• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    2016-11-28 08:06:56牟占軍張馨穎郝贠洪武朝軍
    無機化學(xué)學(xué)報 2016年11期
    關(guān)鍵詞:化工學(xué)院呼和浩特高嶺土

    李 健 李 巖 牟占軍 張馨穎 郝贠洪 武朝軍*,

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    一種高嶺土基多孔硅材料的制備及其對Ca2+和Mg2+的吸附

    李健1李巖2牟占軍1張馨穎1郝贠洪2武朝軍*,1

    (1內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,呼和浩特010051)

    (2內(nèi)蒙古工業(yè)大學(xué)土木學(xué)院,呼和浩特010051)

    成功合成了一種高嶺土基新型多孔硅材料(ASM)并以FTIR,XRD,F(xiàn)E-SEM和N2吸附-脫附進行了系統(tǒng)的表征。ASM的制備過程涉及兩步:SiO32-提取和ASM的制備。SiO32-提取的最優(yōu)條件為煅燒溫度為960℃,NaOH濃度為20%,反應(yīng)溫度為90℃,反應(yīng)時間為90 min,在此條件下SiO32-提取率為60.45%(w/w)。以此提取液為原材料,調(diào)整提取液中SiO32-的濃度為12 g·L-1,反應(yīng)溫度為90℃,反應(yīng)時間為60 min,然后再攪拌2 h可制得ASM。以此ASM對Ca2+和Mg2+進行吸附研究,脫除率分別可達94.99%和62.32%。

    多孔硅材料;制備;高嶺土;吸附

    0 Introduction

    Silica material,a kind of white appearance, qualitative light,and fluffy amorphous porous material[1], can be expressed as SiO2·n H2O,wherein n H2O exists in the form of surface hydroxyl groups.The silica material was widely used in industry as reinforcing agent,white pigment and stabilizer[2].Currently,severalmethods were reported to prepare silica material, including chemical vapor deposition,precipitation process,sol-gel process,hydrothermal technique and dissociation of silicate minerals[3-4].Specially,Martinez et al.[5-6]had prepared amorphous SiO2by the sol-gel procedure,which presented high specific surface area, but the process parameters were difficultly controlled and only stayed at research stage.Therefore,silicate chemicals was paid more attention to reducing the cost of production by using inexpensive non-metallic minerals as silicon source.Recently,the silica material was produced from kaolin,chlorite,vermiculite,and chrysotile[7-9].Although the reserves of kaolin were largely and widely distributed,the further processing products from kaolin were less reported[10].As one of important fillers,kaolin was often used in many industries,including paper,rubber,cement,adhesives, ceramic industries,molecular sieves,and polyaluminum chloride production[11-12].Kaolin was rich in silica(Al2O3·2SiO2·2H2O,about 46.51%(w/w)in theory) and was an economically variable raw material for amorphous silica production[13].

    In this work,kaolin was used as the raw material,which was calcined at high temperature and treated with sodium hydroxide solution.The optimum condition of the choosing alkaline fusion process was systematically investigated.Then the as-prepared SiO32-leachate was used as silica source,reacting with acid to produce the amorphous silica material (ASM).In the process,CO2gas was used as acid to synthesize high quality silica material.

    The silica material with porosity and surface hydroxyl groups showed the possibility for adsorption of metal ions[14-17].Therefore,the performance of ASM for removal of Ca2+and Mg2+from aqueous solution were systemically studied.

    1 Experimental

    1.1Materials

    Kaolin from Inner Mongolia autonomous region (China)was used as the initial raw material. Commercially produced CO2(purity>99.9%),sodium hydroxide(purity>97%),dibutyl phthalate(purity>97.0%),calcium chloride anhydrous(purity>96%), magnesium chloride(purity>98%),and ethylenediaminetetra-acetic acid disodium salt dehydrate(purity>99%)were used in this work.All the other reagents used were analytic grade.

    1.2Extraction of SiO32-leachate from kaolin

    Firstly,the raw kaolin was crushed,milled,and sieved,and then heated in a muffle furnace up to 400~1 000℃with a rate of 20℃·min-1for 2 h. Secondly,the calcined kaolin powder was mixed with NaOH solution(10%~25%)in a thermostat water bath at 90℃for 1~2 h.Thirdly,the suspension liquid was filtered and washed to obtain SiO32-leachate.To evaluate the SiO32-leaching rate,the concentration of SiO32-in the filtrate was determined with silico-fluoride natrium volumetric method.The principle was shown as follows:

    The concentration of SiO2(g·mL-1)in the filtrate was calculated as the following formula:

    c1:Concentration of HCl standard solution,mol·L-1;

    c2:Concentration of NaOH standard solution,mol·L-1;

    V1:Consumption of HCl standard solution,mL;

    V2:Consumption of NaOH standard solution,mL;

    V3:Consumption of HCl standard solution in blank test,mL;

    V4:Consumption of NaOH standard solution in blank test,mL;

    M:Molar mass of SiO2,g·mol-1.

    1.3Synthesis of the ASM

    The ASM was prepared by precipitation method using the as-prepared SiO32-leachate reacting with CO2with flow rate of 100 mL·min-1at 90℃for 60 min under stirring at 200 r·min-1.Finally,the silica products formed after carbonation processes were thoroughlywashed with absolute alcohol and dried at 105℃for 10 h to attain the ultimate ASM.

