• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    2016-11-28 08:06:55黃海平岳亞鋒姜立萍
    無機化學學報 2016年11期
    關鍵詞:葡萄糖氧化酶理工大學納米材料

    黃海平 徐 亮 岳亞鋒 姜立萍

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    基于氧化鉺-石墨烯氧化物復合納米材料的葡萄糖氧化酶直接電化學性能及對葡萄糖的檢測

    黃海平1,2徐亮1岳亞鋒1姜立萍*,2

    (1江西理工大學冶金與化學工程學院,贛州341000)

    (2生命分析化學國家重點實驗室,南京大學化學化工學院,南京210093)

    將稀土納米材料Er2O3用于構建葡萄糖生物傳感器。Er2O3和氧化石墨烯形成復合基底,將葡萄糖氧化酶(GOD)固載在玻碳電極表面。首先利用SEM和XRD技術對所制備的Er2O3和氧化石墨烯納米材料進行表征。利用EIS和CV對整個生物傳感器制備過程進行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其與電極之間的電子傳遞。由于Er2O3和氧化石墨烯之間的協(xié)同效應,使得制備的傳感器在CV圖中呈現(xiàn)一對明顯的氧化還原峰,證實GOD和電極之間的直接電子傳遞性能。當用于對葡萄糖的電催化氧化時,傳感器的CV響應隨著葡萄糖濃度的增加而變弱。在葡萄糖濃度為1~10 mmol·L-1范圍內,CV響應值與葡萄糖濃度成線性關系。此外,傳感器具有好的穩(wěn)定性和重現(xiàn)性。

    氧化鉺;石墨烯氧化物;葡萄糖氧化酶;生物傳感器

    0 Introduction

    Nowadays,the rare-earth based nanomaterials have attracted much interest due to their narrow emission bands,noncytotoxicity and excellent biocompatibility for construction of various desired biosensors. As back in 2002,Prof.Chen[1]first prepared the lanthanum hexacyanoferrate(LaHCF)modified platinum electrode by cyclic voltammetric(CV)technique.The modified electrode showed considerable electrochemical behavior and might be used for fabrication of electrochemical sensor.In 2006,Ru′s group[2]developed CeO2/Chitosan(CHIT)composite matrix for the immobilization of single-stranded DNA(ssDNA)probe and the fabrication of DNA biosensor.Combining the advantages of good biocompatibility and electronic conductivity,the prepared matrix exhibited the enhanced loading of ssDNA probe on the electrode surface.In order to improve the loading amount,the sensitivity and the selectivity,carbon nanotubes and other nanomaterials were employed to form the nanocomposite with CeO2[3].Under the synergistic effect of this nanocomposite matrix,the immobilization of the DNA probes was greatly enhanced and the sensitivity of the detection of target DNA was markedly improved.What′s more,some rare earth elements could also promote the conformational change of DNA secondary structure.For example,in the presence of Tb3+,the conformation of single stranded G-rich DNA probe could be changed to form the compact quadruplex[4].With their excellent biocompatibilities, rare earth elementscould enhance the catalytic activities of bio-enzymes.Many enzymes such as horseradish peroxidase(HRP)[5],glucose oxidase(GOD)[6],and cholesterol oxidase(ChOx)[7]were reported to be immobilized onto the rare earth based nanomaterials for the construction of biosensor.To take ChOx as an example,ChOx could be immobilized onto the sol-gel derived nano-structured cerium oxide with ITO as glass substrate.The result proved that the sol-gel NSCeO2film could provide better configuration for immobilization of ChOx.Another rare earth oxide of Tm2O3was employed for the immobilization of GOD[6]. The direct electron transfer(DET)with an apparent heterogeneous electron transfer rate constant was achieved on the GOD immobilized Nafion-Tm2O3film. Other elements like Y[8],Sm[9-10]were reported for the fabrication of biosensor for the detection of serum uric acid,oxidized low density lipoprotein,etc.The above successful reports for the achievement of enzymes DET and the electrochemical detection of small biomolecule proved a new promising strategy for the fabrication of electrochemical biosensors based on the rare earth oxide nanomaterials.Many other elements among the rare earth are still remain to be explored and studied.For this purpose,herein we synthesized Er2O3nanomaterial and studied its electrochemical property.

    As a novel two-dimensional monolayer nanomaterial,graphene[11]exhibited excellent thermal,electronic,and mechanical properties,such as high surface area,unique transport performance[12],excellent electrical conductivity,ultra-strong mechanical properties and high stability[13].In recent years,graphene oxide (GO)based materials were widely used for electrochemical biosensor applications[14-16].

    In this paper,in order to further expand the electrochemical study of rare earth elements,the Er2O3nanomaterial was firstly synthesized via hydrothermal homogeneous method and then characterized.Glucose oxidase(GOD),as an ideal model enzyme,was employed for use in the next bioelectrochemistry. Graphene oxide was used to form the composite with the prepared Er2O3nanomaterial so as to achieve better electrochemical performance.

