• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4Composite Photocatalyst

    2016-11-24 07:31:20DayuJiangDaXuJiaZhengYangYangChangLiuYushuangWangGuangboCheXueLinLiminChangKeyLaboratoryofPreparationandApplicationsofEnvironmentalFriendlyMaterialsMinistryofEducationJilinNormalUniversityChangchun130103China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年5期

    Da-yu Jiang,Da Xu,JiaZheng,Yang Yang,Chang Liu,Yu-shuang Wang,Guang-bo Che, Xue Lin,Li-min ChangKey Laboratory of Preparation and Applications of Environmental Friendly Materials,Ministry of Education,Jilin Normal University,Changchun 130103,China

    Efficient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4Composite Photocatalyst

    Da-yu Jiang,Da Xu,Jia?Zheng,Yang Yang,Chang Liu,Yu-shuang Wang,Guang-bo Che, Xue Lin?,Li-min Chang
    Key Laboratory of Preparation and Applications of Environmental Friendly Materials,Ministry of Education,Jilin Normal University,Changchun 130103,China

    The fabrication of multicomponent composite systems may provide benefits in terms of charge separation and the retardation of charge pair recombination.In this work,a ternary heterostructured Ag-Bi2MoO6/BiPO4composite was fabricated through a low-temperature solution-phase route for the first time.The XRD,SEM,EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4,Bi2MoO6,and Ag.Ag nanoparticles were photodeposited on the surface of Bi2MoO6/BiPO4nanosheets,which not only increase visible-light absorption via the surface plasmon resonance,but also serve as good electron acceptor for facilitating quick photoexcited electron transfer.The interface between Bi2MoO6and BiPO4facilitates the migration of photoinduced electrons from Bi2MoO6to BiPO4,which is also conductive to reduce the recombination of electron-holes.Thus,the ternary heterostructured Ag-Bi2MoO6/BiPO4composite showed significant photocatalytic activity,higher than pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4.Moreover,the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4heterostructure related to the band positions of the semiconductors was also discussed.In addition,the quenching effects of different scavengers revealed that the reactive·OH and O2·?play a major role in the phenol red decolorization.

    Heterostructure,Bi2MoO6,BiPO4,Ag,Photocatalysis,Visible light

    I.INTRODUCTION

    In recent decades,TiO2has been applied and investigated broadly for the photodegradation of organic pollutants in water owing to its low cost,strong oxidizing power,and nontoxic nature[1].However,the main drawbacks of limited visible light utilization and low quantum yields limit its practical applications[2-4].Therefore,many efforts have been made to fabricate excellent visible-light-driven photocatalysts such as Bi2WO6[5],Bi2MoO6[6],BiVO4[7],InVO4[8], etc.Among these photocatalysts,Bi2MoO6has been found to show excellent visible-light-driven photocatalytic activity for water splitting and for the degradation of organic contaminants[9-12].However,further research on the enhancement of the Bi2MoO6photocatalytic performance is still indispensable because of its poor quantum yield.

    Among a variety of methods,the construction of composite photocatalysts has been proven to be an effective method for improving photocatalytic activity for the degradation of organic contaminants[13,14].In the composite photocatalysts,the interface between coupled semiconductors and/or metals can lead to more efficient interfacial charge transfer and enhance the photoinduced charge separation.So far,a variety of Bi2MoO6-based photocatalysts have been prepared,such as Bi2MoO6/TiO2[15],Bi2MoO6/C[16], Bi2MoO6/Bi2O3[17],and Ag/Bi2MoO6[18].In our previous work,we presented the hydrothermal synthesis of Bi2MoO6/BiPO4[19],Bi2MoO6/SiO2[20],and Bi2MoO6/BiVO4[21].The as-synthesized composites showed superior photocatalytic activities than that of pure Bi2MoO6.Motivated by the above efforts,we further research the synthesis of ternary heterostructured Ag-Bi2MoO6/BiPO4composite.In addition,to the best of our knowledge,there are no reports on the synthesis and photocatalytic activity of this material.

    Recent years,BiPO4has been paid much attention,which has been proven to show much higher photocatalytic activity than TiO2(P25)for the degradation of organic contaminants under UV light[22]. Many studies revealed that BiPO4based photocatalysts displayed excellent photocatalytic performances under visible light irradiation,such as Ag3PO4/BiPO4, Ag/Ag3PO4/BiPO4etc.[23,24].

    In this work,the composite photocatalysts of ternaryheterostructured Ag-Bi2MoO6/BiPO4were successfully synthesized for the first time. The phenol red was used as a mode compound to investigate the photocatalytic performances of the ternary heterostructured composites under visible-light irradiation(λ>420 nm). The results demonstrated that compared with pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4composite,the ternary heterostructured Ag-Bi2MoO6/BiPO4composite photocatalysts had a remarkably enhanced phenol red photodegradation activity under visible-light irradiation.The 1.27%Ag-Bi2MoO6/BiPO4catalyst performed the best in the degradation of phenol red.Moreover,the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4heterostructure related to the band positions of the semiconductors was also discussed in detail.

