• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photo-depositing Ru and RuO2on Anatase TiO2Nanosheets as Co-catalysts for Photocatalytic O2Evolution from Water Oxidation

    2016-11-24 07:31:18ShiyangMiYuanxuLiuWendongWangCASKeyLaboratoryofMaterialsforEnergyConversionandDepartmentofChemicalPhysicsUniversityofScienceandTechnologyofChinaHefei230026China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年5期

    Shi-yang Mi,Yuan-xu Liu,Wen-dong WangCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China.

    Photo-depositing Ru and RuO2on Anatase TiO2Nanosheets as Co-catalysts for Photocatalytic O2Evolution from Water Oxidation

    Shi-yang Mi,Yuan-xu Liu,Wen-dong Wang?
    CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China.

    TiO2nanosheets mainly exposed(001)facet were prepared through a hydrothermal process with HF as the morphology-directing agent.Ru and RuO2species were loaded by photodeposition methods to prepare the photocatalysts.The structural features of the catalysts were characterized by X-ray diffraction,transmission electron microscopy,inductively coupled plasma atomic emission spectrum,and H2Temperature-programmed reduction.The photocatalytic property was studied by the O2evolution from water oxidation,which was examined with respect to the influences of Ru contents as well as the oxidation and reduction treatments,suggesting the charge separation effect of the Ru species co-catalysts on different facets of TiO2nanosheets.In contrast to Ru/TiO2and RuO2/TiO2with the single deposited co-catalyst,the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2with dual co-catalysts achieved a much improved catalytic performance,in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.

    Anatase TiO2nanosheets,Photocatalytic O2evolution,Crystal facet,Ru co-catalyst,Charge separation

    I.INTRODUCTION

    The photocatalytic splitting of water is considered as one of the promising techniques to convert solar light energy into clean and renewable chemical energy[1]. Among the vast semiconductor photocatalysts applied to the studies of photocatalytic water splitting,TiO2appears to be the most suitable material owing to its high activity,low cost,chemical stability,and nontoxicity[2?4].Although much effort and great progress have been made,it is still a great challenge to overcome the disadvantages of conventional TiO2-based materials,such as exposure of low activity crystal facets, fast recombination of the photogenerated electrons and holes,and low absorbance of visible light.

    Theoretical calculation has demonstrated that the (001)surface of anatase TiO2is more active than the (101)surface[5],therefore conventional anatase TiO2nanoparticles prefer to expose the(101)crystal facets with low surface energy(0.44 J/m2)rather than the (001)facets with high surface energy(0.90 J/m2). To obtain TiO2mainly exposing high reactive crystal facets,hydrofluoric acid(HF)has been used as the structure-directing agent to fabricate nanocrystalline TiO2that exposed 47%(001)crystal facets and showed an excellent photocatalytic activity[6].Based on this breakthrough,a number of studies on TiO2-based materials with dominant highly reactive(001)facets and their enhanced photocatalytic properties have been reported[7?12].

    It is regarded as one of the crucial aspects of photocatalytic activity to reduce the recombination of photogenerated carriers,and one of the effective tactics to improve the photogenerated charge separation efficiency by loading metal or metal oxide nanoparticles as cocatalysts to build heterojunctions on photocatalysts[3, 9,13].The metal and metal oxide nanoparticles loaded on TiO2can be served as a trap for the photogenerated electrons and holes,respectively.Among the various elements used as effective co-catalysts loading in the form of metal or metal oxide,Ru presents remarkable catalytic activities due to the unique properties of Ru and RuO2[3].The enhancement of H2evolution by Ru on photocatalysts has been reported[14,15],which may be ascribed to electronic structure of the interface between the Ru particles and photocatalysts facilitating electron transfers from photocatalysts to Ru. Meanwhile,RuO2-loaded photocatalysts can promote the overall splitting of water[16,17],as the holes would be trapped by RuO2,resulting in efficient charge separation and improved photocatalytic activity.However, there are seldom reported photocatalysts with both Ru and RuO2nanoparticles as co-catalyst loading.

    Moreover,some researchers have found that photogenerated electrons and holes might voluntarily separate towards different crystal facets in the photochemi-cal process[18,19],and hence anisotropic-shaped semiconductor nanoparticles could display higher charge separation efficiency than spherical nanoparticles[7,20, 21].It has been revealed that loading reduction and oxidation co-catalysts on the right crystal facets of semiconductor would enhance the separation of electrons and holes.In the case of anatase TiO2,(001)and(101) facets have been demonstrated as oxidative and reductive sites,respectively[22,23].Recently,it has been reported that the deposition of dual co-catalysts,namely both reduction and oxidation co-catalysts,onto a semiconductor photocatalyst can significantly improve its photocatalytic activity[24?26]due to the synergetic effect of rapid consumption of photogenerated electrons and holes as well as the facile charge separation.

    ?Author to whom correspondence should be addressed.E-mail: wangwd@ustc.edu.cn,Tel.:+86-551-63603683

    In this work,anatase TiO2nanosheets with dominant(001)facets are synthesized by the hydrothermal method.Ru and RuO2nanoparticles were loaded by different photo-deposition processes.The photocatalytic O2evolution from water oxidation was examined to evaluate the performances of synthesized catalysts. The results may demonstrate the charge separation effect on crystal facets of anatase TiO2nanosheets,and high catalytic activity of the anatase TiO2nanosheets photocatalyst with both Ru and RuO2nanoparticles as co-catalyst loading is expected.

