• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三氧化鉬納米帶/石墨烯納米復合材料的簡單制備及其在超級電容器中的應用

    2016-11-28 08:06:55李會華周錦華曾文進馮曉苗
    無機化學學報 2016年11期
    關鍵詞:郵電大學電容器南京

    李會華 宋 娟 周錦華 曾文進 馮曉苗

    (有機電子與信息顯示國家重點實驗室培育基地,南京郵電大學信息材料與納米技術研究院;材料科學與工程學院,南京210023)

    三氧化鉬納米帶/石墨烯納米復合材料的簡單制備及其在超級電容器中的應用

    李會華宋娟周錦華曾文進馮曉苗*

    (有機電子與信息顯示國家重點實驗室培育基地,南京郵電大學信息材料與納米技術研究院;材料科學與工程學院,南京210023)

    采用簡單的超聲自組裝法制備了石墨烯/三氧化鉬納米帶復合材料。最終產(chǎn)物的組成和結構采用多種不同的手段進行了表征,包括掃描電鏡、透射電鏡、X射線衍射、拉曼光譜以及熱分析等。該復合材料可以用作超級電容器電極材料。電化學實驗結果表明石墨烯/三氧化鉬納米帶復合材料比電容可達到285.5 F·g-1,且在電流密度為1 A·g-1時經(jīng)過1 000次循環(huán)后其電容值能保持初始值的99.5%.

    三氧化鉬;石墨烯;納米復合材料;超級電容器

    0 Introduction

    With the rising demand for energy,electrochemical capacitors(also called supercapacitors),as one of the most potential electrochemical energy-storage systems have attracted special attention.They have high energy density and long cycle stability than that of dielectric capacitors[1-3].According to the charge/discharge mechanisms,supercapacitors can be divided into two categories:electrical double layer capacitors(EDLCs)and pseudocapacitors.The former storage mode which commonly use carbon active materials relies on a surface charge separation process based on the electrolyte interface and electrode,while the latter which use redox-active transition-metal-oxide materials or conductive polymers is a chemical process which relies on redox reactions happening in the electrode materials and electrolyte ions[4].However,the capacitances of the EDLCs are lower than that of pseudocapacitors,but have better cycle stability. Therefore,the separate capacitor cannot meet all the requirements of supercapacitors.In order to improve the capacitive performance of supercapacitors, electrode materials with good conductivity and high active surface area which can store both electrical double layer capacitance and pseudocapacitance are required urgently.

    As we know,good electrode materials must have high specific capacitance[5-6].Ruthenium oxide(RuO2)is widely recognized as the best ideal choice.However,it is very expensive that limits its extensive application. Therefore,other low-cost transitionmetal oxides,such as Fe2O3,MnO2,NiOx,CoOx,and MoOxhave been evolved into the available substitute[7-11].Among these candidate materials,molybdenum trioxide(MoO3),which has drawn increasing attention[12].MoO3,as a potential supercapacitive nanomaterial has a lot of advantages, such as high electrochemical activity,low cost,and environmentally friendly nature[13-19].Nevertheless,the application of MoO3has been hindered due to its low inherent electrical conductivity and structuredegradation issues,which results in poor faradaic redox kinetics,low power density,and a lumping capacity damping during cycling at higher scan rates[20-19].Therefore,lots of efforts have been done to improve the electrochemical performance of MoO3as electrode materials by combining with other effective materials to enhance its conductivity,capacitance,and cycling stability[21-23].

    Graphene is a one-atom-thick two-dimensional layer of sp2-bonded carbon atoms in a honeycomb crystal lattice,which has attracted great attention due to its high electronic properties at the condensed matter physics research and materials science[24-27].As we know,graphene not only can become one dimensional structure of carbon nanotubes(CNTs),but can be stacked into three-dimensional(3D)graphite. In addition to,it can be wrapped into a spherical fullerene.In a sense,it is ancestor of all graphite materials[27].It has been reported that the combination of graphene and MoO3can enhance the electrical conductivity of MoO3and prevent the exfoliation of active material from the substrate[28].MoO3has been intensively investigated for its application as supercapacitor electrodes,catalysts and biosensors. For example,Zhang et al.reported MoO3nanobelts/ polypyrrole hybrid with a specific capacitance of 129 F·g-1[29].Hu et al.prepared MoO3decorated graphene sheets showing a specific capacitance of 86.3 F·g-1[30].The intertwined porous MoO3-MWCNT nanocomposites have been synthesized by hydrothermal method,delivering a specific capacitance of 210 F·g-1[31].

    Herein,we show a simple an ultrasonic selfassembly method to synthesize MoO3nanobelts/ graphene nanocomposites.The graphene shows a typical wrinkled morphology and the MoO3nanobelts are attached onto the surface of graphene.Scanning electron microscopy(SEM),Transmission Electron Microscope(TEM),X-ray diffraction(XRD),Raman spectra,thermogravimetric analysis(TGA)are used to study the structure and composition of MoO3nanobelts/graphene nanocomposites.Furthermore, electrochemical experimental results of MoO3nanobelts/graphene nanocomposites exhibit high specific capacitance and remarkable long-term cycle stability,demonstrating the nanocomposite has potential to act as a high-performance supercapacitor electrode material.