    ?Authors to whom correspondence should be addressed.E-mail: jlsdlinxue@126.com,Tel.: +86-15694349717,FAX:+86-434-3291890

    II.EXPERIMENTS

    A.Preparation of photocatalysts

    1.Preparation of Bi2MoO6/BiPO4photocatalyst

    All chemicals were analytic grade and used without further purification.More details about the preparation of Bi2MoO6/BiPO4,can be found in our previous work [19].In a typical procedure,Bi(NO3)3·5H2O(2 mmol) was firstly dissolved with Na2MoO4·2H2O(1 mmol)or Na3PO4·12H2O(2 mmol)in 15 mL of distilled water.

    For synthesis of Bi2MoO6,the pH value of solution was adjusted to 6 by adding concentrated ammonia. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave,and heated to 160°C for 24 h.After reaction,the obtained solid was washed with ethanol and distilled water several times,and dried at 80°C for 10 h.For synthesis of BiPO4,the pH value of solution was adjusted to 1 by adding 1 mol/L HNO3. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave.The autoclave was kept at 160°C for 24 h,and work-up of the products was described above.For synthesis of Bi2MoO6/BiPO4composite,Bi(NO3)3·5H2O(3 mmol)and total 2 mmol Na2MoO4+NaPO4(molar ratio of Mo:P was 1:1)were dissolved in 15 mL of distilled water.The pH value of the mixture was adjusted to 1 by adding 1 mol/L HNO3. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave.The autoclave was kept at 160°C for 24 h,and work-up of the products was described above.The obtained products were denoted as Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,respectively.

    2.Preparation of Ag-Bi2MoO6/BiPO4photocatalyst

    The synthesized Bi2MoO6/BiPO4composite(0.1 g) were mixed with 200 mL of deionized water followed by ultrasonication for 30 min.Then,1.0 mL of 5% polyethylene glycol(PEG)2000 solution was added and the dispersion was stirred for another 30 min.For deposition of silver on the surface of the composite,a photodeposition method was used as follows:A certain amount of AgNO3solution(2.7 mg/mL)was added to the dispersion.Then the suspension was transferred to a water-cooled reactor(250 mL)and irradiated under a Xe lamp with 300 mW/cm2illumination intensity for 60 min.The precipitates were washed with deionized water and ethanol twice,respectively.The final products were dried at 80°C for 6 h in a vacuum box, denoted as 0.65%Ag-Bi2MoO6/BiPO4,and 1.27%Ag-Bi2MoO6/BiPO4.

    B.Characterization of photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD)on a Rigaku (Japan)D/max 2500 X-ray diffractometer(Cu Kα radiation,λ=0.15418 nm).The morphologies and structure details of the as-synthesized samples were detected by using field emission scanning microscopy (FESEM,JSM-6700F)and transmission electron microscopy(TEM,JEM-2100F).The chemical compositions of the as-fabricated compounds were determined by scanning electron microscope-X-ray energy dispersion spectra(SEM-EDX,JSM-6700F).X-ray photoelectron spectroscopy(XPS)analysis was performed with an ESCALa-b220i-XL electron spectrometer(VGScientific,England)using 300 W Al Kα radiation.The photoluminescence(PL)spectra of the photocatalysts were obtained by a F4500(Hitachi,Japan)photoluminescence detector with an excitation wavelength of 325 nm.The UV-Vis diffuse reflectance spectra(DRS) were recorded using a scan UV-Vis spectrophotometer (UV-2550).

    C.Photocatalytic activities studies

    The photocatalytic properties of the as-prepared samples were evaluated using phenol red as a model compound.The phenol red is a very stable compound, which has been used widely as a representative reaction for examining the performance of numerous visible light active catalysts.In experiments,the phenol red solution (0.01 mmol/L,100 mL)containing 0.05 g of photocatalyst were mixed in a pyrex reaction glass.A 300 W Xe lamp(with illumination intensity of 100 mW/cm2)was employed to provide visible light irradiation.The distance between the lamp and the sample was 10 cm.A 420 nm cut-off filter was inserted between the lamp and the sample to filter out UV light(λ<420 nm).Prior to visible light illumination,the suspension was strongly stirred in the dark for 60 min to ensure the establishment of adsorption-desorption equilibrium.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of the suspension was periodically collected and analyzed after centrifugation.The phenol red concentration wasanalyzed by a UV-2550 spectrometer to record intensity of the maximum band at 432 nm in the UV-Vis absorption spectra.

    D.Active species trapping experiments

    For detecting the active species during photocatalytic reactivity,some sacrificial agents,such as 2-propanol(IPA),ammonium oxalate(AO),and 1,4-benzoquinone(BQ)were used as the hydroxyl radical (·OH)scavenger,hole(h+)scavenger and superoxide radical(O2·?)scavenger,respectively.The method was similar to the former photocatalytic activity test with the addition of 1 mmol of quencher in the presence of phenol red.

    III.RESULTS AND DISCUSSION

    Figure1showstheXRD patternsoftheassynthesized Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,and Ag-Bi2MoO6/BiPO4composites.The diffraction peaks of Bi2MoO6and BiPO4can be exactly indexed as JCPDS No.15-0767 and No.21-0121.When coupling the two semiconductors,the main characteristic diffraction peaks of Bi2MoO6and BiPO4did not change obviously.The Ag-Bi2MoO6/BiPO4composites showed a coexistence of Bi2MoO6phase(JCPDS No.15-0767) and BiPO4phase(JCPDS No.21-0121),showing that the mixture of Bi2MoO6and BiPO4is the main existing form of the composite samples. In addition, there is no any diffraction peaks of silver species(38.1°, 44.2°,64.4°,and 77.4°for Ag)can be observed for the Ag-Bi2MoO6/BiPO4samples,suggesting that all the as-synthesized composites possess the same crystal structure.This may be due to the low concentration (0.65wt%?1.27wt%)or small crystal size of Ag.Furthermore,the changes of all diffractions and lattice parameters were not detectable,which indicates that Ag related species resided in the lattice sites and have no separate phase.

