• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combination Computing of Support Vector Machine,Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors

    2016-11-24 07:31:23XiChenLianshengQiaoYilianCaiYanlingZhangGongyuLiKeyLaboratoryofTCMFoundationandNewDrugResearchSchoolofChineseMaterialMedicaBeijingUniversityofChineseMedicineBeijing100102China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年5期

    Xi Chen,Lian-sheng Qiao,Yi-lian Cai,Yan-ling Zhang,Gong-yu LiKey Laboratory of TCM Foundation and New Drug Research School of Chinese Material Medica, Beijing University of Chinese Medicine,Beijing 100102,China

    Combination Computing of Support Vector Machine,Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors

    Xi Chen,Lian-sheng Qiao,Yi-lian Cai,Yan-ling Zhang?,Gong-yu Li
    Key Laboratory of TCM Foundation and New Drug Research School of Chinese Material Medica, Beijing University of Chinese Medicine,Beijing 100102,China

    The computational approaches of support vector machine(SVM),support vector regression (SVR)and molecular docking were widely utilized for the computation of active compounds. In this work,to improve the accuracy and reliability of prediction,the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2(CYP1A2)inhibitors.The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%,and 91.667%for training set,internal test set and external test set,respectively, showing this model had high discrimination ability.The R2and mean square error for the optimal SVR quantitative model were 0.763,0.013 for training set,and 0.753,0.056 for test set respectively,indicating that this SVR model has high predictive ability for the biological activities of compounds.According to the results of the SVM and SVR models,some types of descriptors were identified to be essential to bioactivity prediction of compounds, including the connectivity indices,constitutional descriptors and functional group counts. Moreover,molecular docking studies were used to reveal the binding poses and binding affinity of potential inhibitors interacting with CYP1A2.Wherein,the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds.And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds.The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products,which could predict the CYPs-mediated drug-drug interactions and provide useful guidance and reference for rational drug combination therapy.A set of 20 potential CYP1A2 inhibitors were obtained.Part of the results was consistent with references,which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy.

    Support vector machine,Support vector regression,Molecular docking, CYP1A2 inhibitor

    I.INTRODUCTION

    In recent years,the computational approaches of support vector machine(SVM),support vector regression (SVR)and molecular docking are widely used in in vitro identification of candidate compounds[1].For binaryclass classifications,SVM constructs an optimal separating hyperplane between the positive and negative classes with the maximal margin method[2].SVM is an efficient machine learning method,which has been extensively used in pattern recognition and classification study.The main advantage of SVM is suitable for the processing of small-sample learning problems,based on the structural risk minimization principle[3].SVR provides robust models for finding quantitative formulation based on structural risk minimization inductive principle instead of empirical risk minimization principle[4].Molecular docking was utilized to estimate binding affinity between ligands and protein to obtain the favorable orientation of ligand[5].It has been proved that computational approaches are efficient and reliable for predicting the properties of compounds[6].To improve the accuracy and reliability of prediction,SVM, SVR and molecular docking were combined to predict potential active compounds.The SVM model and SVR model of active compounds were constructed to predict the biological activities of compounds.And the molecular docking model was established to further refine the predicted results of SVM and SVR models.By comparing the three prediction models,the structural characteristics of active compounds were analyzed.

    CytochromeP450 (CYP450),asuperfamilyof membrane-bound heme proteins,plays an importantrole in drug metabolism[7].As one of the key enzymes in CYP450,CYP1A2 is mainly expressed in hepatic tissues and accounts for approximately 15%of the total CYP450 content[8].CYP1A2 metabolized about 5%?10%of the marketed drugs,some of which was related to drug-drug interactions(DDIs)[9,10].With CYP1A2 inhibition activity,the drug would restrict the metabolism of another interacting drug,and result in side effect[11].Therefore,the prediction of CYP1A2 inhibitors is helpful for reducing the risk of side effect caused by DDIs[12].

    ?Author to whom correspondence should be addressed.E-mail: zhangyanling@bucm.edu.cn,Tel.:+86-10-84738620

    In this work,SVM,SVR,and molecular docking were utilized to predict the potential CYP1A2 inhibitors from traditional chinese medicine database(TCMD version 2009)to warn the CYP1A2-mediated DDIs.The SVM qualitative and SVR quantitative models discriminate the biological activity of potential CYP1A2 inhibitors.Then,molecular docking was employed to analyze the binding affinity by the appropriate binding conformations of CYP1A2-interacted compounds.The combinatorial computation strategy for discovering potential CYP1A2 inhibitors could give guidance for the discovery of the potential inhibitors of other CYPs.

