporous Mater., 1998,21:289-296

    [2]Awaji N,Ohkubo S,Nakanishi T,et al.Appl.Phys.Lett., 1997,71:1954-1956

    [3]Music S,Filipovic-Vincekovic N,Sekovanic L.Braz.J.Chem. Eng.,2011,28:89-94

    [4]Sarawade P B,Kim J K,Hilonga A.Microporous Mesoporous Mater.,2011,139:138-147

    [5]Adeogun M J,Hay J N.Chem.Mater.,2000,12:767-775

    [6]Martinez J R,Palomares-Sánchez S,Ortega-Zarzosa G.Mater. Lett.,2006,60:3526-3529

    [7]Okada K,Arimitsu N,Kameshima Y.Appl.Clay Sci.,2005, 30:116-124

    [8]Temuujin J,Okada K,MacKenzie K J D.Appl.Clay Sci., 2003,22:187-195

    [9]Liu K,Feng Q,Yang Y.J.Non-Cryst.Solids,2007,353:1534 -1539

    [10]Conceicao S I,Velho J L,Ferreira J M F.Appl.Clay Sci., 2003,23:257-264

    [11]Gendy A E,Khiari R,Bettaieb F,et al.Appl.Clay Sci., 2014,101:626-631

    [12]Tang A,Su L,Li C C.Powder Technol.,2012,218:86-89

    [13]Temuujin J,Burmaa G,Amgalan J,et al.J.Porous Mater., 2001,8:233-238

    [14]Cai X,Hong R Y,Wang L S,et al.Chem.Eng.J.,2009,151: 380-386

    [15]Zhang J L,Liu Z M,Han B X.Microporous Mesoporous Mater.,2005,87:10-14

    [16]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [17]Chiang Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [18]Rida K,Bouraoui S,Hadnine S.Appl.Clay Sci.,2013,83: 99-105

    [19]Sepehr M N,Zarrabi M,Kazemian H,et al.Appl.Surf.Sci., 2013,274:295-305

    [20]Fabbri B,Gualtieri S,Leonardi C.Appl.Clay Sci.,2013,73: 2-10

    [21]Diffo B B K,Elimbi A,Cyr M,et al.J.Asian Ceram.Soc., 2015,42:130-138

    [22]Wang M R,Jia D C,He P G,et al.Mater.Lett.,2010,64: 2551-2554

    [23]Badogiannis E,Kakali G,Tsivilis S.J.Therm.Anal.Calorim., 2005,81:457-462

    [24]Fernandez R,Marrena F,Scrivener K L.Cem.Concr.Res., 2011,41:113-122

    [25]Kakali G,Perraki T,Tsivilis S,et al.Appl.Clay Sci.,2001, 20:73-80

    [26]San Cristóbal A G,Castelló R,Martín Luengo M A,et al. Appl.Clay Sci.,2010,49:239-246

    [27]Shu Z,Li T,Zhou J,et al.Appl.Clay Sci.,2014,102:33-40

    [28]Gasparini E,Tarantino S C,Ghigna P,et al.Appl.Clay Sci.,2013,80:417-425

    [29]Kahraman S,?nal M,Sarkaya Y,et al.Anal.Chim.Acta, 2005,552:201-206

    [30]Zhao Q J,Yang Q F,Chen Q Y.Trans.Nonferrous Met. Soc.China,2010,20:1-6

    [31]Brahmi D,Merabeta D,Belkacemia H,et al.Ceram.Int., 2014,40:10499-10503

    [32]Okada K,Arimitsu N,Kameshima Y,et al.Appl.Clay Sci., 2005,30:116-124

    [33]Jesionowski T.Powder Technol.,2002,127:56-65

    [34]Witoon T,Tepsarn S,Kittipokin P,et al.J.Non-Cryst.Solids, 2011,357:3513-3519

    [35]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [36]Guzel F,Yakut H,Topal G.J.Hazard.Mater.,2008,153: 1275-1287

    [37]Taffarel S R,Rubio J.Miner.Eng.,2010,23:1131-1138

    [38]Soliman E M,Ahmed S A,Fadl A A.Desalination,2011, 278:18-25

    [39]Garcia-Mendieta A,Olguin M T,Solache-Rios M.Desalination,2012,284:167-174

    [40]Jinior O K,Gurgel L V A,Gil L F.Carbohyd.Polym.,2010, 79:184-191

    [41]Krishnani K K,Meng X,Christodoulatos C,et al.J.Hazard. Mater.,2008,153:1222-1234