    1 Experimental

    1.1Materials

    Natural graphite flake(about 325 mesh)was purchased from Alfa Aesar Chemical Reagent Co.and used for synthesis of graphene oxide(GO).GO was prepared by acid oxidation of natural graphiteaccording to a Hummers method[32].Ammonium molybdatetetrahydrate((NH4)6Mo7O24·4H2O),poly(diallyldimethyl ammonium)chloride(PDDA,Mr=200 000~350 000,20%in water)were purchased from Aladdin Chemistry Co.Ltd.Acetylene black,poly-tetrafluorene ethylene(PTFE),HNO3and ethanol were purchased from Shanghai Chemical Reagent Co.All reagents and solvents were of analytical grade and used as received without further treatment.

    1.2Preparation of the MoO3nanobelts

    The MoO3nanobelts were synthesized by hydrothermal method.The detailed steps were as follows:500 mg(NH4)6Mo7O24·4H2O were dispersed in 20 mL deionized water by stirring for 30 min.15 mL HNO3(68%)was dropped into above solution and kept stirring for another 30 min.Then the solution was transferred to a Teflon-lined pressure vessel and the temperature maintained at 180℃for 12 h.After cooling down to room temperature,the resulting suspension was separated by centrifugation and washing with deionized water and ethanol for several times.Then the resulting MoO3nanobelts were dried overnight at 60℃under a vacuum.

    1.3Preparation of functionalized graphene

    The oxygen-containing functional groups of GO surface were removed by hydrothermal treatment method to obtain graphene.To synthesize graphene dispersion,10 mg of GO was added into 12.5 mL of deionized water under vigorous stirring for 30 min. Then the solution was transferred to a Teflon-lined pressure vessel and heated to 170℃for 20 h.After the suspension was maintained at room temperature, the resulting black suspension was separated by centrifugation and washing with deionized water.Then the as-fabricated precipitate was dispersed in 10 mL of deionized water under ultrasonication for 30 min. Finally,1%of PDDA was dropped and formed a uniform suspension under sonication for 30 min.The surface charge of graphene was changed from negative to positive after functionalization by PDDA.The black homogeneous dispersion was used for the following fabrication of composites.

    1.4Preparation of the MoO3nanobelts/Graphene composites

    30 mg MoO3nanobelts were dispersed in 5 mL deionized water and 10 mL of functionalized graphene suspension was dropped into above solution under sonication.Under sonication for 30 min,the mixture was centrifuged and washed with deionized water and ethanol for several times.Then the as-fabricated MoO3nanobelts/graphene nanocomposite was dried in a vacuum at 60℃for 12 h.

    1.5Preparation of the MoO3nanobelts/Graphene composites modified electrodes

    To evaluate the electrochemical performance of MoO3nanobelts/graphene nanocomposite,a threeelectrode configuration was fabricated.The asfabricated MoO3nanobelts/graphene nanocomposite was mixed with acetylene black and PTFE in the weight ratio of 70∶25∶5,and then a few drops of ethanol were added to form a suspension.Then the slurry was pasted onto a graphite electrodes as working electrodes and dried under vacuum at 80℃for 12 h.In addition,saturated calomel and platinum wire electrodes were used as the reference and counter electrodes,respectively.An aqueous solution of 1.0 mol·L-1H2SO4acted as the electrolyte.

    1.6Material characterization

    The morphologies of the as-synthesized MoO3nanobelts/graphene were examined by Scanning electron microscopy(SEM,S-4800)and Transmission electron microscopy(TEM HT7700-SS).X-ray diffraction(XRD)patterns of samples were detected using a Philip XRD X′PERT PRO diffractometer with Cu Kα X-ray radiation(λ=0.154 nm).Raman spectra of MoO3nanobelts/graphene composites were recorded on DXR spectrometers using the 532 nm laser line and measurements were made in backscattering geometry.Thermogravimetric analysis of MoO3nanobelts /graphene composites were measured under air atmosphere on a TG-60.To test the electrochemical properties of the samples,a typical three-electrode test cell was used for electrochemical measurements on a CHI660C electrochemical working station (Chenhua,Shanghai,China).The electrochemicalbehaviors of the supercapacitor systems were estimated by cyclic voltammograms(CV)and galvanostatic charge-discharge.All of the measurements were manipulated with the potential windows of-0.2~0.8 V in 1 mol·L-1H2SO4electrolyte solution at room temperature.A saturated calomel electrode(SCE)and platinum sheet were used as the reference and counter electrodes,respectively.The composite modified graphite electrode was used as the working electrode.