    II.EXPERIMENTS

    All chemicals employed in this work were analytical reagents and obtained from Sinopharm,including Ti(OBu)4(TBOT),40wt%HF,ethanol,NaOH pellets, RuCl3,and KIO3powder.

    TiO2nanosheets with dominant(001)crystal facets are synthesized by hydrothermal method[10,11].In a typical procedure,5 mL of TBOT was mixed with 20 mL of ethanol under strong stirring,and then 0.9 mL of 40wt%HF solution was added.The resulting solution was transferred into a Teflon autoclave with a capacity of 50 mL and then kept at 160°C for 24 h.When cooling to room temperature,the white precipitate was collected after centrifugation,washed with ethanol and distilled water for several times in turn,and dried at 80°C for 12 h.In order to remove the surface residual fluoride,the powder was dispersed in 0.1 mol/L NaOH solution and stirred overnight at room temperature,and then washed with distilled water several times to neutral and finally dried at 80°C for 12 h.

    The photo-deposition of Ru was conducted with RuCl3as precursor.Typically,0.15 g TiO2nanosheets were suspended in 50 mL of distilled water,and then the calculated RuCl3solution was added.The suspension was stirred for 2 h in the dark and then irradiated under a 500 W UV lamp with continuous stirring.After photo-deposition for 5 h,the suspension was filtered,washed with distilled water for at least three times and finally dried at 80°C.The obtained catalyst is denoted as Ru/TiO2.The photo-deposition of RuO2was conducted by a similar method to prepare RuO2/TiO2catalyst,and the only difference was that the solution used to suspend TiO2nanosheets was changed to 50 mL KIO3aqueous solution(0.1 mol/L). The photo-deposition of dual co-catalysts Ru and RuO2on TiO2nanosheets was prepared by two steps for Ru-RuO2/TiO2catalyst.Ru was firstly loaded after 5 h photo-deposition,and the suspension was moved to the dark.Then the calculated RuCl3solution and 5 mL of KIO3solution(1 mol/L)was added into the suspension and stirred for 2 h,which was subjected to another 5 h photo-deposition to deposit RuO2.

    The reduction treatment was performed at 150°C for 2 h in a flow of 5%H2/Ar with a heating rate of 5°C/min,while the oxidation treatment at 200°C for 2 h in a muffle.

    The contents of Ru and RuO2deposited on TiO2nanosheets were determined by an Optima 7300 DV inductively coupled plasma atomic emission spectrometer(ICP-AES).The phase compositions of the catalysts were analyzed by powder X-ray diffraction(XRD)with a Rigaku TTR-III diffractometer using Cu Kα radiation (λ=0.15405 nm). Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy(HRTEM)images were taken on a JEOL JEM-2100F instrument.Temperature-programmed reduction(TPR)was performed at a heating rate of 5°C/min from room temperature up to 200°C in a flow of 5%H2/Ar.The amount of H2consumption during TPR was estimated from the integrated peak area using AgO2as a standard.

    The photocatalytic O2evolution from water oxidation was examined to evaluate the performances of synthesized catalysts.The photocatalytic reaction was carried out in a closed quartz glass reaction vessel at room temperature.10 mg of photocatalyst was dispersed into 40 mL of KIO3aqueous solution(0.02 mol/L),which was magnetically stirred throughout the whole photocatalytic reaction. Before irradiation,Ar was introduced to replace the air in the reaction system.The reaction was initiated by irradiation with a 500 W UV lamp,and the UV light was irradiated from the side. The evolved O2was analyzed by a Shimadzu GC-14C gas chromatograph equipped with a thermal conductivity detector.

    III.RESULTS AND DISCUSSION

    The actual Ru content determined by ICP-AES is listed in Table I for Ru/TiO2and RuO2/TiO2catalysts with different Ru loading.The result indicates the presence of Ru species and confirms the actual Ru content is very close to the nominal one.

    The XRD patterns of TiO2nanosheets and the photocatalysts that loaded with different co-catalysts are compared in Fig.1.TiO2nanosheets only shows thetypical diffraction patterns of anatase TiO2(JCPDS No.21-1272).However,the XRD patterns of all the photocatalysts with different Ru loading(not shown),almost identical to those of pure anatase TiO2nanosheets and the three typical catalysts as shown in Fig.1,are in absence of any diffraction peak related to either metallic Ru or ruthenium oxides.This result is consistent with the presence of very tiny nanoparticles of Ru species whose sizes may be beyond the detection limitation of XRD,as previously perceived in the case of Ru supported on TiO2and carbon nanotubes support [9,27?29].

    TABLE I The Ru content of nominal and actual catalysts.

    FIG. 1 XRD patterns of (a) TiO2 nanosheets, (b)0.5%Ru/TiO2,(c)1.0%RuO2/TiO2,and(d)0.5%Ru-1.0%RuO2/TiO2catalysts.

    Figure 2 shows the TEM and HRTEM images of the obtained TiO2nanosheets and typical photocatalysts to verify the formation of their morphology features. It is observed that the obtained TiO2nanosheets are composed of rectangular nanosheets with a length of 15?40 nm and thickness of 3?6 nm featuring a compressed truncated octahedral bipyramid shape[12].The HRTEM image indicates that two sets of lattice fringes with spacing of 0.235 and 0.189 nm may be identified. This result suggests two mainly exposed facets corresponding to(001)facet and other eight facets corresponding to(101)facet,respectively,and the percentages of(001)facet can be estimated to be about 70%in this work according to the previous studies[6,11,12]. However,the presence of Ru and RuO2particles are hardly to be discovered from the TEM images of three typical photocatalysts,which may be in line with the highly dispersed co-catalyst nanoparticles of Ru species beyond the detection limitation of XRD,and could be ascribed to the absence of sufficient contrast between for the detection of highly dispersed Ru species deposited on the TiO2nanosheets as well.