    FIG.1 XRD patterns of the as-synthesized samples.

    FIG.2 SEM images of(a)as-synthesized Bi2MoO6, (b) BiPO4, (c) Bi2MoO6/BiPO4, (d) 1.27%Ag-Bi2MoO6/BiPO4,(e)TEM,and(f)HRTEMimages of 1.27%Ag-Bi2MoO6/BiPO4.

    The Ag-Bi2MoO6/BiPO4samples were synthesized through two main processes. The first step was taken to prepare Bi2MoO6/BiPO4composite. On this basis,the second step was taken to load Ag on the surface of Bi2MoO6/BiPO4sample. Figure 2(a)?(d)shows the SEM images of the as-prepared Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,and 1.27%Ag-Bi2MoO6/BiPO4samples.For the pure Bi2MoO6sample(Fig.2(a)),the morphology is nanosheet.And the pure BiPO4product is irregularly shaped flaky crystals with sizes between 200 and 800 nm(Fig.2(b)).As for the Bi2MoO6/BiPO4composite(Fig.2(c)),it can be observed that there are sheet-like crystals with average size of around 500 nm.It can be observed that the Ag-Bi2MoO6/BiPO4sample display a sheet-like morphology(Fig.2(d)),indicating that low amount Ag loading didn't have significant influence on the morphology of Bi2MoO6/BiPO4crystals.It also can be seen that the as-fabricated Ag-Bi2MoO6/BiPO4composite include Ag nanoparticles assembling uniformly on the surface of Bi2MoO6/BiPO4nanosheets(Fig.2(e)). HRTEM image further confirm the formation of a novel ternary heterostructure(Fig.2(f)).By measuring the lattice fringes,the resolved interplanar distances are about 0.204,0.275,and 0.171 nm,which correspondsto the(200)plane of Ag,the(200)plane of Bi2MoO6, and the(302)plane of BiPO4,respectively.EDX elemental microanalysis confirms Bi,Mo,P,Ag,and O as major elements in the ternary heterostructured Bi2MoO6/BiPO4composite(Fig.3(a)). In addition, the EDS analysis indicates that the loading percentage of Ag was 0.65%and 1.27%,respectively(as shown in Table I).The formation of the Ag-Bi2MoO6/BiPO4heterostructure was also confirmed by the elemental mapping of the as-prepared 1.27%Ag-Bi2MoO6/BiPO4sample(Fig.3(b)?(g)).Maps of Bi M,Mo L,P K,O K,and Ag L have the same shape and location,demonstrating the existence of Bi2MoO6,BiPO4,and Ag in the Ag-Bi2MoO6/BiPO4composite.This gives solid evidence of the formation of Ag-Bi2MoO6/BiPO4heterostructure.

    FIG.3 EDX spectrum (a)and the corresponding EDSelementalmappingimages(b-g)of1.27%Ag-Bi2MoO6/BiPO4sample.The bars in figures are 5μm.

    XPS spectra for 1.27%Ag-Bi2MoO6/BiPO4composite are presented to determine the oxidation state and elemental composition for each member of the heterostructure,as shown in Fig.4.The Bi 4f fine XPS spectrum of the sample is shown in Fig.4(a).XPS signals of Bi 4f are observed at binding energies at about 163.63 eV(Bi 4f7/2)and 158.32 eV(Bi 4f5/2),ascribed to Bi3+[25].The Mo 3d peaks are detected at 261.59 and 234.75 eV(Fig.4(b)),indicating a six-valent oxidation state for Mo6+[26].P 2p fine XPS spectrum of the sample is shown in Fig.4(c).XPS signals of P 2p were detected at binding energies around 132.37 eV(P 2p), attributed to P of PO43?[25].The wide and asymmetric peak of the O 1s spectrum indicated that there might be more than one chemical state according to the binding energy(Fig.4(d)).The peaks at 530.25 and 529.18 eV related to P?O(lattice O)[25]and Mo?O (lattice O)[26],respectively.As illustrated in Fig.4(e), typical peaks of Ag 3d can be observed,in which the peaks at 367.08 and 373.21 eV are ascribed to Ag 3d3/2(Ag0)and Ag 3d5/2(Ag0)[27,28].

    TABLE I The EDS ofthe as-prepared x%Ag-Bi2MoO6/BiPO4sample.

    Figure 5(a)shows the UV-Vis diffuse reflectance spectra(DRS)of as-fabricated Bi2MoO6,BiPO4, Bi2MoO6/BiPO4and Ag-Bi2MoO6/BiPO4samples. All the absorbance edges of Ag-Bi2MoO6/BiPO4composites showed marked red shifts,which can be attributed to the surface plasmon resonance(SPR)of the loading Ag,further confirming the existence of Ag particles.The band gap energies of the pure Bi2MoO6and BiPO4can be calculated by the following formula:

    where α,ν,Egand A are absorption coefficient,light frequency,the band-gap energy,and a constant,respectively.n is determined by the type of optical transition of a semiconductor(n=1 for a direct transition and n=4 for an indirect transition).For BiPO4and Bi2MoO6, the values of n are 4 and 1 for the indirect transition and direct transition[22,23],respectively.According to Eq.(1),the band-gap energy(Eg)of Bi2MoO6can be estimated from a plot of(αhν)2versus energy(hν), and the Egof BiPO4can be estimated from a plot of(αhν)1/2versus energy(hν).Thus,the band gaps of the as-prepared BiPO4and Bi2MoO6are estimated to be 3.40 and 2.56 eV,respectively(as illustrated in Fig.5(b)).