    2 Results and discussion

    Sonochemistry method has been successfully proven as a useful technique for generating novel materials with unusual properties[33].The method has been successfully used for the fabrication of metal oxide nanostructures at room temperature,ordinary pressure,and short reaction time[34].In this work,the MoO3nanobelts/graphene was synthesized by an ultrasonic self-assembly method.The MoO3nanobelts were synthesized by hydrothermal method.Along the [001]direction of MoO3,the energy release is greater than that of the other crystal orientations.Hence,the MoO3can grow into nanobelt-like morphology along the[001]direction to the MoO3nanobelts[35-36].After hydrothermal reduction,there were still some oxygen containing functional groups on the surfaces and edges of graphene.The presence of oxygen containing functional groups on the surfaces and edges of graphene nanosheet resulted in its negatively charged nature with the zeta potential of-42.85 mV.The zeta potential of coating graphene with monolayer polymer PDDA is 48.44 mV,showing graphene surface charge can be changed successfully with opposite charged polymer.The negatively charged MoO3nanobelts were uniformly anchored on the surfaces of positively charged graphene through an electrostatic interaction under ultrasonic condition.Theζpotential of composites is-46.47 mV indicating MoO3nanobelts anchored on the surfaces of graphene.As shown in Fig.1A,the SEM image exhibits the combination of uniform MoO3nanobelts and wrinkled graphene,it is obvious that the prepared MoO3nanobelts with widths of 800 nm adsorbed on the surface of graphene.TEM image(Fig.1B)shows further information about the structure and morphology of the MoO3nanobelts/ graphene nanocomposites.During the preparation of samples for SEM and TEM,the samples were treated by a long time of sonication,they were still firmly overlapped and intertwined.This may improve the~electrochemical properties depending on the fast charge transfer through the underlying graphene layers to the MoO3nanobelts.

    The X-ray diffraction(XRD)pattern of the MoO3nanobelts/graphene is shown in Fig.2.It can be seen that all the identified peaks can be assigned to MoO3[35,37-38],indicating MoO3nanobelts were formed on the surface of graphene sheets.No characteristic peaks of GO were observed,showing the surfaces of graphene were decorated by MoO3.

    Fig.1 SEM(A)and TEM(B)images of MoO3nanobelts/grapheme

    Fig.3gives FTIR spectra of GO and MoO3nanobelts/graphene.The FTIR spectrum of the oxygen-containing functional groups of GO exhibits bands at 1 727,1 403,1 250 and 1 071 cm-1,which associated with the stretching vibrations of C=O, carboxy C-OH,epoxy C-O and alkoxy C-O groups from carbonyl and carboxylic groups,respectively.In addition,the bands at 3 210 and 1 609 cm-1can be correspond to O-H stretching vibrations and bending vibrations of residual water molecules[39].However,inthe composites,the intensities of absorption peaks of oxygen-containing functional groups decreased dramatically showing some of the surface oxygencontaining functional groups had been deoxygenated during the hydrothermal process.In Fig.3,the FTIR spectrum of the composites,three typical peaks at 994,857 and 571 cm-1were attributed to the terminal Mo=O bond of the layered orthorhombic MoO3phase, the doubly coordinated oxygen(Mo2-O)and the bending vibration of the Mo-O-Mo entity[29],respectively.

    Fig.2 X-ray diffraction pattern of MoO3nanobelts/ graphene

    Fig.3 FTIR spectra of GO and MoO3nanobelts/graphene

    The Raman spectrum of MoO3nanobelts/ graphene is shown in Fig.4.Two characteristic bands were observed.The peak at 1 345 cm-1(D band)is attributed to the sp3hybridized C-C bonds and peak at 1 599 cm-1(G band)can be assigned to the sp2hybridized C-C bonds in a two-dimensional hexagonal lattice[35].In addition,three sharp characteristic bands of MoO3can be observed from the Raman spectrum of the MoO3nanobelts/graphene composite.The band at 993 cm-1can be attributed to the vibration of Mo-O[40], and the peak at 817 cm-1is assigned to the asymmetrical and symmetrical stretching vibrations of the terminal Mo=O bonds,while the band at 663 cm-1can be assigned to the asymmetrical stretching vibration of OMo-O bonds[35,39].These observations are correspond well to the previously published literature[41].

    Fig.4 Raman spectrum of MoO3nanobelts/graphene

    Fig.5 TGA curve of MoO3nanobelts/graphene

    Thermogravimetric properties of MoO3nanobelts/ graphene were investigated in air atmosphere and the curves were shown in Fig.5.As shown in Fig.5,the weight losses of MoO3nanobelts/graphene between room temperature and 1 000℃.The mass loss below 230℃can be attributed to the evaporation of the remaining water,solvents,and decomposition of the labile oxygen-containing functional groups[41-42].Theslow mass loss observed from 258 to 520℃for the asprepared MoO3nanobelts/graphene composites,owing to the pyrolysis of some residual oxygen functional groups and oxidation of graphene to carbon dioxide in air atmosphere[43].The most of mass loss above 730℃is attributed to the continuous decomposition of crystalline MoO3nanobelts[38],and the mass percent of MoO3nanobelts in the composites was 71.4%.

    Electrochemical measurements were researched with a three-electrode system in 1 mol·L-1H2SO4electrolyte to investigate the electrochemical properties of the MoO3nanobelts/graphene.Fig.6A showed CV curves of the MoO3nanobelts/graphene at different scan rates of 2,5,10,25,50,75,and 100 mV·s-1in 1 mol·L-1H2SO4aqueous solution with potential windows from-0.2 to 0.8 V,respectively.All of the CV curves display a quasi-rectangle shape without obvious redox peaks,indicating an excellent behavior of MoO3nanobelts/graphene with fast chargingdischarging processes.In addition,the shapes of the CV curves are gradually deformed from rectangular with the scan rate is increased from 2 to 100 mV·s-1, proving the presence of pseudocapacitance and doublelayer capacitance[44].The specific capaci-tances(Cs) could be calculated from the CV curves according to the following formula[45]

    Where I represents the response current density(A· g-1),V is the potential window(V),v is the potential scan rate(mV·s-1),and m is the mass of the active material in the electrode(g).The mass loading of active materials on the electrodes were about 10 mg in which the graphene content is about 13%according to thermogravimetry results.The specific capacitance of MoO3nanobelts/graphene is 203.1,167.7,151.3, 133.8,120.4,111.7 and 104.6 F·g-1at 2,5,10,25, 50,75 and 100 mV·s-1,respectively.The specific capacitance is decreased with the increase of scan rates mainly due to the increase in ionic resistivity and not easy to close to the surface of the electrode at high charging-discharging rates.