    The H2-TPR profiles of the selected catalysts are plotted in Fig.3 to compare their redox properties. There is not any reduction peak in the exaimed temperature region for the TiO2nanosheets(Fig.3(a)).For 0.5%Ru/TiO2catalyst,almost no peak appears except a trace of H2consumption near 100°C(Fig.3(b)),while an obvious peak centered at 131°C is observed after the oxidation treatment(Fig.3(c))but it totally disappears after the subsequent reduction treatment(Fig.3(d))as expected,which suggests the Ru species can be effectively loaded on TiO2nanosheets by photo-deposition. With respect to 1.0%RuO2/TiO2catalyst,it features a H2consumption peak at 104°C(Fig.3(e))due to the reduction of RuO2[30],and then the peak disappears after the reduction treatment(Fig.3(f));however,another peak located about 128°C is identified after the subsequent oxidation treatment(Fig.3(g)).It is verified that the content of Ru species is basically in accordance with the amount of H2consumption estimated from the integrated peak area.

    The photocatalytic property of the Ru species loaded TiO2nanosheets was evaluated by the O2evolution from water oxidation. The dependence of catalytic performance on the Ru content for Ru/TiO2catalyst is shown in Fig.4.There is no oxygen evolution for the only TiO2nanosheets without Ru species loading.The O2evolution rate increased apparently from 10.59 mmol/(g·h)to 18.48 mmol/(g·h)catalyst with the Ru content from 0.1wt%to 0.5wt%. However,the activity drastically decline to 5.43 mmol/(g·h)when the Ru content further inceases to 1.5wt%.The similar dependence of O2evolution rate on the Ru content is also noticed for RuO2/TiO2catalyst as indicated in Fig.5,where the optimum Ru content of 1.0wt%can be identified with the highest O2evolution rate of 20.25 mmol/(g·h).It suggests that the photodeposition of Ru or RuO2onto TiO2nanosheets may both be the effective way to promote its ptotocatalytic activity.

    It has been revealed that noble metals and metal oxides may be selectively deposited on the exposed(101) and(001)facets of TiO2[31],since the photogenerated electrons and holes mainly accumulate on the(101)and (001)facets during the photo-deposition process and then are involved in the photocatalytic reduction and oxidation reactions,respectively.In the present study, it is reasonable to infer that Ru and RuO2nanoparticlesare selectively deposited on(101)and(001)facets of the obtained TiO2nanosheets with the simultaneous exposure of the two facets for Ru/TiO2and RuO2/TiO2catalysts,respectively.The effect of Ru species on the O2evolution from photocatalytic water oxidation loaded might be explained by the charge separation effect on different facets of the TiO2nanosheets[25,26,32,33]. For the Ru/TiO2catalysts,Ru nanoparticles deposited on the exposed(101)facets of TiO2act as centers for trapping electrons when the content of Ru species is at a lower stage,which may enhance the separation of electrons and holes.However,the excessive Ru loading might hinder the incident light from irradiating TiO2and serve as the recombination centers for electrons and holes,which leads to the decrease of charge separation efficiency[33,34].A similar situation may also be applied for the RuO2/TiO2catalysts,the main difference is the RuO2nanoparticles deposited on the exposed(001)facets of TiO2act as centers for trapping holes.

    FIG.2 TEM and HRTEM images of TiO2nanosheets and catalysts.(a)Pure TiO2,(b)0.5%Ru/TiO2,(c)1.0%RuO2/TiO2, (d)0.5%Ru-1.0%RuO2/TiO2,and(e)HR-TEM image of pure TiO2.

    FIG.3 H2-TPR profiles of(a) TiO2 nanosheets, (b) 0.5%Ru/TiO2, (c) 0.5%Ru/TiO2 after oxidation, (d) 0.5%Ru/TiO2 after oxidation reduction, (e)1.0%RuO2/TiO2,(f)1.0%RuO2/TiO2after reduction, and(g)1.0%RuO2/TiO2after reduction and subsequent oxidation.

    FIG.4 Oxygen evolution rates over Ru/TiO2catalysts with different Ru contents.

