• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MJO potential predictability and predictive skill in IAP AGCM 4.1

    2016-11-23 04:47:23WANGKunLINZhoHuiLINGJinYUYuenWUChengLi
    關鍵詞:科學研究中科院環(huán)流

    WANG Kun, LIN Zho-Hui, LING Jin, YU Yuen WU Cheng-Li

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China;dState Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG), IAP, CAS, Beijing, China

    MJO potential predictability and predictive skill in IAP AGCM 4.1

    WANG Kuna,b, LIN Zhao-Huia,c, LING Jiand, YU Yuea,band WU Cheng-Laia

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS),Beijing, China;bCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China;cCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China;dState Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG), IAP, CAS, Beijing, China

    A 30-year hindcast was performed using version 4.1 of the IAP AGCM (IAP AGCM4.1), and its potential predictability of the MJO was then evaluated. The results showed that the potential predictability of the MJO is 13 and 24 days, evaluated using the signal-to-error ratio method based on a single member and the ensemble mean, respectively. However, the MJO prediction skill is only 9 and 10 days using the two methods mentioned above. It was further found that the potential predictability and prediction skill depend on the MJO amplitude in the initial conditions. Prediction initiated from conditions with a strong MJO amplitude tends to be more skillful. Together with the results of other measures, the current MJO prediction ability of IAP AGCM4.1 is around 10 days, which is much lower than other climate prediction systems. Furthermore, the smaller diference between the MJO predictability and prediction skill evaluated by a single member and the ensemble mean methods could be ascribed to the relatively smaller size of the ensemble member of the model. Therefore, considerable efort should be made to improve MJO prediction in IAP AGCM4.1 through application of a reasonable model initialization and ensemble forecast strategy.

    ARTICLE HISTORY

    Revised 8 May 2016

    Accepted 9 May 2016

    MJO模擬及預報是現(xiàn)階段大氣科學研究的前沿問題。本文利用中科院大氣物理所大氣環(huán)流模式(IAP AGCM4.1)的集合回報結果,分析了MJO潛在可預報性及預報技巧。研究表明IAP AGCM4.1對MJO有著較好的潛在可預報性,且集合預報的潛在可預報性要明顯優(yōu)于單樣本預報;就MJO的預報技巧而言,集合預報同樣優(yōu)于單樣本預報;模式對MJO的預報技巧還顯著依賴于預報初始時刻的MJO狀態(tài),初始MJO信號越強,模式對MJO的預報技巧也越高,且更接近可預報性的上限。

    1. Introduction

    The MJO is the dominant component of tropical intraseasonal variability (Madden and Julian 1971, 1972). It can afect the atmospheric and oceanic variability over the tropics and extratropics, and it represents a major source of predictability on the intraseasonal time scale. MJO prediction makes a great contribution to sub-seasonal to seasonal forecast quality, since it links deterministic weather forecasts and probabilistic climate predictions(Zhang 2013). There is emerging interest in many research institutions and operational meteorological centers in sub-seasonal prediction, especially for the MJO and its related phenomena.

    In recent decades, MJO prediction skill and its potential predictability have been widely evaluated for both dynamical and statistical methods (Waliser 2011). At the beginning of the current century, MJO prediction skill was only about 7-10 days using dynamical models (Jones et al. 2000), and could be up to 2 weeks using statistical models(Lo and Hendon 2000; Wheeler and Weickmann 2001). As MJO prediction capability depends on the forecast system and its initial conditions, with the development of more advanced climate models and high-quality data assimilation methods, MJO dynamical prediction capabilities have been greatly improved. The skillful prediction of the MJO can now reach 15-25 days, and the predictability of the MJO can extend to 4-6 weeks (Kim et al. 2014; Neena et al. 2014; Ren et al. 2015; Weaver et al. 2011; Xiang et al. 2015).