    1.4Characterization

    Mineral composition of kaolin and calcined kaolin was analyzed using XRD analyses(Rigaku Ultima IV,Japan),which were collected on a powder X-ray diffractometer(Siemens D/max-RB)with Cu Kα (λ=0.154 06 nm)radiation and scanning rate of 0.05° ·s-1operated at working voltage of 40 kV and working current of 40 mA.Differential scanning calorimetry (DSC)measurements were conducted at a heating rate of 10℃·min-1from room temperature to 1200℃in N2atmosphere.The presence of kaolin and calcined kaolin special bands in the samples were confirmed through FTIR technology,using KBr as back ground (Nicolet,Nexus 670),in the region of 4 000~400 cm-1at room temperature.The morphology of ASM was analyzed by the scanning electron microscopy(SEM, Quanta FEG 650,China)with an accelerating voltage of 20 kV.The specific surface area of ASM was characterized by nitrogen gas adsorption-desorption at 77 K by using 3H-2000PS1/2 Specific surface and pore size analysis instrument.

    1.5Adsorption of Ca2+and Mg2+

    Different solutions of Ca2+and Mg2+were prepared by dissolving their chloride salts in deionized water. Mixing a certain amount of silica in 50 mL of prepared solution at 25℃and stirring at 250 r·min-1in shaking table[18].Then,the mixed solution was separated by filter.The Ca2+and Mg2+concentration in the filtrate were measured using EDTA titration method[19].The effect of response times,initial solution concentration, and adsorbent mass were systemically investigated.

    2 Results and discussion

    2.1Characterization of kaolin

    The thermal analysis result of kaolin was shown in Fig.1.As illustrated in Fig.1,the sharp endothermic peak at 533℃represented the dehydroxylation process, in which the crystalline kaolin was turned into amorphous metakaolin[20].The sharp exothermic peak at 994℃indicated that the mullite(γ-Al2O3)was appeared in the calcination temperature range of 900 to 1 000℃.

    Fig.1 DSC curve of kaolin

    XRD patterns of kaolin and calcined kaolin were shown in Fig.2.From Fig.2,the crystal structure of kaolin was intact and orderly,narrow sharp,and good symmetry(PDF No.14-0164)[22].When calcination temperature was controlled at 400℃,the characteristic diffraction peaks of kaolin were still evident,although the strength of peak slightly decreased.However, when calcination temperature was controlled at 600~900℃,the kaolin diffraction peaks disappeared[23], indicating that the kaolin completely lost its original crystal structure and converted into amorphous metakaolin.At 1 000℃,the new peaks of mullite were obviously observed[24].

    Fig.2 XRD patterns of raw kaolin and kaolin calcined at different temperatures

    FTIR spectra of kaolin before and after calcination were presented in Fig.3and 4.As shown in Fig.3,the bands at 3 692 cm-1and 3 614 cm-1(Si-OH),3 431 cm-1and 1 629 cm-1(H-OH),1 030 cm-1, 1 100 cm-1,1 008 cm-1and 473 cm-1(Si-O),and 913 cm-1(Al-OH)and 540 cm-1(Si-O-AlⅥ)were typicalabsorption peaks of kaolin[25-26].From Fig.4,the peaks at 3 692 cm-1,3 614 cm-1,913 cm-1and 540 cm-1completely disappeared after calcined at 600℃, confirming that the dehydration reaction of kaolin was completed and the kaolin was converted into metakaolin[27].The bands at 1 030 cm-1,1 100 cm-1and 1 008 cm-1(Si-O)still existed after calcined at 400℃,but the bands changed into one broad peak at 1 068~1 196 cm-1when the calcination temperature changed from 500 to 900℃,which was due to the collapse of kaolin structure.As temperature increased to 930℃,the two new peaks at 565 cm-1(AlⅣ)and 739 cm-1(AlⅣ) appeared,indicating that the new γ-Al2O3phase was generated[26].

    Fig.3 FTIR spectrum of kaolin

    Fig.4 FTIR spectra of kaolin calcined at different temperatures

    2.2Choice ofappropriate calcination temperature of kaolin

    15 g kaolin at different calcination temperature reacted with 15%NaOH solution at 90℃for 90 min, then the influence of calcination temperature on leaching rate ofin kaolin was studied.leaching rate under different calcination temperature was shown in Fig.5.

    Kaolin was converted into metakaolin dehydrated after 600℃.The transformation process was shown as follows: When the calcination temperature was higher than 930℃,the amorphous SiO2and inert γ-Al2O3increased significantly resulting in the evident increasing ofleaching rate(Fig.5):

    Fig.5 Silica leaching quantity under different activation temperature of kaolin

    At 1 100℃,a small amount of mullite was generated making theleaching rate decrease gradually:

    Comprehensive the above,the suitable calcination temperature was confirmed at 930~960℃.

    2.3Effect of reaction conditions on leaching rate

    The effect of NaOH concentration onleaching rate was shown in Fig.6.From Fig.6,the SiO32-leaching rate increased with the increasing NaOH concentration from 10%to 25%.When the NaOH concentration was less than 20%,chemical balance was in favor of generating the sodium metasilicate with the increasing chemical reaction rate and the diffusion velocity increasing[28-29].When the NaOH concentration continued to increase by 25%,the SiO32-leaching rate sharply decreased due to a side reaction intensifies.So the optimum NaOH concentration of 20%was chosen.