    In order to further explore the charge separation effect on the different facets of TiO2nanosheets,the catalysts were subjected to oxidation and reduction treatments and the photocatalytic activities were examed as shown in Fig.6. For 0.5%Ru/TiO2catalyst,the O2evolution rate deeply decreases after the oxidationtreatment from 18.48 mmol/(g·h)to 6.04 mmol/(g·h) for 0.5%Ru/TiO2(Oxy). Since the oxidation transforms Ru deposited on TiO2(101)facets into RuO2as confirmed by TPR result,the incompatible configuration of co-catalyst RuO2(holes trapped)on the TiO2(101)facets(electrons accumulated)may result in the faster recombination of electrons and holes and thus much lower photocatalytic activity. It is noticed that the O2evolution rate then greatly recovers to 14.07 mmol/(g·h)for 0.5%Ru/TiO2(Oxy-Red) after the subsequent reduction treatment. On the other hand,the difference in O2evolution rate for 0.5%Ru/TiO2(Oxy)and 0.5%RuO2/TiO2also implies that Ru and RuO2may be selectively deposited on the different TiO2facets.The analogous tendency can also be observed for 1.0%RuO2/TiO2catalyst after the similar treatments,during which the O2evolution decreases from 20.25 mmol/(g·h)to 8.84 mmol/(g·h) after the reduction for 1.0%RuO2/TiO2(Red),and recovers to 17.19 mmol/(g·h)after the subsequent oxidation treatment for 1.0%RuO2/TiO2(Red-Oxy).The evident decrease in the photocatalytic activity for 1.0%RuO2/TiO2(Red)may also be due to the incompatible configuration of co-catalyst Ru(electrons accumulated)on the TiO2(001)facets(holes trapped).The difference between the recovered and the original activity is mainly ascribed to the possible calcination and loss of Ru species during the oxidation and reduction treatments.

    FIG.5 Oxygen evolution rates over RuO2/TiO2catalysts with different Ru content

    To fulfill a promising route to engineer the efficient photocatalyst by taking advantage of the charge separation effect,the dual co-catalysts on TiO2nanosheets was fabricated by two steps of photo-deposition for 0.5%Ru-1.0%RuO2/TiO2catalyst,where it may be inferred that Ru and RuO2are simultaneously and selectively deposited on(101)and(001)facets of the TiO2nanosheets,respectively. As compared in Fig.6,0.5%Ru-1.0%RuO2/TiO2sample deposited with dual co-catalysts features the highest O2evolution rate of 31.8 mmol/(g·h),which is not only superior to 0.5%Ru/TiO2and 1.0%RuO2/TiO2with the single co-catalyst at the optimum Ru content,but also much boosted in comparison with 1.5%Ru/TiO2and 1.5%RuO2/TiO2with the single co-catalyst at the same Ru content.The synergetic effect of dual co-catalysts may be due to the enhanced charge separation effect, achieved by both Ru and RuO2selectively deposited on (101)and(001)facets of TiO2nanosheets as the trapping centers of electrons and holes,which could further facilitate the charge separation and thus promote the photocatalytic reaction.

    FIG.6 Oxygen evolution rates overdifferent Ruloaded TiO2nanosheets catalysts. (a)0.5%Ru/TiO2, (b)0.5%Ru/TiO2(Oxy),(c)0.5%Ru/TiO2(Oxy-Red), (d) 1.0%RuO2/TiO2, (e) 1.0%RuO2/TiO2 (Red), (f) 1.0%RuO2/TiO2 (Red-Oxy), and (g) 0.5%Ru-1.0%RuO2/TiO2.

    IV.CONCLUSION

    In this work,anatase TiO2nanosheets with mainly exposed(001)facet of about 70%have been obtained by the hydrothermal process.Ru or RuO2nanoparticles are successfully loaded on the obtained TiO2nanosheets by photo-deposition methods to fabricate the photocatalysts.The structural characterizations suggest highly dispersed Ru species on the TiO2nanosheets.According to the photocatalytic O2evolution from water oxidation,the optimum Ru contents were identified to be 0.5wt%and 1.0wt%for Ru/TiO2and RuO2/TiO2catalysts,respectively. It may be explained by the charge separation effect of the Ru species co-catalysts on the different facets of TiO2nanosheets. Combined with the redox property and the influence of oxidation and reduction treatments on the photocatalytic behavior,it may be inferred that the co-catalysts of Ru and RuO2are selectively deposited on(101) and(001)facets of the TiO2nanosheets,respectively. The optimal photocatalytic activity was achieved for 0.5%Ru-1.0%RuO2/TiO2sample deposited with dual co-catalysts,which may be provn to be a promising route to engineer the efficient photocatalyst by fulfilling the enhanced charge separation effect.

    V.ACKNOWLEDGMENTS

    This work is supported by the Anhui Provincial Natural Science Foundation(No.1408085MB25).

    [1]S.S.Mao and X.B.Chen,Int.J.Energ.Res.31,619 (2007).

    [2]A.Fujishima and K.Honda,Nature 238,37(1972).

    [3]X.B.Chen,S.H.Shen,L.J.Guo,and S.S.Mao, Chem.Rev.110,6503(2010).

    [4]A.Fujishima,X.T.Zhang,and D.A.Tryk,Surf.Sci. Rep.63,515(2008).

    [5]A.Vittadini,A.Selloni,F.P.Rotzinger,and M. Gratzel,Phys.Rev.Lett.81,2954(1998).

    [6]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [7]X.G.Han,Q.Kuang,M.S.Jin,Z.X.Xie,and L.S. Zheng,J.Am.Chem.Soc.131,3152(2009).

    [8]G.Liu,H.G.Yang,X.W.Wang,L.N.Cheng,H.F. Lu,L.Z.Wang,G.Q.Lu,and H.M.Cheng,J.Phys. Chem.C 113,21784(2009).

    [9]L.C.Liu,Z.Y.Ji,W.X.Zou,X.R.Gu,Y.Deng, F.Gao,C.J.Tang,and L.Dong,Acs Catal.3,2052 (2013).

    [10]Y.B.Luan,L.Q.Jing,Y.Xie,X.J.Sun,Y.J.Feng, and H.G.Fu,Acs Catal.3,1378(2013).