    II.MATERIALS AND METHODS

    A.Data preparation

    The data set of active compounds with CYP1A2 inhibition activity was derived from literatures [13,14], while the data set ofinactive compounds was collected from the drug bank database (http://www.drugbank.ca/). 133 active compounds and 111 inactive compounds of CYP1A2 were all utilized as data set for the SVM model construction.To establish the SVR quantitative model,78 inhibitors with explicit active values among the 133 active compounds were selected as data set for the SVR model.Besides, 1481 molecular descriptors of all compounds were calculated by Dragon2.1 to describe molecular structural characteristics.

    B.Support vector machine

    1.Data set splitting of SVM

    Selected by utilizing Kennard-Stone(KS)algorithm, 88 active compounds and 88 inactive compounds were chosen as SVM training set from the data set for the SVM[15].A set of 33 active compounds and 11 inactive compounds were regarded as internal test set.A set of 12 active compounds and 12 inactive compounds were selected randomly as external test set to verify the reliability of established model.Then the optimal molecular descriptors subset was obtained by two effective algorithms BestFirst searching and CfsSubsetEval valuation from Weka3.7.BestFirst searches the whole space of descriptor subsets by greedy hill-climbingconsidering the addition or/and deletion of all possible single descriptor.CfsSubsetEval evaluates the predictive ability of all descriptors individually and considers the redundancy degree between them.The combination of BestFirst (search method)and CfsSubsetEval(attribute evaluator)improves the efficiency of the variable selection technique.

    2.Development of SVM models

    The libsvm3.1algorithm(http://www.csie.ntu.edu. tw~cjlin/libsvm/)was used for SVM modeling.The radial basis function(RBF)was chosen as the kernel function of SVM model to make sure the minimization of spatial complexity change when the parameters were altered[16].The two important parameters(C,γ)of RBF kernels were used to find out the best compromise from the complex models[17].Besides,two methods,including parallel grid search and 10-fold crossvalidation,were used to compute optimal combination of molecular descriptors and identify appropriate(C, γ)of the model.By combining three normalized data processing methods and four parameter optimization methods,12 models were established to obtain the optimal model.The normalized data processing methods included non-normalized,[0,1]normalization and [?1,1]normalization,while the parameter optimization methods contained non-optimized,grid search(GS),genetic algorithm(GA)and Particle swarm optimization (PSO).

    3.Validation of the SVM models

    The internal test set and external test set were utilized to evaluate the performance of models using three evaluation indicators including accuracy(ACC),sensitivity(SE),and specificity(SP)[18].The computing formulas are shown as Eq.(1)?Eq.(3):

    True positive(TP)represents the number of active inhibitors which are correctly predicted as active inhibitors.True negative(TN)represents the number of inactive inhibitors which are predicted as inactive inhibitors.False positive(FP)stands for the number of inactive inhibitors which are predicted as active inhibitors.False negative(FN)stands for the number of active inhibitors which are predicted as inactive inhibitors[19].

    C.Support vector regression

    The data set for SVR model was spilt into two parts based on the ratio of 4:1 by KS,including 62 compounds in training set and 16 compounds in test set.Three data processing methods and three parameter optimization methods were combined to optimize SVR models. Three data processing methods were composed of nontreatment,ScaleForSVR function in LibSVM and principal component analysis in SPSS,while three parameter optimization methods included GS,GA,and particle swarm optimization(PSO).Two evaluation indexes of correlation coefficient(R2)and mean square error (MSE)were used to validate SVR models.R2closer to 1 represents the higher correlation between experimental active value and predicts active value of the compounds.A smaller MSE implies a more accurate prediction model.

    D.Docking

    1.Define binding site of CYP1A2

    The crystal structure of human microsomal CYP1A2 with the inhibitor α-naphthoflavone(αNF)was chosen from the protein data bank(PDB entry:2HI4)with the resolution of 1.95?A.Then,the water molecules were deleted and hydrogen atoms were added using the Discovery Studio 4.0(DS)to adjust the protein structure. The active binding pocket was defined according to the initial inhibitor αNF.

    2.Molecular docking

    LibDock is a rapid and semi-flexible docking algorithm for molecular docking of a large number of compounds[20].Diverse conformations of all compounds were generated by the BEST mode,and the maximum conformations were set to 255 with the energy threshold of 20.0 kcal/mol.In order to evaluate the suitability of LibDock algorithms,the initial compound(αNF) was re-docked into the active binding pocket. The root-mean-square deviation(RMSD)value between the docking pose and initial conformation of αNF was calculated,which could indicate the reliability of the molecular docking model and the rationality of the docking parameter settings.In general,RMSD should be less than 2.00?A.After the exploration of optimal docking model,the 133 active compounds in SVM data set were docked into the binding pocket to explore the binding affinity between CYP1A2 and inhibitors.