    1 Experimental

    1.1Reagents and apparatus

    Chitosan(low molecular weight),GOD from Aspergillus niger(E.C.1.1.3.4,Type X-S,100~250 kU·g-1) and D-(+)-glucose were purchased from Sigma-Aldrich and used without further purification.Bulk Er2O3was obtained from Tongji Institute of Trace Element (Beijing,China).All other chemicals were of analytical grade and used without further purification. Millipore ultrapure water(Resistivity≥18.2 MΩ)wasused throughout the experiment.Phosphate buffer solution(PBS)(pH 7.0,0.1 mol·L-1)was employed as a supporting electrolyte by mixing the stock solutions of NaH2PO4and Na2HPO4.

    X-ray diffraction(XRD)patterns were recorded on an X-ray diffractometer(PANalytical X′Pert Pro) with Cu Kα radiation(λ=0.154 18 nm)for crystal phase identification.The XRD was operated at 40 kV accelerating voltage and 40 mA tube current,with the degree range of 5°~80°.Scanning electron microscope (SEM)was taken using a Philips XL30 microscope, using an accelerating voltage of 200 kV.The electrochemical impedance spectroscopy(EIS)analyses were performed on an Autolab PGSTAT12(Ecochemie,BV, The Netherlands)with the frequency range of 0.1~1.0×105Hz.A CHI 660D Electrochemical Workstation(Shanghai CH Instruments Co.,China)was used for the cyclic voltammograms(CVs).The electrochemical system consisted of a modified glassy carbon electrode(GCE)as working electrode,a platinum wire auxiliary electrode and a saturated calomel electrode (SCE)as reference electrode.

    1.2Synthesis of nanomaterials

    GO was synthesized according to the modified Hummers method[17-18].The last suspension was centrifuged under 3 000 r·min-1.The supernatant was collected and put in the refrigerator for further use.Er2O3nanomaterial was prepared according to the reported previously method with some modifications[6].In briefly,0.1 mmol bulk Er2O3was firstly dissolved in hot concentrated HCl(36%).After that,the pH value was adjusted by 0.2 mol·L-1NaOH solution to about 10.The solution was then poured into the Teflon-lined autoclaves(100 mL)and held at 150℃for 12 h. After cooled to room temperature naturally,the precipitates were collected by centrifugation and then calcined at 400℃for 2 h.

    1.3Fabrication of biosensor

    First of all,the glassy carbon electrode(GCE,4 mm in diameter)was carefully polished to a mirror by 1.0,0.3 and 0.05 μm alumina powder.After ultrasonically cleaned in ethanol and water respectively,GCE was then dried by flowing N2before it was used.1 mg prepared Er2O3nanomaterial was dispersed in 1 mL H2O by ultrasonicating to form a stable suspension. Then a homogeneous solution,which finally contained about 6 mg·mL-1GOD,0.3 mg·mL-1Er2O3nanomaterial,0.6 mg·mL-1GO was formed by thoroughly mixing the Er2O3suspension,GO suspension with GOD solution(20 mg·mL-1)at 1∶1∶1 ratio(V/V).A volume of 10 μL of the resulting solution was dropped onto the pretreated GCE.The electrode was left in desiccator to dry at 4℃.At last,5 μL of 5 mg·mL-1chitosan solution was dripped onto the GOD/GO/ Er2O3/GCE for sealing.The GOD/GCE,GOD/Er2O3/ GCE,GOD/GO/GCE were fabricated through a similar procedure with pure water as the substitute.

    2 Results and discussion

    2.1Characterization of nanomaterials

    The morphology of the synthesized Er2O3nanomaterial was characterized by SEM,which was shown in Fig.1A.It could be seen from Fig.1A that the Er2O3were relatively uniform in square-shaped size with about 500 nm in length.Fig.1B was the XRD pattern of the as-synthesized GO.As indicated in the pattern,a well-defined d001peak of 2θ=10.3° confirmed that the GO formed a well-ordered layered structure[19].The surface of the prepared biosensor was shown in Fig.1C,which contained ternary nanocomposites of Er2O3nanomaterial,GO and GOD.As could be seen from Fig.1C,Er2O3nanomaterials and GODs were dispersed on the surface of GO.

    2.2Electrochemical characterization of the biosensor

    As an effective tool to inspect the estates of the electrode surface,EIS is widely used to understand the chemical transformations and processes associated with the conductive electrode surface[20].The electron transfer resistance of the electrochemical reaction,Ret, reveals the electron transfer kinetics of the redox electrochemical probe at the electrode interface. Another electrochemical technique of cyclic voltammogram(CV)is also considered as a powerful method to monitor the electron transfer behaviour between the solution species and the electrode.Herein,the EISand CV were used to examine the modified electrode after each self-assembly step,which were shown in Fig.2.

    Fig.1(A)SEM of the prepared Er2O3Nanomaterial;(B)XRD pattern of the prepared graphene oxide; (C)SEM of the ternary composites containing Er2O3nanomaterial,GO and GOD

    Fig.2 EIS(A)and CV(B)of the electrode at different stages in 0.1 mol·L-1KCl+2 mmol·L-1[Fe(CN6)]3-/[Fe(CN6)]4-

    As presented by the EIS spectrum in Fig.2A,the GO modified electrode(curve a in Fig.2A)showed relative small electron-transfer resistance(Ret)as compared to the Er2O3modified electrode(curve b in Fig. 2A),which suggested that the GO owned better electronic conductivity than Er2O3.After the GOD was mixed with Er2O3and coated on the bare electrode (curve d in Fig.2A),the resistance increased dramatically.This phenomenon could be attributed to the hindrance effect of electron-transfer kinetics between the redox probe and electrode surface[21].The similar result was also observed when GOD was mixed with GO(curve c in Fig.2A).Accordingly,the ternary nanocomposites GOD/GO/Er2O3modified electrode exhibited a moderate Ret(curve e in Fig.2A),which wassmaller than the GOD/Er2O3and larger than the GOD/ GO modified electrode.