    Galvanostatic charge-discharge tests were performed to obtain more information about the capacitive performance of the MoO3nanobelts/ graphene as an electrode material for supercapacitor. As shown in Fig.7A,the galvanostatic chargedischarge curves of MoO3nanobelts/graphene examined at different current densities with the voltage window of-0.2~0.8 V in 1 mol·L-1H2SO4electrolyte.The specific capacitances(Cs)were calculated according to

    Cs=(It)/(mV)

    where I is the constant discharge current(A),V is the potential window(V),t is the discharge time(s),and m is the mass of the active material in the electrode (g)[46].The corresponding specific capacitance are 285.5, 211.7,195.1,158.9 and 131.3 F·g-1at 0.6,0.8,1.0, 2.0 and 5.0 A·g-1,respectively(Fig.7B).As displayed in Fig.7A,in the process of charging and discharging, the charge curve of MoO3nanobelts/graphene is nearly symmetric to its corresponding discharge counterpartwith a trivial bending,proving high reversibility of the nanocomposites[47].In addition,the high specific capacitance values are achieved at low current densities,mainly because the inner active sites of the electrode can be fully accessed.

    Fig.6(A)CV curves of the MoO3nanobelts/graphene at different scan rates(B)the corresponding specific capacitances of MoO3nanobelts/graphene electrodes at different scan rates

    Fig.7(A)Galvanostatic charge-discharge curves at different current densities;(B)Specific capacitances of the MoO3nanobelts/graphene at different current densities

    The electrochemical stability is one of the most important factors to estimate the electrochemical behavior of the MoO3nanobelts/graphene based supercapacitor.In further investigated,the cycle stability of the MoO3nanobelts/graphene was studied by a galvanostatic charge-discharge test at a current density of 1.0 A·g-1in 1 mol·L-1H2SO4aqueous solution in a potential range from-0.2 to 0.8 V.As shown in Fig.8,the specific capacitance of the MoO3nanobelts/graphene nearly still remains 99.5%of its initial value after 1 000 cycles at a current density of 1.0 A·g-1,indicating excellent cycling stability and long lifetime.

    Fig.8 Specific capacitance changes of MoO3nanobelts/ graphene at a constant current density of 1.0 A· g-1as a function of cycle numbers

    3 Conclusions

    In this work,the high-quality MoO3nanobelts/ graphene nanocomposites were synthesized via a facile ultrasonic self-assembly method.MoO3nanobelts were uniformly anchored on the surfaces of graphene through an electrostatic interaction under ultrasonic condition.Electrochemical experiments show the composite has remarkable specific capacitance as high as 285.5 F·g-1and impressive cycling stability of nearly 99.5%after 1000 cycles at a current density of 1 A·g-1.This advantage indicating the hybrid material promising application as an excellent electrode material for high-performance supercapacitors and this facile one-step method may lead to the development of other metal oxide with graphene materials for stable and high-performance energy storage.

    References:

    [1]Simon P,Gogotsi Y.Nat.Mater.,2008,7:845-854

    [2]Stoller M D,Park S,Zhu Y,et al.Nano Lett.,2008,8:3498-3502

    [3]Zhang L L,Zhao X.Chem.Soc.Rev.,2009,38:2520-2531

    [4]Liu C,Li F,Ma L P,et al.Adv.Mater.,2010,22:E28-E62

    [5]Hu C C,Chang K H,Lin M C,et al.Nano Lett.,2006,6: 2690-2695

    [6]Huang H S,Chang K H,Suzuki N,et al.Small,2013,9: 2520-2526

    [7]Jena A,Munichandraiah N,Shivashankar S.J.Power Sources,2013,237:156-166

    [8]Li Z,Mi Y,Liu X,et al.J.Mater.Chem.,2011,21:14706-14711

    [9]Liao M,Liu Y,Hu Z,et al.J.Alloys Compd.,2013,562:106-110

    [10]Nasibi M,Golozar M A,Rashed G.Mater.Lett.,2013,91: 323-325

    [11]Wang F,Xiao S,Hou Y,etal.RSC Adv.,2013,3:13059-13084

    [12]Tang W,Liu L,Zhu Y,et al.Energy Environ.Sci.,2012,5: 6909-6913

    [13]Brezesinski T,Wang J,Tolbert S H,et al.Nat.Mater., 2010,9:146-151

    [14]Liu X,Shi S,Xiong Q,et al.ACS Appl.Mater.Interfaces, 2013,5:8790-8795

    [15]Mai L Q,Hu B,Chen W,et al.Adv.Mater.,2007,19:3712-3716

    [16]Mendoza-Sanchez B,Brousse T,Ramirez-Castro C,et al. Electrochim.Acta,2013,91:253-260