    E.Combinatorial prediction of potential CYP1A2 inhibitors

    The combination of the SVM model,SVR model and molecular docking model was utilized to predict the potential CYP1A2 inhibitors.The optimal SVM model was utilized to preliminarily distinguish the activities of the compounds from TCMD,which possesses 23033 natural compounds from 6735 natural products. The hit compounds by SVM model were further predicted by the optimal SVR model.The compounds with higher predicted activities than initial compound were reserved for further molecular docking analysis. Finally,the compounds,which had higher LibDock Scores than initial compound,were considered as the potential CYP1A2 inhibitors.

    TABLE IMolecular descriptors of CYP1A2 qualitative model.

    III.RESULTS AND ANALYSIS

    A.Support vector machine

    1.Molecular descriptors selection of SVM

    The computed 1481 molecular descriptors could be divided into different classes,such as constitutional descriptors,functional groups,topological descriptors and so on.A set of 12 optimal molecular descriptors were selected by BestFirst and CfsSubsetEval algorithms, which were listed in Table I.

    2.Construction and validation of SVM model

    According to the 12 optimal molecular descriptors, twelve SVM models of CYP1A2 inhibitors were established based on the three normalized data processing methods and four parameter optimization methods,and were validated by the internal test set and the external test set(Table S1 in supplementary materials).Model-6 had best evaluation indexes both in internal test set and external test set,which was constructed by the[0,1] normalization data processing and grid search parameter optimization method.The accuracy of model-6 was 99.432%in training set and the appropriate parameters of(C,γ)was(0.574,1).The results of model-6 are shown in Fig.1.

    The value of accuracy,sensitivity,and specificity of model-6 were 97.727%,100.000%,83.330%in internal test set respectively,while the corresponding value inexternal test was 91.667%,96.970%,100.000%respectively.These results were all above 80%,demonstrating that Model-6 has reliable ability to compute the properties of potential CYP1A2 inhibitors for further studies.

    FIG.1(a)Contour chart and(b)3D view of parameters optimization for the optimal SVN.Best:C=0.574,γ=1,CV accuracy=99.432%.

    TABLE II Molecular descriptors of CYP1A2 quantitative model.

    B.Support vector regression

    1.Molecular descriptors selection of SVR

    The 78 optimal molecular descriptors subset were selected by BestFirst and CfsSubsetEval algorithms to build SVR models.The molecular descriptors of CYP1A2 qualitative model are listed in Table II.

    2.Construction and validation of SVR model

    Nine SVR models were constructed based on the training set of SVR and validated by the test set(Table S2 in supplementary materials).Model-3 was selected as the optimal model with higher evaluation indicators, which was computed by non-treatment normalized data processing and GA parameter optimization.The optimum parameters of(C,γ)for model-3 were(1.360, 0.017).Two evaluation indicators of R2and MSE,were 0.763,0.013 in training set and 0.753,0.056 in test set, respectively.The results in the trend of prediction are shown in Fig.2.The paired t-test showed that there were no significant difference between the predicted active value and the true active value of the compounds in training set and the test set(P>0.05)(Table S3 and Table S4 in supplementary materials).The chart elucidated that the predicted active value of the compounds were consistent with the true active value,which demonstrated that Model-3 are reliable for computing the activity of potential CYP1A2 inhibitor.

    The molecular descriptors for SVM and SVR modeling were analyzed and compared with literatures results.The selected molecular descriptors of SVM contained 5 types of descriptors,among which 3 types werealso found in SVR models.It indicated that these 3 types of descriptors were related to both compounds identification and bioactivity prediction.Constitutional descriptors are the most commonly-used descriptors,reflecting the molecular composition of compounds such as numbers of atoms,bonds,double bonds,aromatic ratio and aromatic bonds,which had also been used to construct the CYP1A2 models in Gaspar's paper [21].The functional group counts descriptors of the number of hydroxyl(NOH),carboxyl(NCOOH),ester bond(NCOOR),aniline(NNR2Ph),hydrogen bond donor groups(NCHDon)gave the chemical information of compounds.Connectivity indices could measure the connectivity of all the atoms,individual atoms,molecular fragments,and molecular geometry,which had also been considered for the modeling of CYP1A2 inhibitors in other published models[22,23].These types of descriptors,which provide information of chemical properties and functional groups for ligands,are important for the identification of active and non-active compounds.

    C.Docking analysis results

    Calculated by LibDock algorithm between the redocking and initial poses of the αNF,the RMSD values was 0.397?A(<2.000?A),which indicated the docking model is reliable and valuable.The LibDock Score of the initial compound was 137.553,which was regarded as a reasonable threshold value for the evaluation of potential CYP1A2 inhibitors.According to docking pose analysis of 133 active compounds of SVM,the active compounds could form hydrogen bond interactions at CYP1A2 active site with the key amino acids GLY316,ALA317,THR124,ASP320 and hydrophobic bond interactions with the amino acids PHE226, ALA317,GLY316,which were consistent with results in Refs.[10,24].

    FIG.3 The amino acids of the interactions between tanshinone IIA and CYP1A2.