    Fig.6 Effect of alkalinity on leaching rate

    Temperature was an important factor,which might affect the chemical reaction process[30].When alkali concentration was 20%,the effect of reaction temperature and time onleaching rate was shown in Fig.7and 8.As shown in Fig.7,theleaching rate was gradually increased when temperature increased from 80 to 90℃and reached the maximum of 60.45%at 90℃.Theleaching rate would not significantly increase even if the reaction temperature was extended,so the optimum reaction temperature was set at 90℃.As shown in Fig.8,the optimum reaction time was 90 min.

    Fig.7 Effect of reaction temperature on leaching rate

    Fig.8 Effect of reaction time on leaching rate

    2.4Characterization of the ASM

    FTIR spectra of the ASM were shown in Fig.9. The bands at 3 427 and 1 637 cm-1were separately assigned to the stretching vibration and bending vibration of adsorbed water[31].The peaks at 1 092 and 800 cm-1corresponded to asymmetric and symmetric Si-O stretching vibration,respectively.The sharp absorption peak at 470 cm-1was assigned to the bending vibration of Si-O-Si.

    Fig.9 FTIR spectrum of the ASM

    In the XRD pattern of the ASM(Fig.10),a wide shape and low intensity peak at 2θ=20°~25°[32-33]indicated that the ASM was amorphous.

    FE-SEM was utilized to study the morphology and size distribution of the amorphous silica.Aggregations consisting of small particles were shown in Fig. 11.From Fig.11(a),ASM were mostly in the form of aggregates.After amplification for further observation (Fig.11(b)),it could be found that the aggregates were form by small spherical particles.And the average size of these spherical particles was 51 nm.

    Fig.10 XRD pattern of the ASM

    Fig.11 FE-SEM images of the ASM

    As shown in Fig.12,the adsorption-desorption curve showed that ASM was a typical mesoporous materials.When the relatively pressure was low,the single molecular layer adsorption occurred.And capillary condensation had occurred when the pressure was high,this led to a jump in the adsorption isotherms.Additionally,the BET surface area of ASM was 127 m2·g-1and the average pore diameter of ASM was 3.968 nm.

    Fig.12 Nitrogen adsorption-desorption isotherm of the ASM

    2.5Removal of Ca2+and Mg2+

    The effect of adsorbent dose(2,4 and 6 g·L-1) on the removal of Ca2+(200 mg·L-1)was presented in Fig.13(a).From Fig.13(a),a rapid decline of Ca2+concentration was observed from 0 to 10 min and the adsorption equilibrium was obtained from 10 to 60 min.With the increasing adsorbent dosage,Ca2+concentration in the solution decreased gradually.When the adsorbent dose was 4 g·L-1,Ca2+concentration dropped to 10.02 mg·L-1,adsorption rate reached 95%and adsorption quantity reached 47.50 mg·g-1.

    The effect of adsorbent dose(4 and 8 g·L-1)on the removal of Mg2+(100 mg·L-1)was presented in Fig.13(b).From Fig.13(b),the Mg2+concentration rapidly declined from 0 to 10 min and the adsorption equilibrium reached after 6 h,demonstrating that the capability of the ASM on adsorbing Mg2+was weakerthan Ca2+.When the adsorbent dose was 8 g·L-1,Mg2+concentration dropped to 37.68 mg·L-1,adsorption rate reached 62.32%and adsorption quantity reached 7.80 mg·g-1.

    Effect of contact time and initial concentrations of metal ions on the adsorption capability of the ASM are shown in Fig.14.As could be seen in Fig.14,the concentration of metal ions declined with the prolonging contact time.The adsorbent dose on adsorbed Ca2+and Mg2+were 4 and 8 g·L-1,respectively.The experimental results in Fig.14(a)showed that the adsorption mainly took place within 10 min.Fig.14(b)showed that just half of Mg2+were adsorbed within 10 min, and then the concentration of Mg2+gradually declined from 10 to 360 min until the adsorption reached equilibrium after 6 h.The adsorption was due to the porous structure and surface hydroxyl of the ASM.An increase of the initial Ca2+and Mg2+concentrations lead to an increase in the adsorption capacity.When the initial Ca2+concentration increased from 50 to 300 mg·L-1in Fig.14(a),the adsorption capacity of Ca2+on adsorbent changed from 11.2 to 64.0 mg·g-1.When the initial Mg2+concentration increased from 50 to 200 mg·L-1in Fig.14(b),the adsorption capacity of Mg2+on adsorbent changed from 4.75 to 9.50 mg·g-1. Maximum sorption capacities for Ca2+and Mg2+adsorption using various natural adsorbents were listed in Table1to compare with the results from the present work.Maximum sorption capacities by ASM was 64.0 mg·g-1for Ca2+and 9.50 mg·g-1for Mg2+respectively, namely higher than those reported in Table 1.The results also showed that the ASM owned a higher removal capacity for Ca2+than Mg2+.