    [17]Murugan A V,Viswanath A K,Gopinath C S,et al.J.Appl. Phys.,2006,100:074319-074315

    [18]Shakir I,Shahid M,Yang H W,et al.Electrochim.Acta, 2010,56:376-380

    [19]Zhou L,Yang L,Yuan P,et al.J.Phys.Chem.C,2010,114: 21868-21872

    [20]Huang L,Wei Q,Sun R,et al.Front.Energy Res.,2014,2: 43

    [21]Mahmood Q,Yun H J,Kim W S,et al.J.Power Sources, 2013,235:187-192

    [22]Shakir I,Shahid M,Cherevko S,et al.Electrochim.Acta, 2011,58:76-80

    [23]Shakir I,Shahid M,Nadeem M,et al.Electrochim.Acta, 2012,72:134-137

    [24]Neto A C,Guinea F,Peres N,et al.Rev.Mod.Phys.,2009, 81:109

    [25]Novoselov K,Geim A K,Morozov S,et al.Nature,2005, 438:197-200

    [26]Novoselov K S,Geim A K,Morozov S,et al.Science, 2004,306:666-669

    [27]Schedin F,Geim A,Morozov S,et al.Nat.Mater.,2007,6: 652-655

    [28]Li H,Zhou H.Chem.Commun.,2012,48:1201-1217

    [29]Zhang X,Zeng X,Yang M,et al.ACS Appl.Mater.Interfaces, 2014,6:1125-1130

    [30]Hu J,Ramadan A,Luo F,et al.J.Mater.Chem.,2011,21: 15009

    [31]Shakir I,Shahid M,Cherevko S,et al.Electrochim.Acta, 2011,58:76-80

    [32]Feng X M,Li R M,Ma Y W,et al.Adv.Funct.Mater., 2011,21:2989-2996

    [33]Kumar R V,Diamant Y,Gedanken A.Chem.Mater.,2000, 12:2301-2305

    [34]Zolfaghari A,Ataherian F,Ghaemi M,et al.Electrochim. Acta,2007,52:2806-2814

    [35]Dong Y,Li S,Xu H,et al.Phys.Chem.Chem.Phys.,2013, 15:17165-17170

    [36]Zang J,Ryu S,Pugno N,et al.Nat.Mater.,2013,12:321-325

    [37]Mondal A K,Su D,Wang Y,et al.J.Alloys Compd.,2014, 582:522-527

    [38]Yang X,Ding H,Zhang D,et al.Cryst.Res.Technol., 2011,46:1195-1201

    [39]Xia X,Hao Q,Lei W,et al.J.Mater.Chem.,2012,22: 8314-8320

    [40]Klionsky D J,Abdalla F C,Abeliovich H,et al.Autophagy, 2012,8:445-544

    [41]Chang J,Jin M,Yao F,et al.Adv.Funct.Mater.,2013,23: 5074-5083

    [42]Choi E Y,Han T H,Hong J,et al.J.Mater.Chem., 2010,20:1907-1912

    [43]Hu J,Ramadan A,Luo F,et al.J.Mater.Chem.,2011,21: 15009-15014

    [44]Xiong G,Hembram K,Reifenberger R,et al.J.Power Sources, 2013,227:254-259

    [45]Zhu J,He J.ACS Appl.Mater.Interfaces,2012,4:1770-1776

    [46]Wang Y T,Lu A H,Zhang H L,et al.J.Phys.Chem.C, 2011,115:5413-5421

    [47]Chen S,Zhu J,Wang X.ACS Nano,2010,4:6212-6218

    MoO3Nanobelts/Graphene Nanocomposites:Facile Synthesis and Application in Supercapacitors

    LI Hui-Hua SONG Juan ZHOU Jin-Hua ZENG Wen-Jin FENG Xiao-Miao*
    (Key Laboratory for Organic Electronics&Information Displays,Institute of Advanced Materials and School of Materials Science &Engineering,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)

    The MoO3nanobelts/graphene nanocomposites were prepared via facile ultrasonic self-assembly method. The composition and structure of the final product were characterized by various characterization techniques including scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD), Raman spectra,and thermogravimetric analysis(TGA).The composites could be used as supercapacitive electrode materials.The electrochemical results showed that the specific capacitance of MoO3nanobelts/graphene nanocomposite was 285.5 F·g-1.Furthermore,the prepared supercapacitor nearly remained 99.5%of its initial capacitive value after 1 000 cycles at a current density of 1 A·g-1showing its excellent cycle stibiliy.