    In order to clearly understand the formation of Ag/Bi2MoO6/BiPO4heterojunction,the initial energy band structures of Bi2MoO6and BiPO4were provided. The band positions of Bi2MoO6and BiPO4were obtained by the following empirical formulas:

    FIG.4 XPS spectra of 1.27%Ag-Bi2MoO6/BiPO4sample.(a)Bi 4f spectrum,(b)Mo 3d spectrum,(c)P 2p spectrum,(d) O 1s spectrum,(e)Ag 3d spectrum.

    FIG.5(a)UV-Vis DRS of the as-prepared samples.(b)The plots of(αhν)n/2versus photon energy(hν)for the band-gap energies of Bi2MoO6and BiPO4.

    where EVBis the valence band edge potential,ECBis the conduction band edge potential,X is the electronegativity of the semiconductor,which is the geometric mean of the electronegativity of the constituent atoms,and the value of X for Bi2MoO6and BiPO4is ca.5.50 and 6.49 eV,respectively.Eeis the energy of free electrons on the hydrogen scale(about 4.5 eV),Egis the band gap energy of the semiconductor.Based on the band gap positions,the CB and VB edge potentials of Bi2MoO6are determined to be?0.28 and 2.28 eV, respectively.The CB and VB edge potentials of BiPO4are determined to be 0.30 and 3.70 eV,respectively. The energy band structure diagram of Bi2MoO6and BiPO4is thus schematically illustrated,as displayed in Fig.6.Since the CB potential of Bi2MoO6is more negative than that of BiPO4(Fig.6),the electrons will diffusion from Bi2MoO6to BiPO4,resulting in accumulation of negative charges in BiPO4close to the junction.In addition,Ag nanoparticles on the surface of the composites capture electrons effectively,which is also beneficial to electrons transmission from BiPO4or Bi2MoO6to Ag nanoparticles.These charge transfer would reduce the electron-hole pair recombination and prolong the life-time of charges,thus improving the photocatalytic efficiency.

    FIG.6 Schematic diagram of the separation and transfer of photogenerated charges in the heterostructured composite under visible light irradiation.

    FIG.7(a)Photodegradation efficiencies of phenol red as a function of irradiation time for different photocatalysts.(b) UV-visible spectral changes of phenol red in an aqueous 1.27%Ag-Bi2MoO6/BiPO4dispersion as a function of irradiation time under visible light illumination.

    The photocatalytic performances of as-synthesized samples were studied by comparing degradation rates of phenol red under visible light irradiation(Fig.7(a)). The blank test demonstrates that the degradation of phenol red was extremely slow without any photocatalyst under visible light illumination.From the catalytic experiments,Ag-Bi2MoO6/BiPO4samples were detected to be more photoactive towards phenol red solution than pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4composite.Additionally,it can be seen that the photocatalytic efficiency are significantly affected by the content of Ag loading.With the Ag content increasing,the phenol red degradation rate increase.Furthermore,the highest degradation rate was obtained from 1.27%Ag-Bi2MoO6/BiPO4sample with almost 100%of phenol red removal.This increase may be attributed to the capturing of electrons by the deposited Ag to hinder the recombination of hole-electron pairs[25,26].Visible light irradiation of an aqueous phenol red by 1.27%Ag-Bi2MoO6/BiPO4sample led to an apparent decrease in absorption(Fig.7(b)).The comparison of PL spectra of the as-prepared photocatalysts under the excitation wavelength of 325 nm is shown in Fig.8.Compared with pure Bi2MoO6,and Bi2MoO6/BiPO4sample,the PL peak intensity of Ag-Bi2MoO6/BiPO4sample decreased obviously.These results reveal that the heterojunction effect contributes to the effective electron-hole pair separation,which could be a reason for the heterostructured Ag-Bi2MoO6/BiPO4composites showing superior photocatalytic performances under visible light illumination.

    For detecting the main oxidative species in the photocatalytic process,the trapping experiments of radicals and holes in the presence of various scavengers were operated(Fig.S1 in supplementary materials).Under the visible-light irradiation of the as-prepared 1.27%Ag-Bi2MoO6/BiPO4composite,the photodegradation rate of phenol red slightly decreased after the addition of hole scavenger AO,which shows that holes are not the main active species that are responsible for the degradation of phenol red in current photocatalytic systems. However,the photodegradation rate of phenol red was decelerated significantly after the addition of superoxide radical scavenger BQ as well as IPA(hydroxyl radical scavenger).It shows that the active species including O2·?and·OH played the major role in the degrada-tion of phenol red over the 1.27%Ag-Bi2MoO6/BiPO4composite under visible light illumination.

    FIG.8 Room temperature PL spectra of the as-synthesized photocatalysts.