    [42]Vaghetti J C P,Lima E C,Royer B,et al.J.Hazard.Mater., 2009,162:270-280

    [43]Yavuz O,Altunkaynak Y,Guzel F.Water Res.,2003,37: 948-952

    [44]Chiang C Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [45]Auta M,Hameed B H.Chem.Eng.J.,2012,198:219-227

    [46]Wang Y F,Li L,Liu Y,et al.Mater.Sci.Eng.C,2016,69: 1075-1080

    Amorphous Silica Material Prepared from Kaolin and Its Adsorption Properties to Ca2+and Mg2+

    LI Jian1LI Yan2MOU Zhan-Jun1ZHANG Xin-Ying1HAO Yun-Hong2WU Zhao-Jun*,1
    (1College of Chemical Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)
    (2College of Civil Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)

    A novel amorphous silica material(ASM)was successfully prepared from kaolin and characterized by several techniques,including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),and N2adsorption-desorption.The preparation procedure of ASM involved two aspects:SiO32-leaching from kaolin and preparation of ASM.The optimum SiO32-leaching condition was confirmed at calcination temperature of 960℃,NaOH concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under this condition,SiO32-leaching yield arrived at 60.45%(w/w).The ASM was then easily prepared from SiO32-leaching at the silica concentration of 12 g·L-1,reaction temperature of 90℃,reaction time of 60 min and aging time of 2 h.The removal behavior of Ca2+and Mg2+revealed that the removal rate of Ca2+and Mg2+on the ASM could arrived at 94.99%and 62.32%,respectively.