    The previous versions of IAP AGCM have been widely applied for seasonal climate prediction (e.g. Lang, Wang,and Jiang 2004; Lin et al. 1998); however, they have not yet been applied for MJO prediction, due to the lack ofcapability in reproducing the observed eastward propagation of the MJO (Qu and Zhang 2004). In order to briefy demonstrate the performance of the newly developed version of IAP AGCM (i.e. IAP ACGM 4.1) in reproducing the main features of the MJO, Figure 1 shows the zonal propagation of MJO 850-hPa zonal wind averaged over 10°S-10°N. It can be seen that IAP ACGM 4.1 is able to reproduce the eastward propagation of the MJO only over the Pacifc Ocean (Figure 1(b)), albeit with larger propagation speed. There is no signifcant eastward propagation of the MJO over the Indian Ocean. This may suggest the existence of a Maritime Continent barrier on MJO propagation in the model. However, the MJO prediction skill of the model has not yet been examined.

    Figure 1.Zonal propagation of 20-80-day band-pass-fltered 850-hPa zonal wind from (a) NCEP Reanalysis-2 and (b) IAP AGCM 4.1, averaged over 10°S-10°N and regressed onto the reference time series averaged over 120-150°E.

    The primary goal of this study is to quantitatively evaluate the MJO potential predictability and prediction skill for this newly developed version of IAP AGCM. The model,experimental confguration, and the verifcation method are described in Section 2. The overall MJO potential predictability and prediction skill are reported in Section 3.1, and their dependence on the amplitude of the MJO in the hindcast initial conditions is presented in Section 3.2. A summary and discussion are given in Section 4.

    2. Model, experiments, and methodology

    The model used in this study is IAP AGCM 4.1, a newly developed version of IAP AGCM 4.0 (Zhang, Lin, and Zeng 2009). Its performance in reproducing the observed climatology has been evaluated in many studies (e.g. Sun, Zhou,and Zeng 2012; Yan, Lin, and Zhang 2014). The physical package from NCAR’s CAM5 is adopted in IAP AGCM 4.1,with the convection parameterization scheme taken as the modifed Zhang-McFarlane scheme (Neale, Richter, and Jochum 2008; Richter and Rasch 2008). The horizontal resolution of the model is approximately 1.4° × 1.4°, and there are 30 levels in the vertical.

    The hindcast experiment was initiated from 0000 UTC 1 March to 1800 UTC 5 March, with an interval of 6 h, covering the period 1981-2010, using the NCEP’s CFSR (Saha et al. 2010). For each day, there were four predictions, with an interval of 6 h, and a forecast lead time up to six months,and they were all treated equally as the ensemble member for that day. Therefore, there were a total of 150 predictions with a four-member ensemble for this hindcast experiment. The atmospheric initial conditions included winds,temperature, relative humidity, and surface pressure. The SST anomaly used in the hindcasts was the merged SST anomaly considering the predicted SST anomalies from the IAP ENSO ensemble prediction system (Zheng and Zhu 2010), and the persistent February SST anomalies from the OISST data-set (Reynolds et al. 2007).

    Figure 2.Mean error and mean signal estimates for MJO (a)potential predictability and (b) prediction skill.

    The commonly used RMM (Real-time Multivariate MJO) index (Wheeler and Hendon 2004) was employed to characterize the MJO signal, with RMM1 and RMM2 as the two components of the index, and the observed MJO EOF modes were used to obtain the hindcast MJO index. The signal-to-error ratio method, based on the perfect model assumption, including the ‘single-member method’and the ‘ensemble-mean method’, following Neena et al.(2014), was applied to evaluate the predictability of the MJO. Under the perfect model assumption, the ensemble hindcasts were considered as a pool of ‘control’ and perturbed hindcasts. The predictability of the MJO was defned as the lead-time at which the mean forecast error becomes as large as the mean signal. The MJO signal was defned as the variance of mean amplitude of the RMM index of all control ensemble members averaged within a sliding 51-day window, and the observed values prior to the hindcast initiation day were used for computing the signal to apply the same sliding window size. The error was defned as the variance of the diference between the perturbed forecast and the control forecast, as a function of lead-time. In the single-member estimate, the RMM1 and RMM2 from any given hindcast ensemble member were considered as the ‘control’ forecast, and other ensemble members other than the ‘control’ were considered as‘perturbed’ forecasts. There was a slight alteration in the ensemble-mean estimate; the defnition of ‘control’ was the same as in the single-member method, while ‘perturbed’ in the ensemble-mean approach was the ensemble mean of all the other ensemble members other than the control. To be consistent with the predictability estimation, the average MJO hindcast skill was also measured in a similar way as the predictability estimate, substituting the observed RMMs in place of the control forecast RMMs. Furthermore,three other frequently-used measures of prediction skill -bivariate anomaly correlation (COR), bivariate RMSE, and mean square skill score (MSSS) - were also adopted to measure the forecast skill (Lin, Brunet, and Derome 2008). COR measured the skill in forecasting the phase of the MJO,while the RMSE took into account errors in both phase and amplitude, and MSSS provided a relative level of skill for the MJO forecast compared to the climatological forecast that predicts no MJO signal.