    D.Analysis of potential CYP1A2 inhibitors

    Firstly,a hit list of 7797 compounds was predicted as active compounds by optimal SVM qualitative model. Then,163 compounds were retained by the optimal SVR quantitative model.Finally,20 compounds with higher LibDock Scores than the initial compound were reserved by the computation of molecular docking model.Part of them has been verified by literatures, such as tanshinone IIA[25],quercetin[26],nuciferine [27],celastrol[28],and so on.Tanshinone IIA was used as an instance to analyze the prediction results.The key amino acids of the hydrogen bond interactions between tanshinone IIA and CYP1A2 include THR124 and ASP313,while the residues bound by hydrophobic interactions comprised of ASN312,PHE125,ALA317, GLY316,PHE260,PHE226,LEU497,LEU382,ILE386, and ASP313.The three-dimensional interactions between tanshinone IIA and the active pocket are shown in Fig.3.The interactions between potential CYP1A2 inhibitors and CYP1A2 enzyme are similar to the results of the active compounds interacting with CYP1A2 enzyme.It is indicated that those potential compounds have similar biological activity with CYP1A2 inhibitors in clinical trial.

    Tanshinone IIA is an active ingredient extracted from the rhizome of the Danshen(Salvia miltiorrhiza Bunge).Studies have shown that some Danshen constituents may be associated with a number of clinically important DDIs leading to adverse side effects[29,30]. Most of the tanshinones isolated from Danshen could competitively inhibit the metabolism of CYP1A2 substrates[31].Tanshinone IIA might cause the DDIs by the inhibition of CYP1A2.Therefore,the DDIs should be considered for drugs metabolized by CYP1A2 during long-term treatment with tanshinone IIA.

    IV.CONCLUSION

    In recent years,the combinatorial computational strategy with higher efficiency and reliability was widely used for the prediction of potential compounds. CYP1A2 enzyme metabolizes a variety of clinical drugs. The inhibition of CYP1A2 would induce DDIs and undesirable side effect. The accurate prediction of CYP1A2 inhibitors plays predominant roles in reducing the risk of DDIs induced by CYP1A2. In this study,a strategy for discovering potential CYP1A2 inhibitors was carried out by integrating three computational methods,including SVM,SVR,and molecular docking.The optimal SVM qualitative model and SVR quantitative model were established to predict the biological activities of compounds from natural products, resulting in 163 compounds.The molecular docking was further employed to verify the computed results of SVM and SVR and described the binding affinity between CYP1A2 and inhibitors.The 20 compounds hit by all three models were regarded as potential CYP1A2 inhibitors,and tanshinone IIA may cause the DDIs by the inhibition of CYP1A2.Parts of the compounds have been verified by literatures which indicated the applicability and accuracy of the constructed models.The combinatorial computation strategy is efficient for predicting the potential CYP1A2 inhibitors from natural products.

    Supplementary materials:Table S1 shows the results of the SVM qualitative model.Table S2 shows the results of the SVR quantitative model.Table S3 shows the predicted value and the experimental value of the compounds in the SVR training set.Table S4 shows the predicted value and the experimental value of the compounds in the SVR test set.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.81173522,No.81430094, and No.81573831)and Joint Construction Project of Beijing Municipal Commission of Education.

    [1]A.Rieko,Curr.Top.Med.Chem.6,1609(2006).

    [2]Y.Aksu,D.J.Miller,G.Kesidis,and Q.X.Yang,IEEE Trans.Neural Netw.21,701(2010).

    [3]C.W.Yap and Y.Z.Chen,J.Chem.Inf.Model.45, 982(2005).

    [4]U.B.Parikh,B.Das,and R.Maheshwari,Int.J.Elec. Power.32,629(2010).

    [5]P.Preeti,S.S.Kesharwani,P.P.Nandekar,R.Vijay, and A.T.Sangamwar,Mol.Divers.18,1(2014).

    [6]N.J.Waters,Br.J.Clin.Pharmacol.79,946(2015).

    [7]H.Iwataa,K.Yamaguchia,Y.Takeshitaa,A.Kubotab,S.Hirakawac,T.Isobed,M.Hiranoa,and E.Kim, Aquat.Tox.162,138(2015).

    [8]L.He,F.He,H.C.Bi,J.K.Li,S.Zeng,H.B.Luo,and M.Huang,Bioorg.Med.Chem.Lett.20,6008(2010).

    [9]R.X.Zhu,Li.W.Hu,H.Y.Li,J.Su,Z.W.Cao,and W.D.Zhang,Int.J.Mol.Sci.12,3250(2011).

    [10]P.Vasanthanathan,J.Hritz,O.Taboureau,L.Olsen, F.S.Jorgensen,N.P.E.Vermeulen,and C.Oostenbrink,J.Chem.Inf.Model.49,43(2009).