    Fig.2B showed the CVs of the redox probe [Fe(CN6)]3-/[Fe(CN6)]4-on the modified electrode at different stages.As could be seen in Fig.2B,stepwise modifications on the GCE were accompanied by the changes in the amperometric response of the redox probe.On the GO modified electrode,a pair of welldefined redox peaks was observed(curve a in Fig.2B), showing the excellent electron-transfer kinetics of [Fe(CN6)]3-/[Fe(CN6)]4-,so as the Er2O3modified GCE (curve b in Fig.2B).After the GOD was mixed with GO,the amperometric response decreased and the peak-to-peak separation enlarged(curve c in Fig.2B), due to the fact that the bulky GOD molecules blocked the electron exchange.The CV response was further decreased after GOD was mixed with Er2O3(curve d in Fig.2B).The shape of the redox peaks become better than Er2O3/GOD when GO was added to form the ternary nanocomposites(curve e in Fig.2B).From the above results,it was obvious that the CV changes were consistent with the EIS changes.

    2.3Direct electrochemistry of GOD/GO/Er2O3/ GCE

    For the purpose of investigating the direct electrochemical property of the modified electrodes, the cyclic voltammograms(CV)of the modified electrodes at different steps were detected.Fig.3A was the CV of GOD/GCE,GOD/Er2O3/GCE,GOD/GO/GCE and GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1, pH 7.0)at the scan rate of 100 mV·s-1.

    As could be seen from the results,when the GOD was directly dropped onto the GCE surface(curve a in Fig.3A),a very small redox wave was observed.This wave could be attributed to the characteristic of a reversible electron transfer process between the redox active center(flavin-adenine dinucleotide,FAD)in GOD and the electrode[22-23].The CV curve of the GOD/ GO/GCE(curve c in Fig.3A)showed more distinguished redox waves with larger peak current,which was attributed to the excellent biocompatibility and electronical conductivity of GO.A comparison with the CV curves of the GOD/Er2O3/GCE(curve b in Fig. 3A)and GOD/GO/GCE presented similar redox waves, which proved that the prepared Er2O3nanomaterial could also provide a friendly microenvironment to maintain the bioactivity of GOD and the electron transfer between the modified electrode and GOD. Furthermore,after GOD was mixed with GO and Er2O3to form the ternary nanocomposites,the GOD/GO/ Er2O3/GCE(curve d in Fig.3A)displayed a pair of more distinct and better-defined redox peaks, indicating the faster DET rate between the redoxactive site of GOD and GCE.The synergistic effect of the GO/Er2O3nanocomposite was considered to effectively accelerate electrical transfer between redox-active center of GOD and electrode surface, leading to the increased peak current.Combining theSEM picture and CV curves,it could be deduced that GO not only promoted the electron transfer rate,but also provided the necessary supported matrix to form the ternary nanocomposites.

    Fig.3(A)CV of the modified electrodes at different steps in PBS solution(0.1 mol·L-1,pH 7.0)at the scan rate of 100 mV·s-1; (B)CVs of GOD/GO/Er2O3/GCE measured in PBS solution(0.1 mol·L-1,pH 7.0)at the different scan rates

    For the purpose of further understanding the property of electron transfer between the GOD and the electrode,the cyclic voltammograms of the GOD/GO/ Er2O3/GCE at various scan rates were investigated, which were displayed in Fig.3B.It could be obviously seen from Fig.3B that the redox peak currents increased with the increase of the scan rates in the range of 10~200 mV·s-1,coupled with slightly enlarged peak-to-peak separation.Inset in Fig.3B was the calibration plot of the peak current vs the scan rate. The redox peak currents linearly increased with the increase of the scan rates,confirming that this redox reaction of GOD was a surface-controlled electrochemical process,not a diffusion-controlled process[24-25].

    2.4Detection of glucose

    The amperometric response of the prepared biosensor to the target was investigated in various concentrations of glucose.As was proved,via the enzyme catalyzed reaction,the D-(+)-glucose could result in the reductive form of GOD(GOD-FADH2) according to the following chemical equations[26-27]:

    GOD-FAD+2e+2H+?GOD-FADH2(1) Glucose+GOD-FAD→gluconolactone+GOD-FADH2(2) Therefore,when glucose was added,the electrocatalytic reaction(Eq.1)would be restrained by the enzyme catalyzed reaction(Eq.2).This directly induced the decrease of the GOD-FAD concentration, followed by the decrease of the reduction current.