    IV.CONCLUSION

    Ternary heterostructured Ag-Bi2MoO6/BiPO4composite photocatalyst was successfully synthesized,and the composite sample showed excellent visible-light induced photocatalytic activity. And the as-prepared 1.27%Ag-Bi2MoO6/BiPO4composite had very obviously enhanced visible light photocatalytic activity for the degradation of phenol red in solution.The photocatalytic activity enhancement of the ternary heterostructured composite could be attributed to its strong absorption in the visible region due to the surface plasmon resonance resulting from Ag nanoparticles loading and low recombination rate of the electron-hole pairs because of formation of the ternary heterostructure.This work indicated that the composite effect created among semiconductors is of great importance in determining the photocatalytic performances.

    Supplementary materials:Figure S1 shows trapping experiments of active species during the photocatalytic degradation of phenol red over 1.27%Ag-Bi2MoO6/BiPO4sample under visible light irradiation.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Fundation of China(No.21407059,No.21576112), and the Science and Technology Research Project of the Department of Education of Jilin Province (No.2015220).

    [1]S.Fukuzumi,T.Kobayashi,and T.Suenobu,Angew. Chem.Int.Edit.50,728(2011).

    [2]Y.F.Hu,Y.X.Li,S.Q.Peng,G.X.Lv,and S.B.Li, Acta Phys.-Chim.Sin.24,2071(2008).

    [3]D.Xu,A.M.Gao,and W.L.Deng,Acta Phys.-Chim. Sin.24,1219(2008).

    [4]B.X.Li,Y.F.Wang,and T.X.Liu,Acta Phys.-Chim. Sin.27,2946(2011).

    [5]J.Y.He,W.M.Wang,F.Long,Z.G.Zou,Z.Y.Fu, and Z.Xu,Mater.Sci.Eng.B 177,967(2012).

    [6]G.H.Tian,Y.J.Chen,X.Y.Meng,J.Zhou,W. Zhou,K.Pan,C.G.Tian,Z.Y.Ren,and H.G.Fu, ChemPlusChem 78,117(2013).

    [7]Y.Yan,S.F.Sun,Y.Song,X.Yan,W.S.Guan,X.L. Liu,and W.D.Shi,J.Hazard.Mater.250/251,106 (2013).

    [8]Y.Wang,H.X.Dai,J.G.Deng,Y.X.Liu,Z.X.Zhao, X.W.Li,and H.Arandiyan,Chem.Eng.J.226,87 (2013).

    [9]W.Z.Yin,W.Z.Wang,and S.M.Sun,Catal.Commun.11,647(2010).

    [10]H.G.Yu,Z.F.Zhu,J.H.Zhou,J.Wang,J.Q.Li,and Y.L.Zhang,Appl.Surf.Sci.265,424(2013).

    [11]M.Y.Zhang,C.L.Shao,P.Zhang,C.Y.Su,X.Zhang, P.P.Liang,Y.Y.Sun,and Y.C.Liu,J.Hazard.Mater. 225/226,155(2012).

    [12]L.W.Zhang,T.G.Xu,X.Zhao,and Y.F.Zhu,Appl. Catal.B 98,138(2010).

    [13]F.J.Zhang,S.F.Zhu,F.Z.Xie,J.Zhang,and Z.D. Meng,Sep.Purif.Technol.113,1(2013).

    [14]D.L.Jiang,L.L.Chen,and J.J.Zhu,M.Chen,W. D.Shi,and J.M.Xie,Dalton Trans.42,15726(2013).

    [15]M.Y.Zhang,C.L.Shao,J.B.Mu,Z.Y.Zhang,Z.C. Guo,P.Zhang,and Y.C.Liu,CrystEngComm 14,605 (2012).

    [16]M.Y.Zhang,C.L.Shao,J.B.Mu,X.M.Huang,Z.Y. Zhang,Z.C.Guo,P.Zhang,and Y.C.Liu,J.Mater. Chem.22,577(2012).

    [17]Y.S.Xu,Z.J.Zhang,and W.D.Zhang,Mater.Res. Bull.48,1420(2013).

    [18]B.Yuan,C.H.Wang,Y.Qi,X.L.Song,K.Mu,P. Guo,L.T.Meng,and H.M.Xi,Colloids Surf.A 425, 99(2013).

    [19]X.Lin,D.Liu,X.Y.Guo,N.Sun,S.Zhao,L.M. Chang,H.J.Zhai,and Q.W.Wang,J.Phys.Chem. Solids 76,170(2015).

    [20]X.Lin,X.Y.Guo,D.Liu,Q.W.Wang,H.J.Zhai, and L.M.Chang,Mater.Res.Bull.63,72(2015).

    [21]X.Lin,X.Y.Guo,Q.W.Wang,L.M.Chang,and H. J.Zhai,Acta Phys.-Chim.Sin.30,2113(2014).

    [22]C.S.Pan and Y.F.Zhu,Environ.Sci.Technol.44, 5570(2010).

    [23]H.L.Lin,H.F.Ye,B.Y.Xu,J.Cao,and S.F.Chen, Catal.Comm.37,55(2013).

    [24]T.Y.Huang,Y.J.Chen,C.Y.Lai,and Y.W.Lin, RSC Adv.5,43854(2015).

    [25]S.Y.Wu,H.Zheng,Y.W.Lian,and Y.Y.Wu,Mater. Res.Bull.48,2901(2013).