    [11]X.H.Yang,Z.Li,C.H.Sun,H.G.Yang,and C.Z.Li, Chem.Mater.23,3486(2011).

    [12]W.J.Ong,L.L.Tan,S.P.Chai,S.T.Yong,and A. R.Mohamed,Nanoscale 6,1946(2014).

    [13]J.S.Jang,H.G.Kim,and J.S.Lee,Catal.Today 185, 270(2012).

    [14]M.Hara,J.Nunoshige,T.Takata,J.N.Kondo,and K. Domen,Chem.Commun.3000(2003).

    [15]I.Tsuji,H.Kato,and A.Kudo,Chem.Mater.18,1969 (2006).

    [16]Y.Ebina,N.Sakai,and T.Sasaki,J.Phys.Chem.B 109,17212(2005).

    [17]H.Kadowaki,N.Saito,H.Nishiyama,H.Kobayashi, Y.Shimodaira,and Y.Inoue,J.Phys.Chem.C 111, 439(2007).

    [18]H.Kato,K.Asakura,and A.Kudo,J.Am.Chem.Soc. 125,3082(2003).

    [19]J.L.Giocondi,P.A.Salvador,and G.S.Rohrer,Top. Catal.44,529(2007).

    [20]G.K.Mor,K.Shankar,M.Paulose,O.K.Varghese, and C.A.Grimes,Nano.Lett.5,191(2005).

    [21]P.D.Cozzoli,A.Kornowski,and H.Weller,J.Am. Chem.Soc.125,14539(2003).

    [22]N.Murakami,Y.Kurihara,T.Tsubota,and T.Ohno, J.Phys.Chem.C 113,3062(2009).

    [23]N.Roy,Y.Sohn,and D.Pradhan,Acs.Nano.7,2532 (2013).

    [24]F.Lin,D.G.Wang,Z.X.Jiang,Y.Ma,J.Li,R.G. Li,and C.Li,Energ.Environ.Sci.5,6400(2012).

    [25]R.G.Li,F.X.Zhang,D.G.Wang,J.X.Yang,M. R.Li,J.Zhu,X.Zhou,H.X.Han,and C.Li,Nat. Commun.4,(2013).

    [26]R.G.Li,H.X.Han,F.X.Zhang,D.G.Wang,and C. Li,Energ.Environ.Sci.7,1369(2014).

    [27]T.Abe,M.Tanizawa,K.Watanabe,and A.Taguchi, Energ.Environ.Sci.2,315(2009).

    [28]G.Y.Wang,Y.X.Gao,W.D.Wang,and W.X.Huang, Chin.J.Chem.Phys.25,475(2012).

    [29]Y.X.Gao,K.M.Xie,S.Y.Mi,N.Liu,W.D.Wang, and W.X.Huang,Int.J.Hydrogen.Energ.38,16665 (2013).

    [30]Y.H.Kim,E.D.Park,H.C.Lee,and D.Lee,Appl. Catal.A 366,363(2009).

    [31]X.Wang,R.G.Li,Q.Xu,H.X.Han,and C.Li,Acta. Phys.Chim.Sin.29,1566(2013).

    [32]T.Tachikawa,N.Wang,S.Yamashita,S.C.Cui,and T.Majima,Angew.Chem.Int.Edit.49,8593(2010).

    [33]C.Liu,X.G.Han,S.F.Xie,Q.Kuang,X.Wang,M. S.Jin,Z.X.Xie,and L.S.Zheng,Chem-Asian.J.8, 282(2013).

    [34]P.V.Snytnikov,V.A.Sobyanin,V.D.Belyaev,P.G. Tsyrulnikov,N.B.Shitova,and D.A.Shlyapin,Appl. Catal.A.239,149(2003).

    (Dated:Received on March 26,2016;Accepted on April 24,2016)