    [11]L.P.Yang,Z.W.Zhou,X.W.Chen,C.G.Li,K.B. Sneed,J.Liang,and S.F.Zhou,Xenobiotica 42,238, (2012).

    [12]Y.Shimokawa,N.Yoda,S.Kondo,Y.Yamamura,Y. Takiguchi,and K.Umehara,Biol.Pharm.Bull.38, 1425(2015).

    [13]L.E.Korhonen,M.Rahnasto,N.J.Mahonen,C.Wittekindt,A.Poso,R.O.Juvonen,and H.Raunio,J. Med.Chem.48,3808(2005).

    [14]K.K.Chohan,S.W.Paine,J.Mistry,P.Barton,and A.M.Davis,J.Med.Chem.48,5154(2005).

    [15]X.M.Chen,H.B.Rao,W.L.Huang,and Z.R.Li, Chem.J.Chin.U 28,2171(2007).

    [16]F.Hammann,H.Gutmann,U.Baumann,C.Helma, and J.Drewe,Mol.Pharm.6,1920(2009).

    [17]A.X.Yan,X.L.Nie,K.Wang,and M.Wang,Eur.J. Med.C 61,73(2013).

    [18]M.Zhong,X.L.Nie,A.X.Yan,and Q.P.Yuan,Chem. Res.Toxicol.26,741(2013).

    [19]X.L.Hou and A.X.Yan,Mol.Divers.17,489(2013).

    [20]S.Paliwal,A.Mittal,M.Sharma,A.Pandey,A.Singh, and S.Paliwal,Med.Chem.Res.24,576(2015).

    [21]J.G.Rodrguez,G.Cano,and H.Perez-Sanchez,Lett. Drug Des Discov.11,33(2014).

    [22]X.C.Pan,C.Li,S.J.Q,S.H.Huang,Y.Li,and M. Hu,RSC Adv.5,84232(2015).

    [23]P.Vasanthanathan,O.Taboureau,C.Oostenbrink,N. P.E.Vermeulen,L.Olsen,and F.S.Jorgensen,Drug Metab.Dispos.37,658(2009).

    [24]X.L.Zhou,Y.Wang,T.Hua,M.Y.O.Penelope,J. Wong,Y.W.Kwana,C.C.W.David,M.H.Pui,B. S.L.Paul,and H.K.Y.John,Phytomedicine 20,367 (2013).

    [25]X.Wang,C.M.Cheung,W.Y.Lee,P.M.Or,and J. H.Yeung,Phytomedicine 17,868(2010).

    [26]R.Himanshu and J.Snehasis,Phytother.Res.28,1873 (2014).

    [27]L.W.Hu,W.Xu,X.Zhang,J.Su,X.R.Liu,H.Y. Li,and W.D.Zhang,J.Pharm Pharmacol.62,658 (2010).

    [28]C.H.Jin,X.He,F.L.Zhang,L.He,J.X.Chen,L.L. Wang,L.J.An,and Y.W.Fan,Xenobiotica 45,571 (2015).

    [29]A.M.Holbrook,J.A.Pereira,N.R.Labiris,H.Mcdonald,J.D.Douketis,M.Crowther,and P.S Wells, Arch.Intern.Med.165,1095(2005).

    [30]X.Zhou,K.Chan,and J.H.Yeung,Drug Metabol. Drug Interact.27,9(2012).

    [31]X.Wang,W.Y.W.Lee,P.M.Y.Or,and J.H.K. Yeung,Phytomed.16,712(2009).

    (Dated:Received on March 3,2016;Accepted on August 10,2016)