    Fig.13 Effect of contact time and adsorbent dose on the adsorption capability

    Fig.14 Effect of contact time and initial concentration of metal ion on the adsorption capability

    The increasing in initial solution concentration results in an increase in removal capacity,which could be attributed to the increase of driving forcethat caused by the increase of concentration gradient. Surface adsorption and chemical deposition could be considered as two important driving forces for the removal of Ca2+and Mg2+[44-45].On the one hand,ASM contained a large number of surface silicon hydroxyl silanol,and hydrogen of surface silicon hydroxyl could be free since ionization[46].This made the surface of ASM present negative charge in aqueous solution,and further promoted the ASM adsorbing Ca2+and Mg2+ions by electrostatic interaction[44].On the other hand, a large number of hydroxyl groups at the ASM surface could complex with Ca2+and Mg2+ions on the ASM surface[45].It was this way that the ASM have a higher adsorption capacity to Ca2+and Mg2+ions.

    Table1 Maximum sorption capacity of some adsorbents for Ca2+and Mg2+

    3 Conclusions

    In summary,the optimum synthetic condition of as-prepared SiO32-leachate was confirmed as follows: calcination temperature of 960℃,alkali concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under the optimum condition,the SiO32-leaching rate could arrive at 60.50%.The main factors influencing the SiO32-leaching rate is the calcination temperature.The ASM was prepared from the SiO32-leachate with 100 mL·min-1CO2,and 12 g·L-1silica at 90℃for 60 min,and aged for 2 h.The ASM showed strong adsorption capability to Ca2+and Mg2+,and the removal rate of Ca2+(200 mg·L-1)and Mg2+(100 mg· L-1)on the ASM(4 g·L-1and 8 g·L-1,respectively) arrived at 94.99%and 62.32%,respectively.

    References:

    [1]Okada K,Shimai A,Takei T.Microporous Mesoporous Mater., 1998,21:289-296

    [2]Awaji N,Ohkubo S,Nakanishi T,et al.Appl.Phys.Lett., 1997,71:1954-1956

    [3]Music S,Filipovic-Vincekovic N,Sekovanic L.Braz.J.Chem. Eng.,2011,28:89-94

    [4]Sarawade P B,Kim J K,Hilonga A.Microporous Mesoporous Mater.,2011,139:138-147

    [5]Adeogun M J,Hay J N.Chem.Mater.,2000,12:767-775

    [6]Martinez J R,Palomares-Sánchez S,Ortega-Zarzosa G.Mater. Lett.,2006,60:3526-3529

    [7]Okada K,Arimitsu N,Kameshima Y.Appl.Clay Sci.,2005, 30:116-124

    [8]Temuujin J,Okada K,MacKenzie K J D.Appl.Clay Sci., 2003,22:187-195

    [9]Liu K,Feng Q,Yang Y.J.Non-Cryst.Solids,2007,353:1534 -1539

    [10]Conceicao S I,Velho J L,Ferreira J M F.Appl.Clay Sci., 2003,23:257-264

    [11]Gendy A E,Khiari R,Bettaieb F,et al.Appl.Clay Sci., 2014,101:626-631

    [12]Tang A,Su L,Li C C.Powder Technol.,2012,218:86-89

    [13]Temuujin J,Burmaa G,Amgalan J,et al.J.Porous Mater., 2001,8:233-238

    [14]Cai X,Hong R Y,Wang L S,et al.Chem.Eng.J.,2009,151: 380-386

    [15]Zhang J L,Liu Z M,Han B X.Microporous Mesoporous Mater.,2005,87:10-14

    [16]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [17]Chiang Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [18]Rida K,Bouraoui S,Hadnine S.Appl.Clay Sci.,2013,83: 99-105

    [19]Sepehr M N,Zarrabi M,Kazemian H,et al.Appl.Surf.Sci., 2013,274:295-305

    [20]Fabbri B,Gualtieri S,Leonardi C.Appl.Clay Sci.,2013,73: 2-10

    [21]Diffo B B K,Elimbi A,Cyr M,et al.J.Asian Ceram.Soc., 2015,42:130-138

    [22]Wang M R,Jia D C,He P G,et al.Mater.Lett.,2010,64: 2551-2554

    [23]Badogiannis E,Kakali G,Tsivilis S.J.Therm.Anal.Calorim., 2005,81:457-462

    [24]Fernandez R,Marrena F,Scrivener K L.Cem.Concr.Res., 2011,41:113-122

    [25]Kakali G,Perraki T,Tsivilis S,et al.Appl.Clay Sci.,2001, 20:73-80

    [26]San Cristóbal A G,Castelló R,Martín Luengo M A,et al. Appl.Clay Sci.,2010,49:239-246