    amorphous silica material;preparation;kaolin;adsorption

    O611.4

    A

    1001-4861(2016)11-2049-09

    10.11862/CJIC.2016.254

    2016-06-05。收修改稿日期:2016-09-20。*通信聯(lián)系人。E-mail:nmzhjwu@163.com

    猜你喜歡
    化工學(xué)院呼和浩特高嶺土
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    呼和浩特之旅
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    工商企業(yè)管理的知識與操作實例
    高嶺土加入量對Al2O3-SiC質(zhì)修補料熱震性能的影響
    山東冶金(2019年1期)2019-03-30 01:35:02
    呼和浩特
    草原歌聲(2017年4期)2017-04-28 08:20:43
    美麗的呼和浩特
    小主人報(2016年1期)2016-12-01 06:22:57
    《化工學(xué)報》贊助單位
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    国产淫语在线视频| 1024香蕉在线观看| 一级片免费观看大全| 99热网站在线观看| av国产精品久久久久影院| 一级a爱视频在线免费观看| 国产一级毛片在线| 热99久久久久精品小说推荐| 一级,二级,三级黄色视频| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 麻豆精品久久久久久蜜桃| 欧美黑人精品巨大| 亚洲一码二码三码区别大吗| 国产一区亚洲一区在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲专区中文字幕在线 | 99香蕉大伊视频| 在线观看免费午夜福利视频| 大香蕉久久网| 女人被躁到高潮嗷嗷叫费观| 丝袜在线中文字幕| 伊人久久国产一区二区| 悠悠久久av| 亚洲成人一二三区av| 纯流量卡能插随身wifi吗| 亚洲av电影在线观看一区二区三区| 99久久99久久久精品蜜桃| 下体分泌物呈黄色| 乱人伦中国视频| 亚洲在久久综合| 久久免费观看电影| 亚洲av男天堂| 色视频在线一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久精品久久久久久久性| 精品一品国产午夜福利视频| 国产av精品麻豆| 日韩有码中文字幕| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 亚洲全国av大片| 久久精品aⅴ一区二区三区四区| 久久中文看片网| 久久久国产精品麻豆| 91国产中文字幕| www.精华液| 国产免费男女视频| 国产精品久久久久久亚洲av鲁大| 天堂动漫精品| 99riav亚洲国产免费| 亚洲一区高清亚洲精品| 国产成人欧美在线观看| 日日干狠狠操夜夜爽| 国产亚洲欧美在线一区二区| 成人手机av| 成人18禁在线播放| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 国产一区二区三区在线臀色熟女| 一区二区三区精品91| 精品熟女少妇八av免费久了| 亚洲男人的天堂狠狠| 欧美久久黑人一区二区| 香蕉久久夜色| 午夜福利高清视频| 免费高清视频大片| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 岛国在线观看网站| 波多野结衣av一区二区av| 淫秽高清视频在线观看| 一区二区三区精品91| 制服诱惑二区| 一进一出抽搐动态| 亚洲第一欧美日韩一区二区三区| 欧美另类亚洲清纯唯美| 99精品在免费线老司机午夜| 日韩国内少妇激情av| 亚洲熟女毛片儿| 国产欧美日韩一区二区三区在线| 最好的美女福利视频网| 日本欧美视频一区| 人人妻人人爽人人添夜夜欢视频| 丝袜美腿诱惑在线| 午夜精品在线福利| 亚洲成国产人片在线观看| 亚洲在线自拍视频| 手机成人av网站| 久久婷婷人人爽人人干人人爱 | 男男h啪啪无遮挡| 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 99riav亚洲国产免费| 亚洲在线自拍视频| 久久人人精品亚洲av| 黄频高清免费视频| av天堂久久9| 亚洲 欧美 日韩 在线 免费| 国产成人精品在线电影| av片东京热男人的天堂| 国产伦一二天堂av在线观看| 国产一卡二卡三卡精品| 青草久久国产| 丝袜美足系列| 午夜福利一区二区在线看| 18美女黄网站色大片免费观看| 欧美大码av| 国产一级毛片七仙女欲春2 | 女人精品久久久久毛片| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 男人操女人黄网站| 国产成人精品久久二区二区免费| 男人舔女人下体高潮全视频| 午夜免费激情av| 夜夜躁狠狠躁天天躁| 女人被躁到高潮嗷嗷叫费观| 淫秽高清视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美亚洲日本最大视频资源| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| av天堂久久9| 12—13女人毛片做爰片一| av有码第一页| 国产亚洲欧美精品永久| 久久婷婷成人综合色麻豆| 一个人免费在线观看的高清视频| 亚洲成国产人片在线观看| 国产乱人伦免费视频| 宅男免费午夜| 女人精品久久久久毛片| 精品国产亚洲在线| 国产精品av久久久久免费| 午夜福利成人在线免费观看| 悠悠久久av| 国产精品av久久久久免费| 国产激情久久老熟女| 午夜两性在线视频| 免费看美女性在线毛片视频| 久久人人爽av亚洲精品天堂| 免费少妇av软件| 最近最新免费中文字幕在线| 成人精品一区二区免费| 国产精品久久久av美女十八| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 99精品久久久久人妻精品| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久人妻精品电影| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 搡老妇女老女人老熟妇| 黄色丝袜av网址大全| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 亚洲伊人色综图| 高清黄色对白视频在线免费看| 高清在线国产一区| 日本五十路高清| 69av精品久久久久久| 九色国产91popny在线| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 99精品在免费线老司机午夜| avwww免费| 久久久国产成人免费| 国产免费男女视频| 亚洲精品粉嫩美女一区| 国产精品 欧美亚洲| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 