    [26]P.Zhang,C.L.Shao,M.Y.Zhang,Z.C.Guo,J.B. Mu,Z.Y.Zhang,X.Zhang,and Y.C.Liu,J.Hazard. Mater.217/218,422(2012).

    [27]Y.F.Chen,W.X.Huang,D.L.He,Y.Situ,and H. Huang,ACS Appl.Mater.Inter.6,14405(2014).

    [28]B.Yuan,C.H.Wang,Y.Qi,X.L.Song,K.Mu,P. Guo,L.T.Meng,and H.M.Xi,Colloid.Surface.A 425,99(2013).

    (Dated:Received on February 29,2016;Accepted on May 26,2016)

    18禁裸乳无遮挡动漫免费视频| 一区二区av电影网| 午夜福利,免费看| h视频一区二区三区| 亚洲男人天堂网一区| 欧美激情高清一区二区三区 | 久久精品国产亚洲av高清一级| 国产精品二区激情视频| 黄片小视频在线播放| 亚洲欧美成人精品一区二区| 亚洲精品一二三| 亚洲精品美女久久av网站| 日韩熟女老妇一区二区性免费视频| 精品国产乱码久久久久久男人| 国产精品 国内视频| 久久精品亚洲av国产电影网| 欧美日韩精品成人综合77777| av免费在线看不卡| 国产精品 欧美亚洲| 日日摸夜夜添夜夜爱| a级毛片黄视频| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 日韩伦理黄色片| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 深夜精品福利| 免费在线观看黄色视频的| 色视频在线一区二区三区| 三级国产精品片| 久久久欧美国产精品| 久久免费观看电影| 9色porny在线观看| 国产精品久久久久久久久免| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 久久久久网色| 美女中出高潮动态图| 久久精品国产亚洲av高清一级| 中国三级夫妇交换| 免费日韩欧美在线观看| 亚洲第一av免费看| 亚洲精品aⅴ在线观看| 777米奇影视久久| av不卡在线播放| 丁香六月天网| 久久久久久久久久久久大奶| 久久影院123| 在线免费观看不下载黄p国产| 成年动漫av网址| 纵有疾风起免费观看全集完整版| 久久ye,这里只有精品| 午夜激情av网站| 亚洲精品久久成人aⅴ小说| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 午夜免费观看性视频| 欧美精品一区二区大全| 亚洲精品在线美女| 免费黄频网站在线观看国产| 人成视频在线观看免费观看| 亚洲精品国产一区二区精华液| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 午夜福利网站1000一区二区三区| 亚洲精品国产色婷婷电影| 日韩 亚洲 欧美在线| 国产淫语在线视频| freevideosex欧美| 精品第一国产精品| 亚洲美女搞黄在线观看| 狠狠婷婷综合久久久久久88av| 一本—道久久a久久精品蜜桃钙片| 国产在视频线精品| 久久久精品免费免费高清| 日韩一本色道免费dvd| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 久久毛片免费看一区二区三区| 一级片免费观看大全| 夫妻午夜视频| 人妻系列 视频| 另类亚洲欧美激情| 香蕉国产在线看| 久久久久久久精品精品| 如何舔出高潮| 精品国产露脸久久av麻豆| 精品午夜福利在线看| 女性被躁到高潮视频| 日韩精品免费视频一区二区三区| 久久99蜜桃精品久久| 日本av手机在线免费观看| 久热久热在线精品观看| 香蕉丝袜av| 在线观看三级黄色| 午夜激情av网站| 18+在线观看网站| 国产精品偷伦视频观看了| 观看美女的网站| 久久久久久久国产电影| 黄频高清免费视频| 国产精品 欧美亚洲| 欧美成人午夜精品| 成人免费观看视频高清| 大码成人一级视频| 97精品久久久久久久久久精品| 熟女av电影| 亚洲色图 男人天堂 中文字幕| 久久精品久久精品一区二区三区| 久久久a久久爽久久v久久| 满18在线观看网站| 午夜免费鲁丝| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品性色| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| 我要看黄色一级片免费的| h视频一区二区三区| 只有这里有精品99| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 亚洲一码二码三码区别大吗| 日本av手机在线免费观看| www.自偷自拍.com| 男女边摸边吃奶| 国产高清国产精品国产三级| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 超色免费av| 日韩欧美一区视频在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精华国产精华液的使用体验| 免费在线观看完整版高清| 男的添女的下面高潮视频| 中国三级夫妇交换| 制服人妻中文乱码| 高清不卡的av网站| 日韩中文字幕欧美一区二区 | 777米奇影视久久| 我的亚洲天堂| 国产老妇伦熟女老妇高清| 午夜精品国产一区二区电影| 欧美97在线视频| 免费观看av网站的网址| 精品国产一区二区久久| √禁漫天堂资源中文www| 久久韩国三级中文字幕| 亚洲精品成人av观看孕妇| 久久国产精品男人的天堂亚洲| 国产白丝娇喘喷水9色精品| 亚洲熟女精品中文字幕| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 精品国产一区二区三区四区第35| 高清黄色对白视频在线免费看| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 亚洲精品日本国产第一区| 精品亚洲成国产av| 99国产综合亚洲精品| 国产极品粉嫩免费观看在线| 日韩成人av中文字幕在线观看| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 寂寞人妻少妇视频99o| 七月丁香在线播放| 精品久久久精品久久久| 老熟女久久久| 母亲3免费完整高清在线观看 | 国产精品女同一区二区软件| 天天躁日日躁夜夜躁夜夜| 纯流量卡能插随身wifi吗| 国产有黄有色有爽视频| 国产一区二区 视频在线| 丝瓜视频免费看黄片| 成人毛片a级毛片在线播放| 精品少妇久久久久久888优播| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| av卡一久久| 国产淫语在线视频| 日本vs欧美在线观看视频| 五月天丁香电影| 亚洲,欧美精品.