    [27]Shu Z,Li T,Zhou J,et al.Appl.Clay Sci.,2014,102:33-40

    [28]Gasparini E,Tarantino S C,Ghigna P,et al.Appl.Clay Sci.,2013,80:417-425

    [29]Kahraman S,?nal M,Sarkaya Y,et al.Anal.Chim.Acta, 2005,552:201-206

    [30]Zhao Q J,Yang Q F,Chen Q Y.Trans.Nonferrous Met. Soc.China,2010,20:1-6

    [31]Brahmi D,Merabeta D,Belkacemia H,et al.Ceram.Int., 2014,40:10499-10503

    [32]Okada K,Arimitsu N,Kameshima Y,et al.Appl.Clay Sci., 2005,30:116-124

    [33]Jesionowski T.Powder Technol.,2002,127:56-65

    [34]Witoon T,Tepsarn S,Kittipokin P,et al.J.Non-Cryst.Solids, 2011,357:3513-3519

    [35]Liu Z S,Li W K,Huang C Y.Waste Manage.,2014,34:893-900

    [36]Guzel F,Yakut H,Topal G.J.Hazard.Mater.,2008,153: 1275-1287

    [37]Taffarel S R,Rubio J.Miner.Eng.,2010,23:1131-1138

    [38]Soliman E M,Ahmed S A,Fadl A A.Desalination,2011, 278:18-25

    [39]Garcia-Mendieta A,Olguin M T,Solache-Rios M.Desalination,2012,284:167-174

    [40]Jinior O K,Gurgel L V A,Gil L F.Carbohyd.Polym.,2010, 79:184-191

    [41]Krishnani K K,Meng X,Christodoulatos C,et al.J.Hazard. Mater.,2008,153:1222-1234

    [42]Vaghetti J C P,Lima E C,Royer B,et al.J.Hazard.Mater., 2009,162:270-280

    [43]Yavuz O,Altunkaynak Y,Guzel F.Water Res.,2003,37: 948-952

    [44]Chiang C Y W,Ghyselbrecht K,Santos R M,et al.Catal. Today,2012,190:23-30

    [45]Auta M,Hameed B H.Chem.Eng.J.,2012,198:219-227

    [46]Wang Y F,Li L,Liu Y,et al.Mater.Sci.Eng.C,2016,69: 1075-1080

    Amorphous Silica Material Prepared from Kaolin and Its Adsorption Properties to Ca2+and Mg2+

    LI Jian1LI Yan2MOU Zhan-Jun1ZHANG Xin-Ying1HAO Yun-Hong2WU Zhao-Jun*,1
    (1College of Chemical Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)
    (2College of Civil Engineering,Inner Mongolia University of Technology,Huhhot 010051,China)

    A novel amorphous silica material(ASM)was successfully prepared from kaolin and characterized by several techniques,including Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),and N2adsorption-desorption.The preparation procedure of ASM involved two aspects:SiO32-leaching from kaolin and preparation of ASM.The optimum SiO32-leaching condition was confirmed at calcination temperature of 960℃,NaOH concentration of 20%,reaction temperature of 90℃and reaction time of 90 min.Under this condition,SiO32-leaching yield arrived at 60.45%(w/w).The ASM was then easily prepared from SiO32-leaching at the silica concentration of 12 g·L-1,reaction temperature of 90℃,reaction time of 60 min and aging time of 2 h.The removal behavior of Ca2+and Mg2+revealed that the removal rate of Ca2+and Mg2+on the ASM could arrived at 94.99%and 62.32%,respectively.