久久人人爽av亚洲精品天堂| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲成国产人片在线观看| av欧美777| 视频区欧美日本亚洲| 中出人妻视频一区二区| 成人av一区二区三区在线看| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91| 两个人看的免费小视频| 色在线成人网| 欧美人与性动交α欧美精品济南到| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 美女大奶头视频| 禁无遮挡网站| 亚洲色图av天堂| 变态另类丝袜制服| 高清在线国产一区| 亚洲欧美日韩无卡精品| 女警被强在线播放| 亚洲电影在线观看av| 大陆偷拍与自拍| 伦理电影免费视频| 亚洲国产精品sss在线观看| 在线观看免费日韩欧美大片| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 91大片在线观看| 男女午夜视频在线观看| 一区在线观看完整版| 老司机深夜福利视频在线观看| 国产成年人精品一区二区| 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费| 国产精品免费一区二区三区在线| 精品日产1卡2卡| 亚洲中文字幕一区二区三区有码在线看 | 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 久久久久久久久久久久大奶| 最新美女视频免费是黄的| 999精品在线视频| 亚洲欧美激情综合另类| 窝窝影院91人妻| 国产男靠女视频免费网站| 国产一区二区三区在线臀色熟女| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区| 1024视频免费在线观看| 淫妇啪啪啪对白视频| 身体一侧抽搐| 国产一区二区三区综合在线观看| 久久久久国内视频| 亚洲精品国产色婷婷电影| 国产精品99久久99久久久不卡| 亚洲自拍偷在线| 精品乱码久久久久久99久播| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 欧美乱色亚洲激情| 日韩精品青青久久久久久| 亚洲熟妇熟女久久| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| 岛国在线观看网站| 色在线成人网| 制服丝袜大香蕉在线| 亚洲成a人片在线一区二区| 色播在线永久视频| 日本欧美视频一区| 满18在线观看网站| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女 | 精品无人区乱码1区二区| 国产aⅴ精品一区二区三区波| 国产精品乱码一区二三区的特点 | 久久国产精品影院| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 校园春色视频在线观看| 757午夜福利合集在线观看| 国产又爽黄色视频| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 女性被躁到高潮视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本免费a在线| 国产精品永久免费网站| www日本在线高清视频| 久久人人精品亚洲av| 亚洲欧美一区二区三区黑人| 欧美另类亚洲清纯唯美| 在线十欧美十亚洲十日本专区| 国产又爽黄色视频| 亚洲精品久久国产高清桃花| 热re99久久国产66热| 亚洲男人天堂网一区| 亚洲av电影不卡..在线观看| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 嫩草影视91久久| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 久久久久久免费高清国产稀缺| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 性色av乱码一区二区三区2| 看黄色毛片网站| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 国产在线观看jvid| 精品久久蜜臀av无| 亚洲自拍偷在线| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 大香蕉久久成人网| 欧美成人午夜精品| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 黄片大片在线免费观看| 老司机在亚洲福利影院| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 色播在线永久视频| 琪琪午夜伦伦电影理论片6080| 精品国产乱子伦一区二区三区| 宅男免费午夜| 国产精品一区二区免费欧美| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 黄片小视频在线播放| 亚洲欧美精品综合久久99| 老司机在亚洲福利影院| 亚洲自拍偷在线| av视频在线观看入口| 欧美中文综合在线视频| 在线观看66精品国产| 婷婷六月久久综合丁香| av网站免费在线观看视频| www国产在线视频色| 黄色成人免费大全| 国产亚洲欧美在线一区二区| 一级毛片精品| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| av片东京热男人的天堂| 午夜福利18| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 欧美色视频一区免费| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 一区二区三区精品91| 亚洲成人免费电影在线观看| 一本久久中文字幕| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 搡老妇女老女人老熟妇| 色尼玛亚洲综合影院| ponron亚洲| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 午夜免费成人在线视频| 黑丝袜美女国产一区| 校园春色视频在线观看| 国产精品亚洲一级av第二区| 黄色视频不卡| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 男人舔女人的私密视频| 两人在一起打扑克的视频| 自线自在国产av| 精品国产一区二区久久| 91成人精品电影| 亚洲成a人片在线一区二区| 女人高潮潮喷娇喘18禁视频| www国产在线视频色| 日本欧美视频一区| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影 | 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 国产精品久久视频播放| 精品国产亚洲在线| 久99久视频精品免费| 国产欧美日韩一区二区三区在线| 性少妇av在线| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 18禁国产床啪视频网站| 精品国内亚洲2022精品成人| 