    久久精品综合一区二区三区| 国产成人一区二区在线| 美女被艹到高潮喷水动态| 免费大片18禁| 亚洲电影在线观看av| 天堂影院成人在线观看| 午夜爱爱视频在线播放| 久久精品综合一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲人成网站在线观看播放| 色视频www国产| 欧美zozozo另类| www日本黄色视频网| 99视频精品全部免费 在线| 国产在视频线在精品| 欧美丝袜亚洲另类| 久久精品综合一区二区三区| 日韩欧美精品v在线| 网址你懂的国产日韩在线| 久久久国产成人精品二区| 99九九线精品视频在线观看视频| 成人三级黄色视频| 日本黄色视频三级网站网址| 国产成人一区二区在线| 男女那种视频在线观看| 免费看av在线观看网站| 男人和女人高潮做爰伦理| 观看美女的网站| 国产成人精品婷婷| 亚洲欧美成人综合另类久久久 | 精品久久久久久电影网 | 日韩av在线大香蕉| 国产精品三级大全| 色吧在线观看| 亚洲精品成人久久久久久| 纵有疾风起免费观看全集完整版 | 狂野欧美白嫩少妇大欣赏| 97热精品久久久久久| 日本av手机在线免费观看| 国产精品人妻久久久影院| 男人舔女人下体高潮全视频| 22中文网久久字幕| 成年版毛片免费区| 亚洲av中文字字幕乱码综合| 高清毛片免费看| 午夜福利成人在线免费观看| 精品欧美国产一区二区三| 嫩草影院精品99| 久久亚洲精品不卡| 男人舔奶头视频| 91狼人影院| 国产 一区精品| 伊人久久精品亚洲午夜| 青春草视频在线免费观看| 九九爱精品视频在线观看| 国产淫片久久久久久久久| 偷拍熟女少妇极品色| 亚州av有码| 亚洲自拍偷在线| 三级国产精品欧美在线观看| 亚洲最大成人中文| 国产精品99久久久久久久久| 丝袜喷水一区| 三级国产精品片| 久久午夜福利片| 18禁在线播放成人免费| 日本猛色少妇xxxxx猛交久久| 汤姆久久久久久久影院中文字幕 | 日韩亚洲欧美综合| 搡老妇女老女人老熟妇| 长腿黑丝高跟| 七月丁香在线播放| 亚洲国产精品sss在线观看| 亚洲乱码一区二区免费版| 免费观看在线日韩| 国产精品国产高清国产av| 亚洲精华国产精华液的使用体验| 国产成人a区在线观看| 亚洲精品一区蜜桃| 高清在线视频一区二区三区 | 能在线免费观看的黄片| 欧美xxxx黑人xx丫x性爽| 国产亚洲最大av| 舔av片在线| 亚洲自拍偷在线| 美女脱内裤让男人舔精品视频| 久久久久久久久中文| 亚洲久久久久久中文字幕| 日韩一区二区三区影片| 桃色一区二区三区在线观看| 日韩一区二区三区影片| 亚洲国产色片| 亚洲va在线va天堂va国产| 99九九线精品视频在线观看视频| 久久精品综合一区二区三区| 精品午夜福利在线看| 精品久久久久久久久亚洲| 日韩人妻高清精品专区| 国产免费一级a男人的天堂| 欧美激情国产日韩精品一区| 一级毛片aaaaaa免费看小| 亚洲欧美精品综合久久99| 国产精品久久久久久精品电影小说 | 久久精品国产鲁丝片午夜精品| 欧美xxxx性猛交bbbb| 男人的好看免费观看在线视频| 女人十人毛片免费观看3o分钟| 狠狠狠狠99中文字幕| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 淫秽高清视频在线观看| 欧美一区二区亚洲| 乱人视频在线观看| 国国产精品蜜臀av免费| 美女黄网站色视频| 日本wwww免费看| 在线观看一区二区三区| av免费观看日本| 日韩av不卡免费在线播放| 成年版毛片免费区| 成人高潮视频无遮挡免费网站| 欧美人与善性xxx| 一级毛片aaaaaa免费看小| 真实男女啪啪啪动态图| 国产免费又黄又爽又色| 精品人妻一区二区三区麻豆| 青春草国产在线视频| 午夜激情福利司机影院| 99热6这里只有精品| av视频在线观看入口| 久久久久久大精品| 听说在线观看完整版免费高清| 久久久久久大精品| 国产精品精品国产色婷婷| 久久人人爽人人爽人人片va| 久久99热这里只有精品18| 婷婷六月久久综合丁香| 搡女人真爽免费视频火全软件| 七月丁香在线播放| 五月玫瑰六月丁香| 日韩,欧美,国产一区二区三区 | 国产午夜福利久久久久久| 国产精品一区二区在线观看99 | 一边摸一边抽搐一进一小说| 亚洲欧美日韩卡通动漫| 噜噜噜噜噜久久久久久91| 久久久精品94久久精品| 激情 狠狠 欧美| 青青草视频在线视频观看| 69av精品久久久久久| 亚洲五月天丁香| 亚洲欧美清纯卡通| 能在线免费看毛片的网站| 午夜精品在线福利| 1024手机看黄色片| 国产成人aa在线观看| 久久久久性生活片| 久久精品国产99精品国产亚洲性色| 又爽又黄无遮挡网站| 午夜精品国产一区二区电影 | 免费看日本二区| av免费在线看不卡| 精品人妻熟女av久视频| 欧美不卡视频在线免费观看| 亚洲在线自拍视频| 别揉我奶头 嗯啊视频| 亚洲国产成人一精品久久久| 欧美xxxx性猛交bbbb| 久久久久性生活片| 亚洲av不卡在线观看| 特大巨黑吊av在线直播| 啦啦啦啦在线视频资源| 好男人在线观看高清免费视频| 一个人免费在线观看电影| 热99re8久久精品国产| 干丝袜人妻中文字幕| 午夜福利成人在线免费观看| 国产精品麻豆人妻色哟哟久久 | 一卡2卡三卡四卡精品乱码亚洲| 日本一本二区三区精品| 一级毛片aaaaaa免费看小| 国产在线男女| 99久久成人亚洲精品观看| 免费黄色在线免费观看| 一级毛片我不卡| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 禁无遮挡网站| 国产精品国产三级国产专区5o | 人人妻人人澡人人爽人人夜夜 | a级毛色黄片| 日日摸夜夜添夜夜爱| 天天躁日日操中文字幕| 国产精品熟女久久久久浪| 亚洲最大成人手机在线| 女人被狂操c到高潮| 欧美高清性xxxxhd video| 蜜桃久久精品国产亚洲av| 亚洲久久久久久中文字幕| 亚洲精品一区蜜桃| 波多野结衣巨乳人妻| 国产精品一区二区三区四区免费观看| 亚洲成色77777| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网 | 在线播放国产精品三级| 99久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 黄色配什么色好看| 一区二区三区高清视频在线| 亚洲国产精品sss在线观看| 亚洲国产精品专区欧美| 听说在线观看完整版免费高清| 少妇猛男粗大的猛烈进出视频 | 欧美激情久久久久久爽电影| 黄色日韩在线| 亚洲精品aⅴ在线观看| 久久久久久九九精品二区国产| 深夜a级毛片| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 亚洲av熟女| 插阴视频在线观看视频| 熟女人妻精品中文字幕| 欧美另类亚洲清纯唯美| 久久久a久久爽久久v久久| 亚洲成av人片在线播放无| 女人久久www免费人成看片 | 亚洲综合精品二区| 国产精品.