    amorphous silica material;preparation;kaolin;adsorption

    O611.4

    A

    1001-4861(2016)11-2049-09

    10.11862/CJIC.2016.254

    2016-06-05。收修改稿日期:2016-09-20。*通信聯(lián)系人。E-mail:nmzhjwu@163.com

    猜你喜歡
    化工學(xué)院呼和浩特高嶺土
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    呼和浩特之旅
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    工商企業(yè)管理的知識與操作實例
    高嶺土加入量對Al2O3-SiC質(zhì)修補料熱震性能的影響
    山東冶金(2019年1期)2019-03-30 01:35:02
    呼和浩特
    草原歌聲(2017年4期)2017-04-28 08:20:43
    美麗的呼和浩特
    小主人報(2016年1期)2016-12-01 06:22:57
    《化工學(xué)報》贊助單位
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    一本一本综合久久| 啪啪无遮挡十八禁网站| 亚洲无线在线观看| 哪里可以看免费的av片| av有码第一页| 成在线人永久免费视频| 国产极品粉嫩免费观看在线| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 欧美日本亚洲视频在线播放| or卡值多少钱| 中文字幕人妻熟女乱码| 午夜免费鲁丝| 少妇粗大呻吟视频| 99热只有精品国产| 在线观看免费日韩欧美大片| 日本三级黄在线观看| 亚洲专区字幕在线| 日韩成人在线观看一区二区三区| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 国产久久久一区二区三区| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 亚洲av成人不卡在线观看播放网| 色综合站精品国产| 三级毛片av免费| 淫妇啪啪啪对白视频| 国产黄片美女视频| 国产一区在线观看成人免费| 黄色成人免费大全| 精品久久久久久,| 90打野战视频偷拍视频| 国内精品久久久久久久电影| 日日摸夜夜添夜夜添小说| 亚洲熟女毛片儿| 国产真人三级小视频在线观看| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 免费观看精品视频网站| 亚洲专区国产一区二区| 亚洲精品色激情综合| 亚洲国产欧美一区二区综合| 性欧美人与动物交配| 看黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片免费观看直播| 中文字幕人成人乱码亚洲影| 国内揄拍国产精品人妻在线 | 国产精品久久久久久人妻精品电影| 日本a在线网址| 狠狠狠狠99中文字幕| 满18在线观看网站| 欧美成狂野欧美在线观看| 久久午夜亚洲精品久久| 欧美中文日本在线观看视频| 久久午夜综合久久蜜桃| 精品国产乱子伦一区二区三区| 亚洲 欧美一区二区三区| 成人精品一区二区免费| 国产精品免费视频内射| 最好的美女福利视频网| 久久精品aⅴ一区二区三区四区| 天天躁夜夜躁狠狠躁躁| 成在线人永久免费视频| 亚洲专区国产一区二区| 老熟妇仑乱视频hdxx| 国产三级在线视频| 中文字幕人成人乱码亚洲影| 亚洲片人在线观看| 色在线成人网| 欧美在线黄色| av欧美777| 黄色女人牲交| 深夜精品福利| 一个人免费在线观看的高清视频| 香蕉丝袜av| 日韩欧美免费精品| 少妇裸体淫交视频免费看高清 | 午夜免费鲁丝| 亚洲第一欧美日韩一区二区三区| 亚洲免费av在线视频| 精品久久蜜臀av无| 亚洲成a人片在线一区二区| 婷婷丁香在线五月| 午夜福利成人在线免费观看| 成人18禁高潮啪啪吃奶动态图| а√天堂www在线а√下载| 亚洲欧美一区二区三区黑人| 国产成人精品无人区| 午夜免费激情av| 久久久精品国产亚洲av高清涩受| 99在线视频只有这里精品首页| 在线观看免费午夜福利视频| 久99久视频精品免费| 国产色视频综合| tocl精华| 精品无人区乱码1区二区| 国产熟女午夜一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产视频内射| 久久久精品国产亚洲av高清涩受| 最新在线观看一区二区三区| 亚洲男人的天堂狠狠| √禁漫天堂资源中文www| 国产精品美女特级片免费视频播放器 | 成年人黄色毛片网站| 禁无遮挡网站| 好男人在线观看高清免费视频 | 成人欧美大片| 丁香六月欧美| 欧美国产日韩亚洲一区| 黑人欧美特级aaaaaa片| 首页视频小说图片口味搜索| 首页视频小说图片口味搜索| 国产精品 欧美亚洲| 久久久久久久久免费视频了| 9191精品国产免费久久| 国产熟女xx| 在线十欧美十亚洲十日本专区| 91九色精品人成在线观看| 日日夜夜操网爽| 韩国av一区二区三区四区| 欧美日韩瑟瑟在线播放| 久久婷婷成人综合色麻豆| 国产在线观看jvid| 亚洲无线在线观看| 亚洲黑人精品在线| 亚洲九九香蕉| 麻豆国产av国片精品| 久久久水蜜桃国产精品网| 久久人妻福利社区极品人妻图片| 精品免费久久久久久久清纯| 色播亚洲综合网| 视频在线观看一区二区三区| 免费在线观看黄色视频的| 国产单亲对白刺激| 首页视频小说图片口味搜索| 人妻丰满熟妇av一区二区三区| 国产成人av激情在线播放| 岛国在线观看网站| 午夜视频精品福利| 精品久久久久久,| 一进一出好大好爽视频| 久久久水蜜桃国产精品网| 成人午夜高清在线视频 | 精品欧美一区二区三区在线| 国产人伦9x9x在线观看| 亚洲成人久久爱视频| 色av中文字幕| 国产99久久九九免费精品| 香蕉久久夜色| 亚洲专区字幕在线| 亚洲色图av天堂| 日韩欧美 国产精品| 国产av一区二区精品久久| videosex国产| 免费看美女性在线毛片视频| 日韩av在线大香蕉| 一级作爱视频免费观看| 在线av久久热| 脱女人内裤的视频| 日韩国内少妇激情av| 一区二区三区激情视频| 91成人精品电影| 国产蜜桃级精品一区二区三区| av欧美777| 国产一区在线观看成人免费| 免费av毛片视频| 欧美性猛交黑人性爽| 亚洲中文字幕日韩| 少妇粗大呻吟视频| 人人妻人人澡欧美一区二区| 久久99热这里只有精品18| 亚洲人成77777在线视频| 欧美zozozo另类| 亚洲一卡2卡3卡4卡5卡精品中文| 久99久视频精品免费| 欧美日韩亚洲国产一区二区在线观看| 精品高清国产在线一区| 在线观看免费视频日本深夜| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| 视频区欧美日本亚洲| 母亲3免费完整高清在线观看| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 50天的宝宝边吃奶边哭怎么回事| 