    日本精品一区二区三区蜜桃| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清专用| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 看免费av毛片| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| а√天堂www在线а√下载| x7x7x7水蜜桃| 啦啦啦韩国在线观看视频| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 90打野战视频偷拍视频| 欧美色欧美亚洲另类二区| 国产精品野战在线观看| 神马国产精品三级电影在线观看| 亚洲精品国产精品久久久不卡| 午夜福利视频1000在线观看| 国产成人a区在线观看| 在线a可以看的网站| 美女大奶头视频| 欧美性感艳星| 亚洲一区高清亚洲精品| 伊人久久精品亚洲午夜| 村上凉子中文字幕在线| 欧美成人性av电影在线观看| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 日本与韩国留学比较| 亚洲av日韩精品久久久久久密| 1024手机看黄色片| 亚洲在线观看片| 一区二区三区激情视频| 免费高清视频大片| 51国产日韩欧美| 成人一区二区视频在线观看| 国产免费一级a男人的天堂| 黄片小视频在线播放| 久久精品91无色码中文字幕| 观看免费一级毛片| 悠悠久久av| 男女床上黄色一级片免费看| a在线观看视频网站| 国产精品 欧美亚洲| 成人国产综合亚洲| 精品国产美女av久久久久小说| 欧美成人a在线观看| 亚洲久久久久久中文字幕| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 精品久久久久久久毛片微露脸| 熟女人妻精品中文字幕| 韩国av一区二区三区四区| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 精品乱码久久久久久99久播| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| 久久香蕉国产精品| 国产亚洲欧美98| 午夜免费男女啪啪视频观看 | 日韩欧美精品免费久久 | 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 欧美黑人巨大hd| 国产成人啪精品午夜网站| 国产乱人伦免费视频| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美 | 黄色片一级片一级黄色片| 国产激情偷乱视频一区二区| 精品久久久久久,| 性色av乱码一区二区三区2| 亚洲精品456在线播放app | 亚洲av中文字字幕乱码综合| 18禁国产床啪视频网站| 午夜福利视频1000在线观看| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 日日干狠狠操夜夜爽| 色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 国产成人欧美在线观看| h日本视频在线播放| 国产欧美日韩一区二区三| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 午夜两性在线视频| 欧美性猛交黑人性爽| 在线看三级毛片| 无限看片的www在线观看| 18禁黄网站禁片免费观看直播| 国产伦人伦偷精品视频| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 色综合站精品国产| 午夜福利成人在线免费观看| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 国产精品国产高清国产av| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区精品| 日韩欧美在线乱码| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 草草在线视频免费看| 高清毛片免费观看视频网站| 午夜免费男女啪啪视频观看 | 黄色丝袜av网址大全| 黄色成人免费大全| 亚洲av免费在线观看| 国产淫片久久久久久久久 | 99久久九九国产精品国产免费| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 成人欧美大片| eeuss影院久久| 嫩草影院入口| 麻豆一二三区av精品| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放| 国内久久婷婷六月综合欲色啪| 久久香蕉精品热| 国产国拍精品亚洲av在线观看 | 国产免费一级a男人的天堂| 露出奶头的视频| 真人一进一出gif抽搐免费| 欧美国产日韩亚洲一区| 午夜老司机福利剧场| 亚洲精品色激情综合| 一夜夜www| 一个人免费在线观看电影| 成人特级av手机在线观看| 成年女人永久免费观看视频| 精品免费久久久久久久清纯| 老司机午夜十八禁免费视频| 国产 一区 欧美 日韩| 免费看光身美女| ponron亚洲| 欧美午夜高清在线| 免费观看人在逋| 熟女人妻精品中文字幕| 国产一区二区亚洲精品在线观看| 一个人观看的视频www高清免费观看| 久久久久性生活片| 国产精品电影一区二区三区| h日本视频在线播放| 男女午夜视频在线观看| 久久久久久久久久黄片| 国内毛片毛片毛片毛片毛片| 国产一区二区亚洲精品在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩无卡精品| 久久中文看片网| 综合色av麻豆| 1024手机看黄色片| 久久久久久久亚洲中文字幕 | 美女高潮喷水抽搐中文字幕| 性色avwww在线观看| 亚洲最大成人手机在线| 真人做人爱边吃奶动态| 午夜两性在线视频| 亚洲av成人av| 俺也久久电影网| 日韩欧美国产在线观看| 精品国产亚洲在线| 黄色丝袜av网址大全| 国产探花极品一区二区| avwww免费| 亚洲精品粉嫩美女一区| 亚洲精品影视一区二区三区av| 老鸭窝网址在线观看| 很黄的视频免费| 国产aⅴ精品一区二区三区波| 亚洲最大成人中文| 亚洲自拍偷在线| 乱人视频在线观看| 一级黄片播放器| 亚洲中文日韩欧美视频| 久久精品人妻少妇| 少妇的逼好多水| 久久性视频一级片| 欧美大码av| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 亚洲欧美一区二区三区黑人| 欧美丝袜亚洲另类 | 91久久精品国产一区二区成人 | 