久久久| 麻豆久久精品国产亚洲av| 深夜a级毛片| 亚洲国产欧洲综合997久久,| 国产精品女同一区二区软件| 成人午夜高清在线视频| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 麻豆成人av视频| 久久久久久久久久久免费av| 久久精品人妻少妇| 免费av毛片视频| 成人特级av手机在线观看| 精品久久久久久久末码| 一级黄片播放器| 亚洲人成网站高清观看| 日本熟妇午夜| 中文亚洲av片在线观看爽| 3wmmmm亚洲av在线观看| 国产男人的电影天堂91| 成人漫画全彩无遮挡| 丰满少妇做爰视频| 久久精品国产亚洲网站| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 日韩av不卡免费在线播放| 国产成人91sexporn| 舔av片在线| 亚洲四区av| 久久草成人影院| 黄色欧美视频在线观看| 特级一级黄色大片| 国产午夜福利久久久久久| 少妇丰满av| 亚洲综合色惰| 欧美一区二区亚洲| 国产精品一区www在线观看| 精品99又大又爽又粗少妇毛片| 夜夜爽夜夜爽视频| 欧美高清成人免费视频www| 国产高清不卡午夜福利| 成人毛片a级毛片在线播放| 亚洲av福利一区| 综合色av麻豆| 免费大片18禁| 欧美成人a在线观看| 性色avwww在线观看| 嘟嘟电影网在线观看| 可以在线观看毛片的网站| 伊人久久精品亚洲午夜| 久久欧美精品欧美久久欧美| 91aial.com中文字幕在线观看| 国产高清视频在线观看网站| 丝袜美腿在线中文| 久久99热6这里只有精品| 欧美97在线视频| 欧美三级亚洲精品| 亚洲av.av天堂| 久久99热这里只频精品6学生 | 国产精品美女特级片免费视频播放器| 婷婷色av中文字幕| 午夜久久久久精精品| 内射极品少妇av片p| 午夜福利在线在线| av又黄又爽大尺度在线免费看 | 亚洲综合精品二区| 免费观看的影片在线观看| 日韩亚洲欧美综合| 免费在线观看成人毛片| 久久国内精品自在自线图片| 亚洲人成网站在线播| 免费观看精品视频网站| 亚洲经典国产精华液单| 久久99精品国语久久久| 亚洲av成人精品一二三区| 欧美性猛交╳xxx乱大交人| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 女人久久www免费人成看片 | 1024手机看黄色片| 直男gayav资源| 亚洲色图av天堂| 日本色播在线视频| 深爱激情五月婷婷| 非洲黑人性xxxx精品又粗又长| 欧美潮喷喷水| 免费观看在线日韩| 国产 一区精品| 校园人妻丝袜中文字幕| 老司机影院成人| 国产在线一区二区三区精 | 网址你懂的国产日韩在线| 亚洲精品自拍成人| 国产高清视频在线观看网站| 丰满少妇做爰视频| 男人狂女人下面高潮的视频| 亚洲性久久影院| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 丰满少妇做爰视频| 免费黄网站久久成人精品| 欧美变态另类bdsm刘玥| 国产精品综合久久久久久久免费| 国产亚洲91精品色在线| 国产精华一区二区三区| 桃色一区二区三区在线观看| 日韩一区二区视频免费看| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 老司机影院成人| 国产大屁股一区二区在线视频| 在线观看66精品国产| 亚洲欧美成人综合另类久久久 | 久久久精品94久久精品| 美女cb高潮喷水在线观看| 麻豆精品久久久久久蜜桃| 在线播放无遮挡| 在线a可以看的网站| 国产亚洲5aaaaa淫片| 18禁在线播放成人免费| 久久精品国产亚洲网站| 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 午夜爱爱视频在线播放| 99热精品在线国产| 日本黄大片高清| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 日韩在线高清观看一区二区三区| 色网站视频免费| 精品国产三级普通话版| 国产精品久久视频播放| 日本一本二区三区精品| 成年版毛片免费区| 七月丁香在线播放| 色播亚洲综合网| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| 少妇丰满av| 精品免费久久久久久久清纯| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 免费看a级黄色片| 最近视频中文字幕2019在线8| 国产视频内射| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 国产精品日韩av在线免费观看| 午夜爱爱视频在线播放| 麻豆一二三区av精品| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| 午夜精品国产一区二区电影 | 日本免费一区二区三区高清不卡| 色综合亚洲欧美另类图片| 一级毛片我不卡| 日韩视频在线欧美| 免费看a级黄色片| 青春草亚洲视频在线观看| 欧美丝袜亚洲另类| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 乱系列少妇在线播放| 99热这里只有是精品50| 日本黄色视频三级网站网址| www.