    MoO3;graphene;nanocomposites;supercapacitor

    O614.61+2

    A

    1001-4861(2016)11-2041-08

    10.11862/CJIC.2016.252

    2016-05-23。收修改稿日期:2016-08-17。

    教育部創(chuàng)新團隊(No.IRT1148)、國家自然科學基金(No.20905038,61504066)、江蘇省自然科學基金(No.BK20141424,BK20150838)、東南大學生物電子學國家重點實驗室(No.I2015010)和江蘇省六大人才高峰(No.2015-JY-015)資助。

    *通信聯(lián)系人。E-mail:iamxmfeng@njupt.edu.cn,Tel:025-85866396

    猜你喜歡
    郵電大學電容器南京
    南京比鄰
    《西安郵電大學學報》征稿啟事
    “南京不會忘記”
    西安郵電大學設計作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    《西安郵電大學學報》征稿啟事
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    重慶郵電大學學報( 自然科學版》2016年第28卷第1-6期總第114-125期
    2021天堂中文幕一二区在线观 | 亚洲 欧美一区二区三区| 免费在线观看视频国产中文字幕亚洲| 国产精品综合久久久久久久免费| 99在线人妻在线中文字幕| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 男女那种视频在线观看| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区三区四区第35| 日韩av在线大香蕉| 成年女人毛片免费观看观看9| 国语自产精品视频在线第100页| 熟女电影av网| 国内揄拍国产精品人妻在线 | 欧美久久黑人一区二区| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看| 欧美成人一区二区免费高清观看 | 人人妻人人澡人人看| 怎么达到女性高潮| 精品国产亚洲在线| 国产av不卡久久| 给我免费播放毛片高清在线观看| 高潮久久久久久久久久久不卡| 激情在线观看视频在线高清| 国产主播在线观看一区二区| 国产成人影院久久av| 日韩欧美在线二视频| 欧美国产精品va在线观看不卡| 2021天堂中文幕一二区在线观 | 成年版毛片免费区| 丰满的人妻完整版| а√天堂www在线а√下载| 亚洲欧美激情综合另类| 国产亚洲精品一区二区www| 日本免费一区二区三区高清不卡| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站| 麻豆一二三区av精品| 成人18禁高潮啪啪吃奶动态图| 波多野结衣高清无吗| 一二三四在线观看免费中文在| 亚洲专区国产一区二区| ponron亚洲| 丁香欧美五月| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 日本a在线网址| 天天添夜夜摸| 91麻豆av在线| 婷婷精品国产亚洲av| 在线观看一区二区三区| 老鸭窝网址在线观看| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 性欧美人与动物交配| 中文字幕精品免费在线观看视频| 精品久久久久久,| 国产精品自产拍在线观看55亚洲| 十分钟在线观看高清视频www| 在线国产一区二区在线| 精华霜和精华液先用哪个| 亚洲中文av在线| 国产麻豆成人av免费视频| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 搡老岳熟女国产| av视频在线观看入口| 校园春色视频在线观看| 日韩中文字幕欧美一区二区| 欧美性猛交黑人性爽| 人人妻人人澡人人看| 久久久久久久久中文| 99riav亚洲国产免费| 亚洲人成电影免费在线| 中文资源天堂在线| 亚洲片人在线观看| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 国产一区二区三区在线臀色熟女| 成人三级做爰电影| 亚洲专区字幕在线| 日韩欧美 国产精品| 亚洲久久久国产精品| 极品教师在线免费播放| 免费在线观看亚洲国产| 午夜激情av网站| 色综合亚洲欧美另类图片| 18禁裸乳无遮挡免费网站照片 | 悠悠久久av| 美女高潮到喷水免费观看| 黄色片一级片一级黄色片| 亚洲av片天天在线观看| 亚洲国产毛片av蜜桃av| 成人午夜高清在线视频 | 国产av不卡久久| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| www日本黄色视频网| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 18禁观看日本| 亚洲精品中文字幕一二三四区| 99热这里只有精品一区 | 中文在线观看免费www的网站 | 十八禁网站免费在线| 久99久视频精品免费| 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 亚洲自拍偷在线| 成人免费观看视频高清| av超薄肉色丝袜交足视频| 国产视频内射| 久久国产精品影院| 91成年电影在线观看| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 亚洲精品色激情综合| 最近在线观看免费完整版| 久久 成人 亚洲| 亚洲真实伦在线观看| 国产一区二区三区视频了| 亚洲精品色激情综合| 18禁黄网站禁片午夜丰满| 亚洲国产日韩欧美精品在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 女性生殖器流出的白浆| 校园春色视频在线观看| 久久婷婷成人综合色麻豆| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 欧美乱色亚洲激情| 久久久久久久久久黄片| 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 色播亚洲综合网| 制服人妻中文乱码| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看吧| 一级毛片女人18水好多| 亚洲自拍偷在线| 久久亚洲真实| 99精品在免费线老司机午夜| 18禁黄网站禁片免费观看直播| 视频在线观看一区二区三区| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 亚洲自偷自拍图片 自拍| 国产高清激情床上av| 国产成人影院久久av| 国产激情偷乱视频一区二区| 亚洲精品一区av在线观看| 免费人成视频x8x8入口观看| 91大片在线观看| 午夜视频精品福利| 精品久久久久久久末码| 99精品在免费线老司机午夜| 国产成人系列免费观看| 男人操女人黄网站| 少妇熟女aⅴ在线视频| 国产91精品成人一区二区三区| 最近在线观看免费完整版| 