一级作爱视频免费观看| 美女被艹到高潮喷水动态| 国产三级在线视频| 91在线精品国自产拍蜜月 | 听说在线观看完整版免费高清| 99久久综合精品五月天人人| 欧美一区二区精品小视频在线| 久久久久久久精品吃奶| 中文字幕av在线有码专区| 午夜影院日韩av| 桃红色精品国产亚洲av| 国产伦一二天堂av在线观看| 97超视频在线观看视频| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美 | 亚洲成a人片在线一区二区| 小说图片视频综合网站| 久久久精品欧美日韩精品| 亚洲第一电影网av| 亚洲国产精品sss在线观看| 亚洲成av人片免费观看| 欧美日韩精品网址| 岛国视频午夜一区免费看| 美女高潮的动态| 亚洲 欧美 日韩 在线 免费| 51午夜福利影视在线观看| 亚洲在线自拍视频| 国产伦精品一区二区三区视频9 | 可以在线观看毛片的网站| 3wmmmm亚洲av在线观看| 午夜福利在线观看吧| 级片在线观看| 一区福利在线观看| 欧美丝袜亚洲另类 | 757午夜福利合集在线观看| 九色成人免费人妻av| 亚洲国产中文字幕在线视频| 男女午夜视频在线观看| tocl精华| 熟女电影av网| 亚洲精品影视一区二区三区av| 9191精品国产免费久久| 变态另类丝袜制服| 真实男女啪啪啪动态图| 黄色女人牲交| 特大巨黑吊av在线直播| av中文乱码字幕在线| 一本一本综合久久| 欧美不卡视频在线免费观看| 深爱激情五月婷婷| 久久久精品大字幕| 美女黄网站色视频| 久久久久精品国产欧美久久久| 久久人人精品亚洲av| 最近在线观看免费完整版| 一个人看视频在线观看www免费 | 久久精品国产综合久久久| 91麻豆精品激情在线观看国产| 免费看日本二区| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 亚洲无线观看免费| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| avwww免费| 99热6这里只有精品| 一区二区三区激情视频| 丝袜美腿在线中文| 亚洲最大成人中文| 国产黄色小视频在线观看| 窝窝影院91人妻| 18禁国产床啪视频网站| 黄色丝袜av网址大全| 午夜影院日韩av| 嫁个100分男人电影在线观看| 级片在线观看| 午夜激情欧美在线| 午夜视频国产福利| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 久久午夜亚洲精品久久| xxxwww97欧美| 高清在线国产一区| 国产精品99久久久久久久久| 免费看a级黄色片| 午夜福利在线观看吧| 国内精品久久久久精免费| 午夜免费成人在线视频| 色播亚洲综合网| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久 | 亚洲成a人片在线一区二区| 国产精品国产高清国产av| www.999成人在线观看| 久99久视频精品免费| 亚洲av二区三区四区| 日韩欧美免费精品| 欧美日本视频| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| 精华霜和精华液先用哪个| 国产视频内射| av中文乱码字幕在线| 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三| 日韩av在线大香蕉| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站 | 亚洲av五月六月丁香网| 欧美成人性av电影在线观看| 亚洲国产精品合色在线| 99国产精品一区二区蜜桃av| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 99久久99久久久精品蜜桃| 亚洲精品国产精品久久久不卡| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 国产精品影院久久| 很黄的视频免费| 在线观看av片永久免费下载| bbb黄色大片| 国产亚洲精品久久久久久毛片| 一个人观看的视频www高清免费观看| 日韩国内少妇激情av| 免费大片18禁| 搞女人的毛片| 深爱激情五月婷婷| 一个人看视频在线观看www免费 | 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www| 有码 亚洲区| 99精品在免费线老司机午夜| 国产三级黄色录像| 一级毛片高清免费大全| 亚洲无线在线观看| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式 | 国产伦精品一区二区三区四那| 天堂动漫精品| 脱女人内裤的视频| 少妇的逼好多水| 99热精品在线国产| 天堂√8在线中文| 日本免费一区二区三区高清不卡| 成人av在线播放网站| 亚洲中文字幕一区二区三区有码在线看| 69人妻影院| 两性午夜刺激爽爽歪歪视频在线观看| 天美传媒精品一区二区| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 在线观看舔阴道视频| 久久久久久大精品| 18+在线观看网站| 成人特级av手机在线观看| 中文字幕高清在线视频| 国产一区二区激情短视频| 脱女人内裤的视频| www.999成人在线观看| 国产在线精品亚洲第一网站| 亚洲内射少妇av| 精品久久久久久久久久久久久| 久久精品国产亚洲av香蕉五月| 熟女少妇亚洲综合色aaa.| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一欧美日韩一区二区三区| 中文字幕人成人乱码亚洲影| 国产成人啪精品午夜网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品乱码久久久v下载方式 | av专区在线播放| 岛国视频午夜一区免费看| 亚洲在线观看片| 黄色女人牲交| 久久久精品大字幕| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 午夜视频国产福利| 18禁在线播放成人免费| 国内精品一区二区在线观看| 嫩草影院入口| 精品一区二区三区视频在线观看免费| 麻豆国产av国片精品| 午夜福利高清视频| bbb黄色大片| 国产av在哪里看| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| av国产免费在线观看| 人妻久久中文字幕网| 搡女人真爽免费视频火全软件 | 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 午夜福利18| 少妇的丰满在线观看| 18禁黄网站禁片免费观看直播| 久久久国产成人精品二区| 日本与韩国留学比较| www国产在线视频色| 最新中文字幕久久久久| 在线播放国产精品三级| 88av欧美| 欧美大码av| 一二三四社区在线视频社区8| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 久久精品国产亚洲av涩爱 | 女人被狂操c到高潮| 91av网一区二区| 色av中文字幕| 久久久久久久久久黄片| 亚洲人成网站高清观看| www.