久久久久久久午夜电影| 国产亚洲精品av在线| 黑丝袜美女国产一区| 国产伦一二天堂av在线观看| 高清黄色对白视频在线免费看| 手机成人av网站| 久久精品91无色码中文字幕| 欧美日韩黄片免| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 亚洲一区中文字幕在线| 天堂√8在线中文| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 日韩视频一区二区在线观看| 亚洲第一电影网av| 欧美av亚洲av综合av国产av| 久久久久国内视频| 亚洲国产日韩欧美精品在线观看 | 成人永久免费在线观看视频| 国产不卡一卡二| 好男人在线观看高清免费视频 | 国产免费男女视频| 国产成年人精品一区二区| 性少妇av在线| 欧美日韩黄片免| 欧美日韩乱码在线| 成人18禁在线播放| 午夜视频精品福利| 满18在线观看网站| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 久久久久久久久久久久大奶| 在线国产一区二区在线| 99热只有精品国产| 国产成人啪精品午夜网站| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费 | 久久精品国产亚洲av高清一级| 高清在线国产一区| 男女下面进入的视频免费午夜 | 国产精品二区激情视频| 在线观看免费午夜福利视频| 欧美不卡视频在线免费观看 | 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| av在线天堂中文字幕| 免费一级毛片在线播放高清视频 | 啦啦啦韩国在线观看视频| 国产亚洲欧美在线一区二区| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 亚洲熟女毛片儿| 免费人成视频x8x8入口观看| 他把我摸到了高潮在线观看| 亚洲av日韩精品久久久久久密| 9色porny在线观看| videosex国产| 又黄又爽又免费观看的视频| 久久性视频一级片| 亚洲专区中文字幕在线| 国产成人欧美在线观看| 午夜福利一区二区在线看| 亚洲欧美日韩高清在线视频| 精品久久久久久久毛片微露脸| www日本在线高清视频| 又大又爽又粗| 一进一出抽搐gif免费好疼| 亚洲av熟女| 国产精品99久久99久久久不卡| 久久性视频一级片| 午夜免费成人在线视频| svipshipincom国产片| 88av欧美| 真人做人爱边吃奶动态| 日韩欧美免费精品| 国产亚洲av高清不卡| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 99在线人妻在线中文字幕| 真人做人爱边吃奶动态| 男女下面插进去视频免费观看| 精品少妇一区二区三区视频日本电影| 99精品久久久久人妻精品| 91成人精品电影| 国内久久婷婷六月综合欲色啪| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 国产日韩一区二区三区精品不卡| 美女午夜性视频免费| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 久9热在线精品视频| 又黄又爽又免费观看的视频| 叶爱在线成人免费视频播放| 成人18禁高潮啪啪吃奶动态图| 97人妻精品一区二区三区麻豆 | 免费高清视频大片| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆 | 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 亚洲 欧美 日韩 在线 免费| 一本久久中文字幕| 韩国精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 岛国视频午夜一区免费看| 欧美日本视频| 午夜福利在线观看吧| 天天躁夜夜躁狠狠躁躁| 国产激情久久老熟女| 久久久水蜜桃国产精品网| 搞女人的毛片| tocl精华| 久久国产精品男人的天堂亚洲| 久久影院123| 欧美日韩中文字幕国产精品一区二区三区 | 日本免费一区二区三区高清不卡 | www.999成人在线观看| 无限看片的www在线观看| 黄片大片在线免费观看| 色在线成人网| 人人澡人人妻人| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| x7x7x7水蜜桃| 91麻豆精品激情在线观看国产| 亚洲av成人一区二区三| www.www免费av| 日韩精品青青久久久久久| 色尼玛亚洲综合影院| 欧美日韩中文字幕国产精品一区二区三区 | 巨乳人妻的诱惑在线观看| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 在线观看www视频免费| 两人在一起打扑克的视频| 亚洲成人国产一区在线观看| 亚洲国产日韩欧美精品在线观看 | 我的亚洲天堂| 日日干狠狠操夜夜爽| 女人被躁到高潮嗷嗷叫费观| 人妻久久中文字幕网| 十八禁网站免费在线| 757午夜福利合集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av在线播放免费不卡| 欧美最黄视频在线播放免费| 人成视频在线观看免费观看| 嫩草影视91久久| 国产片内射在线| 淫秽高清视频在线观看| 久久香蕉精品热| 成人国语在线视频| 亚洲熟妇中文字幕五十中出| 成人国产综合亚洲| 无人区码免费观看不卡| 久久婷婷人人爽人人干人人爱 | 中亚洲国语对白在线视频| 18禁观看日本| 成人18禁在线播放| 久久中文字幕人妻熟女| 日韩中文字幕欧美一区二区| 欧美丝袜亚洲另类 | 国产熟女xx| 一本久久中文字幕| 搡老岳熟女国产| 怎么达到女性高潮| 夜夜爽天天搞| 韩国精品一区二区三区| 亚洲天堂国产精品一区在线| 黄色视频,在线免费观看| 在线观看www视频免费| 色综合欧美亚洲国产小说| 国产三级黄色录像| 黄色成人免费大全| 欧美丝袜亚洲另类 | 99久久99久久久精品蜜桃| а√天堂www在线а√下载| 久久久久国产精品人妻aⅴ院| 亚洲av熟女| 99国产精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕| 精品久久久精品久久久| 51午夜福利影视在线观看| 欧美绝顶高潮抽搐喷水| 黄频高清免费视频| 亚洲一区二区三区不卡视频| 免费高清视频大片| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清 | 成人三级黄色视频| 女人被狂操c到高潮| 巨乳人妻的诱惑在线观看| 欧美国产日韩亚洲一区| 国产精品一区二区三区四区久久 | 国产欧美日韩综合在线一区二区| 18禁观看日本| 国产精品美女特级片免费视频播放器 | 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 久久久国产精品麻豆| 丝袜美足系列| 大陆偷拍与自拍| 少妇 在线观看| 69精品国产乱码久久久| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色片欧美黄色片| 精品卡一卡二卡四卡免费| 欧美日韩乱码在线| 色老头精品视频在线观看|