色视频.com| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看| 亚洲av二区三区四区| 神马国产精品三级电影在线观看| 嫩草影院精品99| 欧美成人免费av一区二区三区| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 国产精华一区二区三区| 亚洲在线观看片| 午夜福利在线观看免费完整高清在| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线 | 成年版毛片免费区| 在线观看一区二区三区| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 2021天堂中文幕一二区在线观| 亚洲av一区综合| 99久久人妻综合| 精品熟女少妇av免费看| 欧美精品国产亚洲| 久久精品久久久久久久性| 国语自产精品视频在线第100页| 国产欧美另类精品又又久久亚洲欧美| 免费黄色在线免费观看| 欧美日韩国产亚洲二区| 亚洲一级一片aⅴ在线观看| 久久久久性生活片| 黄色日韩在线| 久久精品综合一区二区三区| 欧美成人精品欧美一级黄| 日本黄大片高清| 一二三四中文在线观看免费高清| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 国产av不卡久久| 中文字幕免费在线视频6| 久久热精品热| 好男人视频免费观看在线| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄 | 国产毛片a区久久久久| 亚洲av.av天堂| 韩国av在线不卡| 精品国产一区二区三区久久久樱花 | 秋霞伦理黄片| 少妇被粗大猛烈的视频| 老司机影院成人| 欧美人与善性xxx| 一边亲一边摸免费视频| 日韩一区二区三区影片| 亚洲中文字幕日韩| 久久综合国产亚洲精品| 99热这里只有是精品50| 精品一区二区免费观看| 在线播放无遮挡| 亚洲久久久久久中文字幕| 亚洲精品乱码久久久久久按摩| 69人妻影院| av专区在线播放| 亚洲欧美成人综合另类久久久 | 你懂的网址亚洲精品在线观看 | 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看| 伊人久久精品亚洲午夜| 高清av免费在线| 欧美另类亚洲清纯唯美| 国产av在哪里看| 国产精华一区二区三区| 国产免费男女视频| 亚洲内射少妇av| 国产精品永久免费网站| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| 丰满人妻一区二区三区视频av| 人妻系列 视频| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 麻豆一二三区av精品| 精品一区二区免费观看| 成年免费大片在线观看| 国产高潮美女av| 国语对白做爰xxxⅹ性视频网站| 岛国毛片在线播放| 久久久精品94久久精品| 亚洲精品一区蜜桃| av免费观看日本| 青春草国产在线视频| 天堂中文最新版在线下载 | 韩国高清视频一区二区三区| 欧美激情国产日韩精品一区| 久久久久久久午夜电影| 又黄又爽又刺激的免费视频.| 2021天堂中文幕一二区在线观| 一区二区三区乱码不卡18| 国产黄片美女视频| av在线天堂中文字幕| 国产色爽女视频免费观看| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 国产成人一区二区在线| 亚洲av.av天堂| 特大巨黑吊av在线直播| 麻豆久久精品国产亚洲av| 亚州av有码| 97热精品久久久久久| 欧美精品国产亚洲| 国产免费福利视频在线观看| 色综合色国产| 免费av观看视频| 免费看光身美女| 久久久久久伊人网av| 麻豆av噜噜一区二区三区| 1000部很黄的大片| 国产高清有码在线观看视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品乱久久久久久| 成年av动漫网址| 欧美日韩在线观看h| 女人被狂操c到高潮| 中文天堂在线官网| 国产在视频线精品| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 久久人妻av系列| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 国产精品国产三级专区第一集| 国产淫片久久久久久久久| 欧美最新免费一区二区三区| 综合色av麻豆| 欧美一级a爱片免费观看看| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 欧美一区二区精品小视频在线| videossex国产| 搞女人的毛片| 激情 狠狠 欧美| 看黄色毛片网站| 亚洲av免费在线观看| 亚洲人成网站在线播| 自拍偷自拍亚洲精品老妇| 在线免费十八禁| 日本免费在线观看一区| 好男人视频免费观看在线| 亚洲国产精品合色在线| 综合色丁香网| 久久久久免费精品人妻一区二区| 国产成人福利小说| 亚洲在线观看片| 免费电影在线观看免费观看| 欧美成人午夜免费资源| 色噜噜av男人的天堂激情| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 精品人妻偷拍中文字幕| 欧美色视频一区免费| 国内精品美女久久久久久| 亚洲欧美清纯卡通| av天堂中文字幕网| 男女视频在线观看网站免费| 欧美激情久久久久久爽电影| 日本av手机在线免费观看| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 国产综合懂色| 国产成人免费观看mmmm| 高清在线视频一区二区三区 | 亚洲av电影在线观看一区二区三区 | 亚洲精品自拍成人| 午夜激情福利司机影院| 亚洲精品自拍成人| 99热6这里只有精品| 午夜福利高清视频| 三级毛片av免费| 日韩av在线免费看完整版不卡| 国产美女午夜福利| 婷婷色麻豆天堂久久 | 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 国产免费福利视频在线观看| 欧美色视频一区免费| 22中文网久久字幕| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 2021天堂中文幕一二区在线观| 麻豆av噜噜一区二区三区| 日韩欧美精品v在线| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 丰满人妻一区二区三区视频av| 国产亚洲av片在线观看秒播厂 | 丰满少妇做爰视频| 日韩国内少妇激情av| 一二三四中文在线观看免费高清| av福利片在线观看| 男人的好看免费观看在线视频| 大话2 男鬼变身卡| 99热全是精品| 欧美日韩在线观看h| 午夜福利成人在线免费观看| 99久久精品热视频| 尤物成人国产欧美一区二区三区|