    Fig.4A was the typical cyclic voltammograms of the prepared biosensor in blank 0.1 mol·L-1PBS solution with the different concentrations of glucose from 0 to 10.0 mmol·L-1.With more glucose added to the PBS solution,the reduction current decreased,i.e., the higher glucose concentration caused the decrease of the reduction current.Fig.4B is the CV response calibration curve of the prepared biosensor against the concentrations of glucose.The calibration curve corresponding to the CV response is linear against the concentrations of glucose ranging from 1 to 10 mmol· L-1with the detection limit of 0.3 mmol·L-1(S/N=3).The regression equation is i(μA)=-12.94+0.85c(mmol·L-1) with the correlation coefficient(R)of 0.998.

    The stability of the biosensor was investigated in 0.1 mol·L-1PBS.The relative standard deviations(RSD) were 4.1%for 10 successive assays in the presence of 1.0 mmol·L-1glucose,indicating that the enzyme electrode was stable in buffer solution.The fabrication reproducibility for four electrodes gave a RSD of 6.5% for CV determination at 1.0 mmol·L-1glucose.After storing at 4℃in the refrigerator for 10 days,the response to 1.0 mmol·L-1glucose retained 95.8%of its initial current,demonstrating good long-term stability.It can be attributed to the biocompatibility ofthe GO/Er2O3nanocomposite,which can provide an excellent microenvironment for GOD to retain its bioactivity

    Fig.4(A)CVs of GOD/GO/Er2O3/GCE in PBS solution(0.1 mol·L-1,pH 7.0)with different glucose concentration; (B)Calibration plot of response current vs glucose concentration

    3 Conclusions

    In summary,the rare earth oxide of Er2O3was employed to form the nanocompositewith GO.SEM and XRD were used to characterize the prepared nanomaterials.The EIS and CV were used to check the electrochemical behaviors of different modified electrode.The results proved that the nanomaterials owned good electronical conductivity.The direct electrochemical properties of GOD/GO/Er2O3/GCE suggested that the Er2O3/GO supported matrix could effectively immobilize GOD onto the GCE,while still maintaining the excellent bioactivity.Detecting performance of the prepared biosensor towards the electrocatalytic oxidation to glucose revealed a wide linear range,good stability and reproducibility.On the basis of the above electrochemical measurements,the Er2O3nanomaterial,which owns good electronical conductivity and biocompatibility,exhibits great potential applications in the field of electrochemical biosensor.This provides the possibility of novel nanomaterials for the construction of electrochemical biosensor.Further work is still in progress to explore new rare earth elements nanomaterials for the electrochemical and biological applications.

    References:

    [1]Liu S Q,Chen H Y.J.Electroanal.Chem.,2002,528(1/2): 190-195

    [2]Feng K J,Yang Y H,Wang Z J,et al.Talanta,2006,70(3): 561-565

    [3]Zhang W,Yang T,Zhuang X M,et al.Biosens.Bioelectron., 2009,24(8):2417-2422

    [4]Zhang J,Chen J H,Chen R C,et al.Biosens.Bioelectron., 2009,25(2):378-382

    [5]Xiao X L,Luan Q F,Yao X,et al.Biosens.Bioelectron.,2009, 24(8):2447-2451

    [6]Li Y,Gao Y F,Zhou Y,et al.J.Electroanal.Chem.,2010, 642(1):1-5

    [7]Ansari A A,Kaushik A,Solanki P R,et al.Electrochem. Commun.,2008,10(9):1246-1249

    [8]Kodaira C A,Lourenco A V S,Felinto M C F C.et al.J. Lumin.,2011,131(4):727-731

    [9]Chinnu M K,Anan K V,Kumar R M,et al.Mater.Lett., 2013,113:170-173

    [10]Wu M H,Lin T W,Huang M D,et al.Sens.Actuators B, 2010,146(1):342-348

    [11]Novoselov K S,Geim A K,Morozov S V,et al.Science,2004, 306(5696):666-669

    [12]Du X,Skachko L,Barker A,et al.Nat.Nanotechnol.,2008, 3:491-495

    [13]Balandin A A,Ghosh S,Bao W,et al.Nano Lett.,2008,8 (3):902-907

    [14]Wang W X,Ge L,Sun X M,et al.Mater.Inter.,2015,7(51): 28566-28575

    [15]Zhang R Z,Sun C L,Lu Y J,et al.Anal.Chem.,2015,87 (24):12262-12269

    [16]Liu J Y,Wang X H,Wang T S,et al.ACS Appl.Mater. Interface,2014,6(22):19997-20002

    [17]Hummers W,Offeman R.J.Am.Chem.Soc.,1958,80(6): 1339-1339

    [18]Wang Z J,Zhou X Z,Zhang J,et al.J.Phys.Chem.C, 2005,113(32):14071-14075

    [19]Lambert T N,Chave C A,Sanch B H,et al.J.Phys.Chem. C,2009,113(46):19812-19823

    [20]Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications.New York:Wiley,1980.