韩国av一区二区三区四区| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 婷婷六月久久综合丁香| 日本熟妇午夜| 国产精品久久久久久亚洲av鲁大| 欧美激情 高清一区二区三区| 波多野结衣高清作品| 精品久久久久久久毛片微露脸| 丝袜人妻中文字幕| 久久久久免费精品人妻一区二区 | 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 国产精品久久久久久亚洲av鲁大| 久久性视频一级片| 色婷婷久久久亚洲欧美| 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 国产乱人伦免费视频| 免费高清视频大片| 国产单亲对白刺激| 欧美亚洲日本最大视频资源| 久久亚洲真实| 亚洲av片天天在线观看| 十八禁网站免费在线| 亚洲一区高清亚洲精品| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 在线永久观看黄色视频| xxxwww97欧美| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区黑人| 久久热在线av| 午夜a级毛片| 欧美人与性动交α欧美精品济南到| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 亚洲精品国产一区二区精华液| ponron亚洲| 69av精品久久久久久| 人妻丰满熟妇av一区二区三区| 日韩成人在线观看一区二区三区| 亚洲五月婷婷丁香| 亚洲av电影在线进入| 桃红色精品国产亚洲av| 成人精品一区二区免费| 男女午夜视频在线观看| 最近最新中文字幕大全免费视频| 欧美一级a爱片免费观看看 | 国产91精品成人一区二区三区| 国产视频内射| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 成人欧美大片| 在线永久观看黄色视频| 国产视频内射| 男人舔女人的私密视频| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 久久久国产精品麻豆| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 欧美日韩精品网址| 国产精品爽爽va在线观看网站 | 国产亚洲精品第一综合不卡| 一区二区三区精品91| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站 | 男女做爰动态图高潮gif福利片| 操出白浆在线播放| 精品国产亚洲在线| 这个男人来自地球电影免费观看| 免费在线观看视频国产中文字幕亚洲| 在线天堂中文资源库| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 青草久久国产| 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 国产精品电影一区二区三区| 天堂动漫精品| 午夜久久久在线观看| 99国产极品粉嫩在线观看| 日韩大码丰满熟妇| 欧美激情久久久久久爽电影| 一夜夜www| 久久青草综合色| 一进一出好大好爽视频| 在线av久久热| 久久久国产欧美日韩av| 欧美色视频一区免费| 亚洲av五月六月丁香网| 搡老妇女老女人老熟妇| 香蕉久久夜色| or卡值多少钱| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 亚洲avbb在线观看| 丁香欧美五月| 免费看日本二区| 成人国产一区最新在线观看| 中文字幕人妻熟女乱码| 日本黄色视频三级网站网址| 午夜免费激情av| 欧美日韩瑟瑟在线播放| 男女之事视频高清在线观看| 91九色精品人成在线观看| 亚洲熟妇中文字幕五十中出| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 午夜免费成人在线视频| bbb黄色大片| 精品国产亚洲在线| 久久久久久久精品吃奶| 九色国产91popny在线| 精品电影一区二区在线| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 自线自在国产av| 99国产精品一区二区蜜桃av| 成人欧美大片| 国产精品久久久av美女十八| 欧美成人一区二区免费高清观看 | 亚洲中文av在线| 欧美中文日本在线观看视频| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 国产区一区二久久| 亚洲 国产 在线| 亚洲成av人片免费观看| 在线观看www视频免费| cao死你这个sao货| 老熟妇乱子伦视频在线观看| 大型av网站在线播放| 黑人操中国人逼视频| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 日韩大尺度精品在线看网址| 亚洲精品美女久久久久99蜜臀| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 免费看十八禁软件| 脱女人内裤的视频| 亚洲精品一区av在线观看| a级毛片a级免费在线| 国产成人一区二区三区免费视频网站| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 国产精品 国内视频| 我的亚洲天堂| av天堂在线播放| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 一区二区三区国产精品乱码| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 88av欧美| 国产单亲对白刺激| 不卡一级毛片| 免费观看人在逋| 男男h啪啪无遮挡| 亚洲国产欧洲综合997久久, | videosex国产| 99久久99久久久精品蜜桃| a级毛片a级免费在线| 一级毛片精品| 90打野战视频偷拍视频| 精品久久久久久久人妻蜜臀av| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频| 亚洲成av片中文字幕在线观看| 日韩欧美国产在线观看| 亚洲精品色激情综合| 欧美大码av| 久久精品国产清高在天天线| 午夜久久久久精精品| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 精品国产一区二区三区四区第35| 日韩欧美在线二视频| 日本 av在线| 午夜久久久在线观看| 国产不卡一卡二| 99热这里只有精品一区 | 国产乱人伦免费视频| 久久久久久久精品吃奶| 一级黄色大片毛片| www.www免费av| 亚洲三区欧美一区| 日韩高清综合在线| 999久久久精品免费观看国产| 一本一本综合久久| 丝袜在线中文字幕| 人人妻人人澡人人看| 久久精品人妻少妇| 国内精品久久久久久久电影| 久久人人精品亚洲av| 国产单亲对白刺激| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 国产精品一区二区免费欧美| 国产欧美日韩精品亚洲av| 怎么达到女性高潮| 成人免费观看视频高清| 国产精品亚洲美女久久久| 日韩欧美免费精品| 婷婷亚洲欧美| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 美女 人体艺术 gogo| 大型黄色视频在线免费观看| 国产日本99.