| 极品人妻少妇av视频| 最近2019中文字幕mv第一页| 国产av码专区亚洲av| av一本久久久久| 久久人人97超碰香蕉20202| 午夜福利网站1000一区二区三区| 一区二区三区四区激情视频| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 少妇 在线观看| videosex国产| 黄片播放在线免费| 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 男女下面插进去视频免费观看| 天堂8中文在线网| 少妇精品久久久久久久| 免费在线观看黄色视频的| a 毛片基地| 黄色配什么色好看| 搡老乐熟女国产| 涩涩av久久男人的天堂| 国产欧美日韩综合在线一区二区| 三级国产精品片| 香蕉丝袜av| 欧美日韩视频高清一区二区三区二| 男女午夜视频在线观看| 大香蕉久久成人网| 亚洲精品国产av成人精品| 久久av网站| 色吧在线观看| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 午夜福利影视在线免费观看| videosex国产| 亚洲精品久久午夜乱码| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 国产成人欧美| 超色免费av| 99久久精品国产国产毛片| 亚洲在久久综合| 国产成人精品婷婷| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 亚洲欧美一区二区三区国产| 女性生殖器流出的白浆| 青青草视频在线视频观看| 天天影视国产精品| 亚洲伊人久久精品综合| 香蕉精品网在线| 精品人妻偷拍中文字幕| 最近手机中文字幕大全| 九草在线视频观看| 久久综合国产亚洲精品| 久久久精品免费免费高清| 亚洲av.av天堂| 久久久久久免费高清国产稀缺| 国产福利在线免费观看视频| 天天躁日日躁夜夜躁夜夜| 国产精品二区激情视频| 欧美中文综合在线视频| 欧美精品高潮呻吟av久久| 99香蕉大伊视频| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 青青草视频在线视频观看| 成年女人在线观看亚洲视频| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美软件| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 国产成人精品一,二区| 99热国产这里只有精品6| 久久久久国产精品人妻一区二区| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 日日撸夜夜添| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 国产精品三级大全| 波多野结衣av一区二区av| 国产欧美日韩综合在线一区二区| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件| 国产有黄有色有爽视频| 久久韩国三级中文字幕| 精品酒店卫生间| 9色porny在线观看| 1024香蕉在线观看| 男女国产视频网站| 国产xxxxx性猛交| 国产成人91sexporn| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 少妇人妻精品综合一区二区| 亚洲激情五月婷婷啪啪| 国产精品免费视频内射| 天天躁夜夜躁狠狠久久av| 国产精品久久久久成人av| 90打野战视频偷拍视频| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱| 成人影院久久| 宅男免费午夜| 国产精品一区二区在线不卡| 国产不卡av网站在线观看| 久久久国产一区二区| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 男人操女人黄网站| 人妻系列 视频| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 免费高清在线观看日韩| 一级毛片我不卡| 日韩熟女老妇一区二区性免费视频| 日本爱情动作片www.在线观看| 国产成人午夜福利电影在线观看| 国产亚洲最大av| 午夜福利乱码中文字幕| 欧美另类一区| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看 | 久久青草综合色| 免费在线观看完整版高清| 国产片内射在线| 精品视频人人做人人爽| 在线观看三级黄色| 久久精品熟女亚洲av麻豆精品| 免费不卡的大黄色大毛片视频在线观看| 国产在线一区二区三区精| 视频区图区小说| 国产欧美日韩一区二区三区在线| 久久精品国产自在天天线| 国产精品久久久久久精品古装| 超色免费av| 欧美成人午夜精品| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 人妻系列 视频| 18在线观看网站| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 国产av一区二区精品久久| 国产亚洲午夜精品一区二区久久| 亚洲人成网站在线观看播放| 在线观看国产h片| 赤兔流量卡办理| 久久久精品94久久精品| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 国产午夜精品一二区理论片| 国产精品一区二区在线不卡| 在线精品无人区一区二区三| 国精品久久久久久国模美| 岛国毛片在线播放| 啦啦啦在线免费观看视频4| 黄色配什么色好看| 国产免费一区二区三区四区乱码| 欧美激情高清一区二区三区 | 日韩视频在线欧美| 国产精品免费大片| 久久久欧美国产精品| 中文字幕最新亚洲高清| 亚洲在久久综合| 91在线精品国自产拍蜜月| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 久久久久国产网址| 大片免费播放器 马上看| 免费高清在线观看日韩| 我要看黄色一级片免费的| 成年美女黄网站色视频大全免费| 丝袜脚勾引网站| 中文天堂在线官网| 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到 | 好男人视频免费观看在线| 90打野战视频偷拍视频| 免费在线观看视频国产中文字幕亚洲 | 精品少妇久久久久久888优播| 捣出白浆h1v1| 亚洲成人手机| 在线天堂最新版资源| 中文字幕精品免费在线观看视频| 男的添女的下面高潮视频| 久久久久国产精品人妻一区二区| 