    [21]Deng S Y,Jian G Q,Lei J P,et al.Biosens.Bioelectron., 2009,25(2):373-377

    [22]Zhang Y J,Shen Y F,Han D X,et al.Biosens.Bioelectron., 2007,23(3):438-443

    [23]Zhou Y,Yang H,Chen H Y.Talanta,2008,76(2):419-423

    [24]Ivanova E V,Magner E.Electrochem.Commun.,2005,7(4): 323-327

    [25]Deng C Y,Chen J H,Chen X L,et al.Biosens.Bioelectron., 2008,23(8):1272-1277

    [26]Yang L Q,Ren X L,Tang F Q,et al.Biosens.Bioelectron., 2009,25(4):889-895

    [27]Liu S Q,Ju H X.Biosens.Bioelectron.,2003,19(3):177-183

    Er2O3-Graphene Oxide Nanocomposite Supported Glucose Oxidase: Direct Electrochemistry and Biosensing to Glucose

    HUANG Hai-Ping1,2XU Liang1YUE Ya-Feng1JIANG Li-Ping*,2
    (1School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
    (2State Key Laboratory of Analytical Chemistry for Life Sciences,School of Chemistry& Chemical Engineering,Nanjing University,Nanjing 210093,China)

    A new rare earth oxide of Er2O3was employed for the construction of glucose biosensor.Er2O3was mixed with graphene oxide(GO)to form the supported matrix for immobilization of glucose oxidase(GOD)onto the glassy carbon electrode(GCE).The nanomaterials of Er2O3and GO were firstly synthesized and characterized by SEM,XRD.The fabrication process for the biosensor was monitored by electrochemical impedance spectroscopy (EIS)and cyclic voltammetry(CV).The presence of Er2O3could effectively maintain the bioactivity of GOD and enhance the electron transfer rate.The prepared biosensor showed a pair of distinct and well-defined redox peaks,indicating the fast direct electron transfer(DET)rate between the redox-active site of GOD and GCE,which could be attributed to the synergistic effect of the GO/Er2O3nanocomposite.When employed to the electrocatalytic detection of glucose,the CV response of the prepared biosensor decreased against the concentrations of glucose. The calibration curve corresponding to the CV response was linear against the concentrations of glucose ranging from 1 to 10 mmol·L-1.Moreover,the biosensor showed good stability and reproducibility.

    Er2O3;graphene oxide;glucose oxidase;biosensor

    TB333

    A

    1001-4861(2016)11-2034-07

    10.11862/CJIC.2016.268

    2016-05-28。收修改稿日期:2016-09-30。

    國家自然科學基金(No.21465013,21475057,21005034)、中國博士后科學基金(No.2014M551550)、江西省自然科學基金(No.20114BAB213014,GJJ13433)和江西理工大學清江青年英才支持計劃資助項目。