色视频.com| 高潮久久久久久久久久久不卡| 88av欧美| 亚洲成av人片在线播放无| 舔av片在线| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 日本黄色视频三级网站网址| 欧美日韩福利视频一区二区| 国产真实伦视频高清在线观看 | 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 18禁裸乳无遮挡免费网站照片| 国产一区二区三区视频了| 精品一区二区三区视频在线 | 午夜福利成人在线免费观看| 中文字幕人成人乱码亚洲影| 国产精品,欧美在线| 久久中文看片网| 欧美中文综合在线视频| 亚洲乱码一区二区免费版| 美女免费视频网站| 国产高清激情床上av| 在线观看午夜福利视频| 国产亚洲精品av在线| www日本黄色视频网| www.www免费av| 色综合婷婷激情| 久久久久久久久久黄片| 黄色丝袜av网址大全| 精华霜和精华液先用哪个| 三级毛片av免费| av在线蜜桃| 日韩欧美精品免费久久 | 成人一区二区视频在线观看| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 最好的美女福利视频网| 99在线视频只有这里精品首页| 婷婷亚洲欧美| 成人午夜高清在线视频| 国产亚洲精品一区二区www| 久久精品影院6| 欧美极品一区二区三区四区| 久久人人精品亚洲av| 一级黄片播放器| 人妻夜夜爽99麻豆av| 男插女下体视频免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 桃色一区二区三区在线观看| av天堂在线播放| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 天天添夜夜摸| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| 少妇的逼水好多| 嫩草影院精品99| 少妇的逼水好多| 久久香蕉国产精品| 天堂网av新在线| 久久中文看片网| 九色国产91popny在线| 午夜免费观看网址| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| 精品久久久久久成人av| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 一级a爱片免费观看的视频| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| 美女高潮的动态| 在线视频色国产色| 一本久久中文字幕| or卡值多少钱| 国产色婷婷99| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 91字幕亚洲| 黄色片一级片一级黄色片| 久久精品人妻少妇| 亚洲成a人片在线一区二区| 亚洲欧美日韩无卡精品| 老司机午夜福利在线观看视频| 国内揄拍国产精品人妻在线| 一卡2卡三卡四卡精品乱码亚洲| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 欧美在线黄色| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 日本在线视频免费播放| 一进一出好大好爽视频| 午夜久久久久精精品| 国产精品久久久久久精品电影| 免费看日本二区| 国产乱人伦免费视频| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 一本久久中文字幕| 精品一区二区三区人妻视频| 亚洲五月婷婷丁香| 小说图片视频综合网站| 女人高潮潮喷娇喘18禁视频| 桃色一区二区三区在线观看| 色噜噜av男人的天堂激情| 色综合欧美亚洲国产小说| 国产乱人视频| 亚洲人成伊人成综合网2020| 男女午夜视频在线观看| 欧美色视频一区免费| 老汉色∧v一级毛片| 日本一二三区视频观看| 婷婷精品国产亚洲av| 天天躁日日操中文字幕| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 又黄又爽又免费观看的视频| 欧美zozozo另类| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 亚洲第一电影网av| 婷婷六月久久综合丁香| 欧美中文日本在线观看视频| 成人国产一区最新在线观看| 在线免费观看不下载黄p国产 | 亚洲精品色激情综合| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 国产高清三级在线| 国产精品一区二区三区四区久久| 久久人妻av系列| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 他把我摸到了高潮在线观看| 九色国产91popny在线| 亚洲精品美女久久久久99蜜臀| 久久久久免费精品人妻一区二区| 美女cb高潮喷水在线观看| 美女免费视频网站| 看片在线看免费视频| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 欧美极品一区二区三区四区| 床上黄色一级片| 变态另类成人亚洲欧美熟女| 三级毛片av免费| 精品乱码久久久久久99久播| 国内精品一区二区在线观看| 啪啪无遮挡十八禁网站| 女人高潮潮喷娇喘18禁视频| 国产高清三级在线| 亚洲av日韩精品久久久久久密| 久久香蕉精品热| 桃色一区二区三区在线观看| 老汉色av国产亚洲站长工具| 亚洲av二区三区四区| 午夜激情欧美在线| 美女高潮喷水抽搐中文字幕| 色老头精品视频在线观看| 真人一进一出gif抽搐免费| 男女下面进入的视频免费午夜| 久久久久久久久中文| 免费观看的影片在线观看| 啦啦啦免费观看视频1| 99热精品在线国产| 免费看十八禁软件| 伊人久久大香线蕉亚洲五| 两个人看的免费小视频| 最近最新中文字幕大全免费视频| 国产三级中文精品| 亚洲天堂国产精品一区在线| 两个人视频免费观看高清| 成人国产一区最新在线观看| 亚洲人成网站高清观看|