成人手机av| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 亚洲图色成人| 各种免费的搞黄视频| 亚洲三级黄色毛片| 久久午夜综合久久蜜桃| 在线天堂中文资源库| 毛片一级片免费看久久久久| 免费观看在线日韩| 最近2019中文字幕mv第一页| 国产精品一国产av| 久久精品国产a三级三级三级| 99热网站在线观看| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 国产高清不卡午夜福利| a级毛片黄视频| 亚洲精品视频女| 久久精品久久久久久久性| av福利片在线| 免费黄频网站在线观看国产| 国产精品 欧美亚洲| 不卡视频在线观看欧美| 中国国产av一级| 午夜影院在线不卡| 1024视频免费在线观看| 免费高清在线观看视频在线观看| 最近最新中文字幕大全免费视频 | 丝袜人妻中文字幕| 男人爽女人下面视频在线观看| 美女脱内裤让男人舔精品视频| 国精品久久久久久国模美| 午夜免费观看性视频| 色吧在线观看| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 人妻少妇偷人精品九色| av视频免费观看在线观看| 亚洲av福利一区| 久久精品国产a三级三级三级| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| 母亲3免费完整高清在线观看 | 精品国产一区二区三区久久久樱花| 不卡av一区二区三区| 男女边摸边吃奶| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 国产免费又黄又爽又色| 成人18禁高潮啪啪吃奶动态图| 久久久久精品人妻al黑| 春色校园在线视频观看| 18在线观看网站| 麻豆乱淫一区二区| 男女啪啪激烈高潮av片| 下体分泌物呈黄色| 免费女性裸体啪啪无遮挡网站| 亚洲av福利一区| 亚洲国产精品成人久久小说| 免费大片黄手机在线观看| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 伦理电影免费视频| 少妇被粗大的猛进出69影院| 中国三级夫妇交换| av在线老鸭窝| 精品国产乱码久久久久久小说| 亚洲成人一二三区av| 婷婷色麻豆天堂久久| 国产 精品1| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| 永久免费av网站大全| 最近的中文字幕免费完整| 麻豆av在线久日| 另类精品久久| 大香蕉久久成人网| 国产精品久久久久久久久免| 日韩伦理黄色片| 久热久热在线精品观看| 哪个播放器可以免费观看大片| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产av新网站| 九九爱精品视频在线观看| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 五月伊人婷婷丁香| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 国产乱来视频区| 91国产中文字幕| 热re99久久精品国产66热6| 男人操女人黄网站| 亚洲国产成人一精品久久久| 久久久久精品久久久久真实原创| 精品99又大又爽又粗少妇毛片| 日本色播在线视频| 性色av一级| 日本av免费视频播放| 青春草国产在线视频| 精品福利永久在线观看| 人妻人人澡人人爽人人| 精品国产乱码久久久久久男人| av电影中文网址| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 又黄又粗又硬又大视频| 免费观看av网站的网址| 日韩一区二区三区影片| 2022亚洲国产成人精品| 日韩中文字幕欧美一区二区 | 亚洲精品成人av观看孕妇| 国产极品天堂在线| 久久精品久久久久久久性| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 亚洲国产看品久久| 久久久精品94久久精品| 另类亚洲欧美激情| 久久热在线av| 中文字幕人妻丝袜一区二区 | 亚洲情色 制服丝袜| 亚洲第一青青草原| 成人漫画全彩无遮挡| 国产成人一区二区在线| 91久久精品国产一区二区三区| 1024香蕉在线观看| 人人澡人人妻人| 不卡视频在线观看欧美| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 满18在线观看网站| 国产成人aa在线观看| freevideosex欧美| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 9热在线视频观看99| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 午夜av观看不卡| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 精品一品国产午夜福利视频| 成人影院久久| 成年人免费黄色播放视频| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 老司机影院成人| 91国产中文字幕| 黑人巨大精品欧美一区二区蜜桃| 欧美精品国产亚洲| 黄片小视频在线播放| 午夜日韩欧美国产| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| av在线观看视频网站免费| 黄色 视频免费看| 性少妇av在线| 久久狼人影院| 精品一区在线观看国产| 尾随美女入室| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 老司机亚洲免费影院| 久久免费观看电影| 妹子高潮喷水视频| 国产欧美日韩综合在线一区二区| 91成人精品电影| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 女性被躁到高潮视频| 丝袜人妻中文字幕| 国产欧美日韩一区二区三区在线| 十分钟在线观看高清视频www| 成年动漫av网址| 日韩成人av中文字幕在线观看| 免费高清在线观看日韩| 国产精品久久久久久精品电影小说| 亚洲精品,欧美精品| 亚洲美女搞黄在线观看| 亚洲av福利一区| 免费在线观看完整版高清| 丝袜美足系列| 天天操日日干夜夜撸| 国产精品久久久久久精品古装| 国产成人91sexporn| 久久婷婷青草| 亚洲情色 制服丝袜| 久久女婷五月综合色啪小说| 五月天丁香电影| 91aial.com中文字幕在线观看| 高清在线视频一区二区三区| 97在线视频观看| 国产在线免费精品| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看 | 少妇人妻精品综合一区二区| 日本午夜av视频| 天天躁夜夜躁狠狠躁躁|