    *通信聯(lián)系人。E-mail:jianglp@nju.edu.cn

    猜你喜歡
    葡萄糖氧化酶理工大學納米材料
    武器中的納米材料
    學與玩(2022年8期)2022-10-31 02:41:56
    昆明理工大學
    二維納米材料在腐蝕防護中的應用研究進展
    昆明理工大學
    昆明理工大學
    浙江理工大學
    葡萄糖氧化酶的研究進展及其在豬生產中的應用分析
    飼料博覽(2019年7期)2019-02-12 22:28:15
    齒輪狀SBA-15的制備及其對葡萄糖氧化酶的吸附行為研究
    陶瓷學報(2019年5期)2019-01-12 09:17:42
    葡萄糖氧化酶在斷奶仔豬日糧上的應用研究進展
    MoS2納米材料的制備及其催化性能
    国产精品九九99| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产区一区二久久| 亚洲av日韩精品久久久久久密| 人人妻,人人澡人人爽秒播| 日本成人三级电影网站| 成人一区二区视频在线观看| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 国产三级中文精品| 夜夜看夜夜爽夜夜摸| 一本大道久久a久久精品| 人妻丰满熟妇av一区二区三区| 国产成人av教育| 亚洲五月婷婷丁香| www.999成人在线观看| 国产高清激情床上av| 成年版毛片免费区| 成人永久免费在线观看视频| 国产精品野战在线观看| 91大片在线观看| 亚洲avbb在线观看| 三级毛片av免费| 麻豆国产av国片精品| 这个男人来自地球电影免费观看| 亚洲av第一区精品v没综合| 亚洲精品国产精品久久久不卡| 88av欧美| 国产精品一及| 亚洲美女视频黄频| 草草在线视频免费看| 亚洲专区国产一区二区| 天天一区二区日本电影三级| 亚洲 欧美一区二区三区| 久久久精品大字幕| 精品国内亚洲2022精品成人| 亚洲人成网站高清观看| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲av一区麻豆| 欧美日韩福利视频一区二区| 久久天躁狠狠躁夜夜2o2o| 亚洲av熟女| 青草久久国产| 国产一区二区三区在线臀色熟女| 国产午夜精品久久久久久| 日本一本二区三区精品| 精品国产乱码久久久久久男人| 国产免费av片在线观看野外av| 成人三级黄色视频| 久久人人精品亚洲av| 精品人妻1区二区| 国产亚洲精品av在线| 岛国在线免费视频观看| 日本精品一区二区三区蜜桃| 亚洲男人的天堂狠狠| 女警被强在线播放| 国内精品久久久久久久电影| 嫁个100分男人电影在线观看| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片免费观看直播| 一区二区三区激情视频| 天天一区二区日本电影三级| 成人永久免费在线观看视频| 91大片在线观看| 一级毛片女人18水好多| 国内久久婷婷六月综合欲色啪| 久久伊人香网站| 中文字幕最新亚洲高清| 夜夜夜夜夜久久久久| 国产精华一区二区三区| 一级作爱视频免费观看| 99精品欧美一区二区三区四区| 国产精品香港三级国产av潘金莲| 久久久久久九九精品二区国产 | av福利片在线| 久久香蕉国产精品| 国产精品1区2区在线观看.| 99精品在免费线老司机午夜| 亚洲一区高清亚洲精品| 最新在线观看一区二区三区| 校园春色视频在线观看| 真人一进一出gif抽搐免费| 欧美成人一区二区免费高清观看 | 校园春色视频在线观看| 欧美成狂野欧美在线观看| 十八禁网站免费在线| 国产野战对白在线观看| 午夜福利在线在线| 身体一侧抽搐| 国产人伦9x9x在线观看| 亚洲av成人av| 亚洲自偷自拍图片 自拍| 女人被狂操c到高潮| 色精品久久人妻99蜜桃| 在线永久观看黄色视频| 精品国产亚洲在线| 91九色精品人成在线观看| 99久久综合精品五月天人人| 久久精品成人免费网站| 免费高清视频大片| 午夜福利在线观看吧| 老汉色av国产亚洲站长工具| 日本免费一区二区三区高清不卡| 一本综合久久免费| 欧美3d第一页| 我要搜黄色片| 亚洲,欧美精品.| 男女午夜视频在线观看| 在线观看免费视频日本深夜| 成人一区二区视频在线观看| 夜夜夜夜夜久久久久| 一本久久中文字幕| 欧美日韩亚洲综合一区二区三区_| 在线永久观看黄色视频| 日本免费一区二区三区高清不卡| 成人永久免费在线观看视频| www国产在线视频色| 黄片大片在线免费观看| 久久久久久国产a免费观看| 99热这里只有精品一区 | 黄色视频,在线免费观看| 色噜噜av男人的天堂激情| 亚洲色图av天堂| 欧美大码av| x7x7x7水蜜桃| 亚洲精华国产精华精| 久久久久久久久久黄片| 999久久久精品免费观看国产| 久久 成人 亚洲| 久久久久国产一级毛片高清牌| 这个男人来自地球电影免费观看| 一二三四社区在线视频社区8| av天堂在线播放| 成人国产综合亚洲| 夜夜躁狠狠躁天天躁| xxxwww97欧美| 国产成人精品久久二区二区91| 国产黄色小视频在线观看| 午夜精品久久久久久毛片777| 成人国语在线视频| 亚洲精品av麻豆狂野| 日本黄色视频三级网站网址| 久久国产乱子伦精品免费另类| 亚洲激情在线av| 少妇裸体淫交视频免费看高清 | 熟妇人妻久久中文字幕3abv| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| 久久亚洲真实| 国产伦人伦偷精品视频| av片东京热男人的天堂| e午夜精品久久久久久久| 成人18禁高潮啪啪吃奶动态图| 成人高潮视频无遮挡免费网站| 中文亚洲av片在线观看爽| 日韩中文字幕欧美一区二区| 午夜两性在线视频| 精品不卡国产一区二区三区| 黑人巨大精品欧美一区二区mp4| 老熟妇乱子伦视频在线观看| 日韩精品中文字幕看吧| 99国产精品一区二区三区| 久久精品亚洲精品国产色婷小说| 国产成+人综合+亚洲专区| 在线观看舔阴道视频| 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产 | 91大片在线观看| 大型av网站在线播放| 淫秽高清视频在线观看| 亚洲片人在线观看| 99热只有精品国产| 91国产中文字幕| 欧美黄色淫秽网站| 两人在一起打扑克的视频| 又爽又黄无遮挡网站| 国产久久久一区二区三区| 精品久久久久久久久久久久久| 男人的好看免费观看在线视频 | 中文亚洲av片在线观看爽| 两个人的视频大全免费| 精品乱码久久久久久99久播| 操出白浆在线播放| 特级一级黄色大片| 日韩精品青青久久久久久| 91av网站免费观看| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 午夜影院日韩av| 露出奶头的视频| 在线观看免费午夜福利视频| 