成人精品一区二区免费| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 成人国产一区最新在线观看| 在线永久观看黄色视频| 久久久久久大精品| 午夜福利视频1000在线观看| 最新在线观看一区二区三区| 国产人伦9x9x在线观看| 可以在线观看毛片的网站| 国产精品一区二区精品视频观看| 久久香蕉精品热| av在线播放免费不卡| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 亚洲免费av在线视频| 99国产精品99久久久久| 欧美激情久久久久久爽电影| 18禁观看日本| 成人三级黄色视频| 亚洲成av片中文字幕在线观看| or卡值多少钱| 老鸭窝网址在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩黄片免| 久久国产乱子伦精品免费另类| 亚洲熟妇中文字幕五十中出| 性色av乱码一区二区三区2| 亚洲国产欧美一区二区综合| 国产麻豆成人av免费视频| 久久久久国产一级毛片高清牌| 日韩大尺度精品在线看网址| 欧美绝顶高潮抽搐喷水| 嫩草影视91久久| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 欧美zozozo另类| 欧美色欧美亚洲另类二区| 亚洲人成网站高清观看| 精品国内亚洲2022精品成人| 老司机深夜福利视频在线观看| 黄网站色视频无遮挡免费观看| 久久99热这里只有精品18| 久久久久久久久久黄片| 亚洲av熟女| 很黄的视频免费| 国产激情欧美一区二区| 999精品在线视频| 一区福利在线观看| 亚洲九九香蕉| 欧美又色又爽又黄视频| 国产一卡二卡三卡精品| 日韩高清综合在线| 久久久精品国产亚洲av高清涩受| 午夜免费鲁丝| 午夜激情av网站| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女| 俺也久久电影网| 精品久久蜜臀av无| 亚洲 欧美一区二区三区| 亚洲专区国产一区二区| 18禁黄网站禁片免费观看直播| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色| 韩国av一区二区三区四区| 在线视频色国产色| 亚洲一码二码三码区别大吗| 成熟少妇高潮喷水视频| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜 | 国产成人av教育| 人人澡人人妻人| 亚洲成人免费电影在线观看| 香蕉av资源在线| 国产高清有码在线观看视频 | 色综合亚洲欧美另类图片| 18禁美女被吸乳视频| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 不卡一级毛片| 久热这里只有精品99| 亚洲av美国av| 国产精品日韩av在线免费观看| 视频在线观看一区二区三区| 午夜久久久久精精品| 曰老女人黄片| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 国产精品亚洲一级av第二区| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 色av中文字幕| 欧美激情久久久久久爽电影| 国产成人系列免费观看| 19禁男女啪啪无遮挡网站| 麻豆成人午夜福利视频| 亚洲avbb在线观看| 日韩精品中文字幕看吧| 国产在线观看jvid| 精品国产美女av久久久久小说| 一个人免费在线观看的高清视频| 午夜福利在线观看吧| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 免费看十八禁软件| 久久久精品国产亚洲av高清涩受| 日本一本二区三区精品| 国产亚洲av高清不卡| 日韩免费av在线播放| 美女高潮到喷水免费观看| 一夜夜www| 午夜福利在线观看吧| 久久草成人影院| 一级毛片精品| 亚洲精品中文字幕在线视频| 日韩免费av在线播放| 免费在线观看完整版高清| 国产欧美日韩一区二区精品| 色av中文字幕| 久久 成人 亚洲| 一a级毛片在线观看| 夜夜爽天天搞| 99久久精品国产亚洲精品| 黑人操中国人逼视频| 精品少妇一区二区三区视频日本电影| 国产又爽黄色视频| 欧美黑人欧美精品刺激| 满18在线观看网站| 在线播放国产精品三级| 中文字幕最新亚洲高清| av电影中文网址| 欧美在线黄色| 国产精品九九99| 成在线人永久免费视频| 午夜福利成人在线免费观看| 天天一区二区日本电影三级| 久久天堂一区二区三区四区| 极品教师在线免费播放| 最近最新免费中文字幕在线| www.熟女人妻精品国产| netflix在线观看网站| 在线视频色国产色| 国产精品免费一区二区三区在线| 亚洲精华国产精华精| 99热这里只有精品一区 | 美女 人体艺术 gogo| svipshipincom国产片| ponron亚洲| 国产欧美日韩精品亚洲av| 在线看三级毛片| 国产久久久一区二区三区| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 人成视频在线观看免费观看| 操出白浆在线播放| 成人手机av| 久久久久久免费高清国产稀缺| 免费在线观看视频国产中文字幕亚洲| 欧美最黄视频在线播放免费| 无限看片的www在线观看| 一区二区三区高清视频在线| 久久久精品欧美日韩精品| 男女做爰动态图高潮gif福利片| 757午夜福利合集在线观看| 91在线观看av| 色综合婷婷激情| 男人舔奶头视频| 国产精品二区激情视频| av视频在线观看入口| 亚洲自偷自拍图片 自拍| 老司机福利观看| 欧美最黄视频在线播放免费| ponron亚洲| 国产视频一区二区在线看| 国产精品综合久久久久久久免费| 美女大奶头视频| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 亚洲在线自拍视频| 国产1区2区3区精品| 亚洲av五月六月丁香网| 成人特级黄色片久久久久久久| 大型黄色视频在线免费观看| 亚洲一区二区三区色噜噜| 欧美av亚洲av综合av国产av| 国产黄a三级三级三级人| 久久久久国内视频| 脱女人内裤的视频| 亚洲熟女毛片儿| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av| 69av精品久久久久久| 国产精品久久久久久人妻精品电影| 日本一区二区免费在线视频| 亚洲欧美精品综合久久99| av欧美777| 国产91精品成人一区二区三区| 亚洲av日韩精品久久久久久密| 久久人妻福利社区极品人妻图片| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 两性夫妻黄色片| а√天堂www在线а√下载| 在线天堂中文资源库| 欧美日韩中文字幕国产精品一区二区三区| 一进一出抽搐动态| 午夜福利成人在线免费观看| 国产熟女xx| 欧美日韩黄片免| 国产精品精品国产色婷婷| 久久性视频一级片| 久久午夜综合久久蜜桃| 又紧又爽又黄一区二区| 嫩草影院精品99| 性欧美人与动物交配| 中文字幕精品免费在线观看视频| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 