免费观看| 午夜福利在线在线| 久久久国产成人精品二区| 美女大奶头视频| 色av中文字幕| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影 | 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 51午夜福利影视在线观看| 手机成人av网站| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 1024手机看黄色片| 日本五十路高清| 国产视频内射| 中文字幕人成人乱码亚洲影| 黄色丝袜av网址大全| 欧美激情 高清一区二区三区| 精品国产乱子伦一区二区三区| 亚洲熟妇中文字幕五十中出| 精品国产国语对白av| 精品国产乱码久久久久久男人| 岛国在线观看网站| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 成年人黄色毛片网站| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 亚洲精品国产精品久久久不卡| 热re99久久国产66热| 日本免费a在线| 日本熟妇午夜| 午夜免费激情av| 老司机靠b影院| 美女 人体艺术 gogo| 国产亚洲精品第一综合不卡| 亚洲成人国产一区在线观看| 亚洲国产精品久久男人天堂| 美女高潮喷水抽搐中文字幕| 日日爽夜夜爽网站| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 久久九九热精品免费| 久久婷婷成人综合色麻豆| 精品无人区乱码1区二区| 日韩成人在线观看一区二区三区| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 精品国产国语对白av| 18禁美女被吸乳视频| 婷婷精品国产亚洲av| 国产精华一区二区三区| 韩国精品一区二区三区| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看| 国产精品野战在线观看| 男女之事视频高清在线观看| 亚洲熟女毛片儿| 在线观看日韩欧美| 国产男靠女视频免费网站| 亚洲男人的天堂狠狠| 黄片小视频在线播放| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 久久国产精品影院| 中文字幕人妻熟女乱码| 97人妻精品一区二区三区麻豆 | 久久国产乱子伦精品免费另类| 亚洲精品国产一区二区精华液| 88av欧美| 久久精品国产综合久久久| 国产精品久久久久久人妻精品电影| 黄网站色视频无遮挡免费观看| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 男女那种视频在线观看| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 一二三四社区在线视频社区8| 色播在线永久视频| 中亚洲国语对白在线视频| 亚洲国产欧美日韩在线播放| 少妇的丰满在线观看| 色综合亚洲欧美另类图片| 看片在线看免费视频| 51午夜福利影视在线观看| 亚洲国产高清在线一区二区三 | 欧美亚洲日本最大视频资源| 国产区一区二久久| 亚洲成人国产一区在线观看| 久久久久久久久中文| 国产精品久久久久久人妻精品电影| 欧美三级亚洲精品| xxxwww97欧美| 国产精品久久久久久精品电影 | 男女视频在线观看网站免费 | 久久久久久久午夜电影| 亚洲一区中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一区av在线观看| 黄色丝袜av网址大全| 亚洲中文av在线| 激情在线观看视频在线高清| 亚洲黑人精品在线| 曰老女人黄片| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 不卡av一区二区三区| 香蕉丝袜av| 国产熟女xx| 久久中文字幕人妻熟女| 成人欧美大片| 欧美激情极品国产一区二区三区| 久久国产亚洲av麻豆专区| av有码第一页| 黑人操中国人逼视频| 99国产综合亚洲精品| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 午夜日韩欧美国产| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| av视频在线观看入口| 欧美日韩精品网址| 在线观看午夜福利视频| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 91字幕亚洲| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 成年人黄色毛片网站| 欧美在线一区亚洲| 一级黄色大片毛片| 免费在线观看亚洲国产| 精华霜和精华液先用哪个| 怎么达到女性高潮| 成人午夜高清在线视频 | 欧美日韩亚洲综合一区二区三区_| 亚洲中文字幕日韩| www国产在线视频色| www.999成人在线观看| 757午夜福利合集在线观看| 久久香蕉激情| 久久精品aⅴ一区二区三区四区| 看片在线看免费视频| av超薄肉色丝袜交足视频| 好男人电影高清在线观看| 黄色丝袜av网址大全| 国产精品av久久久久免费| 动漫黄色视频在线观看| 婷婷丁香在线五月| 国产午夜精品久久久久久| 国产黄片美女视频| 在线看三级毛片| 国产成年人精品一区二区| 久久久久免费精品人妻一区二区 | 午夜激情av网站| 很黄的视频免费| 欧美黄色片欧美黄色片| 在线十欧美十亚洲十日本专区| 精品熟女少妇八av免费久了| 久久婷婷人人爽人人干人人爱| 国产亚洲精品av在线| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 可以在线观看毛片的网站| 91字幕亚洲| 好男人在线观看高清免费视频 | 欧美成人性av电影在线观看| 99国产精品一区二区三区| 国产欧美日韩一区二区精品| 一区二区日韩欧美中文字幕| 韩国av一区二区三区四区| 精品欧美国产一区二区三| avwww免费| 亚洲av片天天在线观看| 亚洲成av人片免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 少妇 在线观看| 老司机午夜十八禁免费视频| 国产私拍福利视频在线观看| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 欧美黄色片欧美黄色片| 曰老女人黄片| 夜夜夜夜夜久久久久| 久久久水蜜桃国产精品网| 麻豆成人av在线观看| 国产日本99.免费观看| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 久久久久久亚洲精品国产蜜桃av| 哪里可以看免费的av片| 国产精品1区2区在线观看.| 女人被狂操c到高潮| 亚洲中文av在线| 欧美三级亚洲精品| www.精华液| 国产精品,欧美在线| 一级毛片女人18水好多| 欧美日韩乱码在线| 国产精品国产高清国产av|