色综合婷婷激情| 色在线成人网| 一个人免费在线观看电影 | 国内精品久久久久精免费| 国产精品影院久久| 最近最新中文字幕大全免费视频| 欧美极品一区二区三区四区| 老司机在亚洲福利影院| 99久久久亚洲精品蜜臀av| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器 | 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 91大片在线观看| 三级男女做爰猛烈吃奶摸视频| 国产男靠女视频免费网站| 88av欧美| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 成熟少妇高潮喷水视频| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 琪琪午夜伦伦电影理论片6080| 丝袜人妻中文字幕| 免费人成视频x8x8入口观看| 夜夜爽天天搞| 男插女下体视频免费在线播放| 国产精华一区二区三区| 日本一区二区免费在线视频| 欧美3d第一页| 国产精品 欧美亚洲| 久久久精品大字幕| 亚洲中文日韩欧美视频| 国产伦在线观看视频一区| 久久久久国产精品人妻aⅴ院| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 悠悠久久av| 无遮挡黄片免费观看| 草草在线视频免费看| 久久久久久久久久黄片| 天堂动漫精品| 极品教师在线免费播放| 亚洲黑人精品在线| 午夜精品在线福利| aaaaa片日本免费| 欧美极品一区二区三区四区| 亚洲人成网站高清观看| 国产亚洲精品综合一区在线观看 | 欧美性猛交黑人性爽| 欧美日韩乱码在线| www.www免费av| 精品熟女少妇八av免费久了| 亚洲一区高清亚洲精品| 国内久久婷婷六月综合欲色啪| 亚洲av成人精品一区久久| 国产亚洲精品av在线| 国产精品免费视频内射| 我的老师免费观看完整版| 无遮挡黄片免费观看| 色综合亚洲欧美另类图片| 亚洲精品粉嫩美女一区| 一个人免费在线观看电影 | 大型av网站在线播放| 国产av又大| 国产97色在线日韩免费| 欧美大码av| 国产亚洲精品av在线| 在线a可以看的网站| 久久精品人妻少妇| 亚洲精品久久成人aⅴ小说| 床上黄色一级片| 日日干狠狠操夜夜爽| 久久性视频一级片| 久久久久久亚洲精品国产蜜桃av| 午夜久久久久精精品| 9191精品国产免费久久| 又紧又爽又黄一区二区| 日韩免费av在线播放| 亚洲精品久久成人aⅴ小说| 亚洲精品粉嫩美女一区| 免费人成视频x8x8入口观看| 可以在线观看的亚洲视频| 国产激情久久老熟女| 窝窝影院91人妻| 老司机在亚洲福利影院| 18禁观看日本| 国产免费av片在线观看野外av| 91成年电影在线观看| 国产精品久久视频播放| 精品午夜福利视频在线观看一区| 香蕉久久夜色| 男人舔奶头视频| 草草在线视频免费看| 欧美日韩乱码在线| √禁漫天堂资源中文www| 久久久久免费精品人妻一区二区| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 69av精品久久久久久| 97超级碰碰碰精品色视频在线观看| 最近最新中文字幕大全电影3| 久久精品亚洲精品国产色婷小说| 国产精品综合久久久久久久免费| 国产蜜桃级精品一区二区三区| 国产伦人伦偷精品视频| 国产麻豆成人av免费视频| 一级毛片女人18水好多| 国产精品1区2区在线观看.| 最好的美女福利视频网| 久久天堂一区二区三区四区| 两个人视频免费观看高清| aaaaa片日本免费| 日日爽夜夜爽网站| 午夜两性在线视频| 亚洲成人中文字幕在线播放| 国产午夜精品久久久久久| 日本一二三区视频观看| 校园春色视频在线观看| 亚洲午夜理论影院| 999久久久精品免费观看国产| 一区福利在线观看| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色丝袜av网址大全| 亚洲最大成人中文| 男人舔奶头视频| 久久精品国产亚洲av高清一级| 国产成人aa在线观看| 欧美久久黑人一区二区| 手机成人av网站| 无遮挡黄片免费观看| 黄色视频不卡| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 国产成人精品久久二区二区免费| 国产精品久久久久久久电影 | 亚洲aⅴ乱码一区二区在线播放 | 又紧又爽又黄一区二区| 搡老岳熟女国产| 国产精品爽爽va在线观看网站| 禁无遮挡网站| 伦理电影免费视频| 在线观看舔阴道视频| 大型黄色视频在线免费观看| 免费在线观看完整版高清| 日日干狠狠操夜夜爽| 午夜精品久久久久久毛片777| 亚洲第一电影网av| 亚洲专区字幕在线| 亚洲 国产 在线| 免费在线观看完整版高清| a级毛片在线看网站| 欧美一级毛片孕妇| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 国内视频| 欧美一级a爱片免费观看看 | 日本免费a在线| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三| 亚洲国产看品久久| 免费高清视频大片| 久久久久九九精品影院| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 久久久久久国产a免费观看| 后天国语完整版免费观看| 亚洲男人的天堂狠狠| 欧美激情久久久久久爽电影| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| 一级作爱视频免费观看| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 国产不卡一卡二| 一夜夜www| 亚洲一区高清亚洲精品| 黑人操中国人逼视频| 亚洲 国产 在线| 88av欧美| 操出白浆在线播放| 国产激情欧美一区二区| 亚洲国产高清在线一区二区三| 久久精品国产清高在天天线| 人成视频在线观看免费观看| 精品欧美一区二区三区在线| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 日本在线视频免费播放| 久久久久久人人人人人| 2021天堂中文幕一二区在线观| 国产私拍福利视频在线观看| 中文字幕精品亚洲无线码一区| 欧美日韩精品网址| 天堂动漫精品| 欧美一级毛片孕妇| 我的老师免费观看完整版| 一夜夜www| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 免费看十八禁软件| 日本三级黄在线观看| 一本大道久久a久久精品| 午夜福利18| www.www免费av| 日本一本二区三区精品| 18禁观看日本| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 12—13女人毛片做爰片一| 丝袜美腿诱惑在线| 亚洲国产精品久久男人天堂| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 久久热在线av| 国产精品久久久久久亚洲av鲁大| svipshipincom国产片| 久热爱精品视频在线9| 成在线人永久免费视频| 国产激情欧美一区二区| 男女床上黄色一级片免费看| www.