亚洲色图av天堂| 午夜福利欧美成人| 免费女性裸体啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 欧美精品啪啪一区二区三区| 在线永久观看黄色视频| 久久久久九九精品影院| 大香蕉久久成人网| 91九色精品人成在线观看| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 国产精品永久免费网站| av免费在线观看网站| 宅男免费午夜| 高清毛片免费观看视频网站| 怎么达到女性高潮| 欧美+亚洲+日韩+国产| 免费电影在线观看免费观看| 国产亚洲精品久久久久5区| 久久这里只有精品19| 看黄色毛片网站| 999久久久精品免费观看国产| 免费av毛片视频| 色综合站精品国产| 99精品久久久久人妻精品| 成年版毛片免费区| 午夜免费观看网址| 啦啦啦 在线观看视频| 少妇的丰满在线观看| 黑人操中国人逼视频| 人妻久久中文字幕网| 观看免费一级毛片| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 在线免费观看的www视频| 国产亚洲欧美98| 一本综合久久免费| 老熟妇仑乱视频hdxx| 国产精品二区激情视频| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| av中文乱码字幕在线| 国产av不卡久久| 国内精品久久久久久久电影| 亚洲午夜理论影院| 亚洲国产精品999在线| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费| 成人亚洲精品一区在线观看| 级片在线观看| 亚洲中文字幕日韩| 美女大奶头视频| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 久久久久久九九精品二区国产 | 好看av亚洲va欧美ⅴa在| 大型黄色视频在线免费观看| 日韩欧美一区二区三区在线观看| 精品一区二区三区四区五区乱码| 最近最新中文字幕大全电影3 | 搡老熟女国产l中国老女人| 日本黄色视频三级网站网址| 成人三级黄色视频| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| 色播在线永久视频| 丝袜在线中文字幕| 国产精品 国内视频| 欧美久久黑人一区二区| 精品国内亚洲2022精品成人| 超碰成人久久| 一a级毛片在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲av电影在线进入| cao死你这个sao货| 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 亚洲国产看品久久| 亚洲熟妇熟女久久| 婷婷丁香在线五月| 日韩国内少妇激情av| 精品少妇一区二区三区视频日本电影| 久久精品aⅴ一区二区三区四区| xxxwww97欧美| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩精品亚洲av| 国产亚洲精品综合一区在线观看 | 国产亚洲欧美在线一区二区| 岛国视频午夜一区免费看| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 亚洲国产精品合色在线| 神马国产精品三级电影在线观看 | 午夜久久久在线观看| 久久狼人影院| 欧美日韩一级在线毛片| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 国产精品九九99| 18禁裸乳无遮挡免费网站照片 | 黄片小视频在线播放| 黄色视频不卡| 99在线视频只有这里精品首页| 老司机深夜福利视频在线观看| 欧美黑人精品巨大| 亚洲欧美激情综合另类| 久久国产精品影院| 啪啪无遮挡十八禁网站| 精品久久久久久久久久久久久 | 亚洲av片天天在线观看| 日韩免费av在线播放| 亚洲国产欧洲综合997久久, | 亚洲精华国产精华精| 欧美日韩一级在线毛片| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 国内精品久久久久久久电影| 精品电影一区二区在线| 国产高清有码在线观看视频 | 91字幕亚洲| 淫秽高清视频在线观看| 婷婷丁香在线五月| 久久久久久人人人人人| 99国产综合亚洲精品| 最新在线观看一区二区三区| 激情在线观看视频在线高清| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久久久久 | 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 最近在线观看免费完整版| 热re99久久国产66热| 精品国内亚洲2022精品成人| 久久久国产欧美日韩av| 女人被狂操c到高潮| 色在线成人网| 人人妻人人澡人人看| 国产黄片美女视频| 久久久水蜜桃国产精品网| 亚洲成a人片在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 日本免费a在线| 高清在线国产一区| 亚洲午夜精品一区,二区,三区| 成在线人永久免费视频| 最新美女视频免费是黄的| 欧美三级亚洲精品| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 男人舔奶头视频| 90打野战视频偷拍视频| 亚洲国产精品久久男人天堂| 国产视频一区二区在线看| 午夜福利一区二区在线看| cao死你这个sao货| 成人一区二区视频在线观看| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久 | 国产精品1区2区在线观看.| 国产在线观看jvid| 一夜夜www| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 亚洲免费av在线视频| 老司机靠b影院| 亚洲熟妇中文字幕五十中出| 亚洲一区二区三区色噜噜| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 精品国产美女av久久久久小说| 亚洲成a人片在线一区二区| 最好的美女福利视频网| 欧美色视频一区免费| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 天天一区二区日本电影三级| 国产精品香港三级国产av潘金莲| 1024手机看黄色片| 天堂影院成人在线观看| 国产91精品成人一区二区三区| 欧美乱妇无乱码| av电影中文网址| 在线观看一区二区三区| 性欧美人与动物交配| 黄色 视频免费看| 国产伦人伦偷精品视频| 999久久久精品免费观看国产| 精品欧美国产一区二区三| 亚洲精品久久成人aⅴ小说| 欧美国产日韩亚洲一区| 精品国产乱码久久久久久男人| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 黄片播放在线免费| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 欧美精品亚洲一区二区| 免费看十八禁软件|