精华液| 欧美成人午夜精品| 色综合站精品国产| 久久草成人影院| 欧美成人午夜精品| 欧美一区二区国产精品久久精品 | 最新美女视频免费是黄的| 亚洲中文字幕日韩| 国产私拍福利视频在线观看| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 久久香蕉激情| 中文亚洲av片在线观看爽| 夜夜爽天天搞| 在线观看舔阴道视频| 亚洲熟妇熟女久久| 成年免费大片在线观看| 少妇粗大呻吟视频| 毛片女人毛片| 国产精品电影一区二区三区| 国产精品久久久av美女十八| 后天国语完整版免费观看| 午夜激情av网站| 搡老妇女老女人老熟妇| 久久精品国产综合久久久| 九色成人免费人妻av| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| 精品日产1卡2卡| av国产免费在线观看| 亚洲欧美激情综合另类| 日韩欧美 国产精品| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| av天堂在线播放| 国产熟女午夜一区二区三区| 全区人妻精品视频| 久久精品91无色码中文字幕| 婷婷亚洲欧美| 免费观看人在逋| 欧美最黄视频在线播放免费| 丰满人妻一区二区三区视频av | 国产视频一区二区在线看| 欧美成人性av电影在线观看| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区| 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 非洲黑人性xxxx精品又粗又长| 两个人的视频大全免费| 欧美黑人巨大hd| 成人国产综合亚洲| 亚洲av熟女| 日韩欧美在线乱码| 在线免费观看的www视频| 免费看日本二区| 亚洲欧美日韩无卡精品| 嫁个100分男人电影在线观看| 国产精品一区二区精品视频观看| 亚洲国产精品成人综合色| 日韩精品中文字幕看吧| 99国产精品一区二区蜜桃av| 一本大道久久a久久精品| 叶爱在线成人免费视频播放| netflix在线观看网站| 亚洲无线在线观看| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 一级毛片女人18水好多| 免费高清视频大片| 免费在线观看日本一区| 在线免费观看的www视频| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 男女之事视频高清在线观看| 久久久久久免费高清国产稀缺| 亚洲人成伊人成综合网2020| 美女大奶头视频| 成熟少妇高潮喷水视频| 国产一区在线观看成人免费| 久久草成人影院| 五月伊人婷婷丁香| 国产区一区二久久| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 亚洲欧美日韩高清专用| 久久精品91蜜桃| 毛片女人毛片| 精品国产超薄肉色丝袜足j| 日本一二三区视频观看| 成人特级黄色片久久久久久久| 青草久久国产| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 熟女电影av网| 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 毛片女人毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 国内精品久久久久久久电影| av中文乱码字幕在线| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播| 亚洲片人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品999在线| aaaaa片日本免费| 精品电影一区二区在线| 99热6这里只有精品| 国产精品久久久av美女十八| 久久伊人香网站| 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 亚洲男人天堂网一区| 精品国产乱子伦一区二区三区| 日韩三级视频一区二区三区| 高潮久久久久久久久久久不卡| 99热只有精品国产| 国产精品永久免费网站| 免费电影在线观看免费观看| 制服人妻中文乱码| 99在线人妻在线中文字幕| 窝窝影院91人妻| 露出奶头的视频| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 日本免费a在线| 日韩精品中文字幕看吧| 色播亚洲综合网| 亚洲专区国产一区二区| 久久久久国内视频| 久久久久久免费高清国产稀缺| 久99久视频精品免费| 日本五十路高清| 欧美成人免费av一区二区三区| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 亚洲av成人av| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 两个人视频免费观看高清| 一边摸一边做爽爽视频免费| 欧美乱妇无乱码| 日本黄大片高清| 国产精品美女特级片免费视频播放器 | 韩国av一区二区三区四区| 亚洲精品中文字幕一二三四区| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 国产精品美女特级片免费视频播放器 | 免费观看精品视频网站| 久久久久久大精品| 香蕉久久夜色| 亚洲黑人精品在线| 国产精品亚洲一级av第二区| 久久久国产成人免费| 午夜影院日韩av| 国产v大片淫在线免费观看| 两个人免费观看高清视频| 黄色a级毛片大全视频| 亚洲国产欧美人成| 女人爽到高潮嗷嗷叫在线视频| 亚洲aⅴ乱码一区二区在线播放 | a级毛片在线看网站| 动漫黄色视频在线观看| 麻豆国产av国片精品| 99国产极品粉嫩在线观看| 免费在线观看亚洲国产| 在线观看一区二区三区| 精品久久久久久久久久久久久| 亚洲熟妇熟女久久| 特级一级黄色大片| 欧美成人一区二区免费高清观看 | 999久久久国产精品视频| 成年免费大片在线观看| 丰满的人妻完整版| 黄色毛片三级朝国网站| 成人特级黄色片久久久久久久| 免费在线观看黄色视频的| 亚洲成人中文字幕在线播放| 中文在线观看免费www的网站 | 人人妻人人看人人澡| av视频在线观看入口| 妹子高潮喷水视频| e午夜精品久久久久久久| 国产精品av视频在线免费观看| 久久热在线av|