    3. Results

    3.1. Overall MJO potential predictability and prediction skill

    The predictability and prediction skill of the MJO evaluated for IAP AGCM 4.1 are shown in Figure 2. Both error growth curves have the fastest-growing period during the frst week of the hindcast, and then the growth rate drops gradually thereafter. The predictability estimated by the ensemble-mean approach is higher than that by the singlemember approach because of the slower error growth rate and smaller initial error in the ensemble-mean method. The predictability estimated by the single-member method is about 13 days, while that estimated by the ensemblemean method is about 24 days. Similarly, the prediction skill obtained by the ensemble-mean method is slightly better than that of the single-member method. The reason is that the ensemble-averaging process helps to reduce certain efects of the errors in the atmospheric initial conditions that dominate the single-member forecasts. The error growth curve for the single-member method is also similar to that for the ensemble-mean method; the only diference is that the ensemble-mean method has a smaller error growth rate, especially after 10 days’forecast lead-time. In the ensemble-mean approach, the prediction skill is about 10 days; similarly, the prediction skill in the single-member method is 9 days. Such a small diference between the results of the ensemble-mean and single-member methods is due to the small size of the ensemble members used in our hindcast.

    3.2. Dependence on initial amplitude

    Figure 3.MJO prediction skill (units: d) measured using the single-member (hatched bars) and ensemble-mean (black bars)methods, along with their corresponding MJO predictability under initial conditions with diferent MJO amplitude.

    The dependence of the MJO predictability and prediction skill on the initial conditions of diferent MJO amplitudes are further evaluated. The amplitude of the MJO, defned as (RMM12+ RMM22)1/2, in the initial conditions, was classifed into fve categories. The 7-day running mean was applied to remove high-frequency non-MJO signals for the RMM index. For each year, if the MJO amplitude was less than 1 on 1 March and 5 March, even if the amplitude was larger than 1 during 2-4 March, it was classifed into initial conditions with a weak MJO, that is, [0,1) . If all amplitudes were larger than 1 during 1-5 March, we treated it as the initial conditions with a strong MJO. Furthermore, the strong MJO could be further classifed into four categories with diferent amplitude.

    Figure 3 shows the predictability and prediction skill under the initial conditions with diferent MJO amplitude. For initial conditions with a weak MJO amplitude, the predictability is 12 days as estimated by the single-member method, while it is 18 days as estimated by the ensemble-mean method. The prediction skill is 4 and 5 days as evaluated using the single-member and ensemble-mean method, respectively. It is clearly shown that, as the MJO amplitude increases in the initial conditions, the predictability and prediction skill become better, and the prediction skill becomes closer to the predictability. For initial conditions with a strong MJO signal, the estimated predictability can reach 17 and 26 days as evaluated using the single-member and ensemble-mean methods, respectively. Their corresponding MJO prediction skills can also reach 13 and 15 days. This result indicates that MJO predictability and prediction skill rely strongly on the MJO amplitude in the initial conditions.

    Figure 4.The prediction skill scores of the MJO using the measures of (a) COR, (b) RMSE and (c) MSSS.

    The MJO prediction capability of IAP AGCM 4.1 was also examined using three frequently-used measures(COR, RMSE and MSSS), following Lin, Brunet, and Derome(2008), as shown in Figure 4. The COR was the correlationbetween observed RMM1 and RMM2 and their respective forecasts, assuming a correlation coefcient of 0.5 as the minimum for useful skill. Based on this criterion, we can see from Figure 4(a) that the MJO prediction ability of IAP AGCM 4.1 is 10 days. Under the conditions of weak MJO amplitude, this model cannot give a useful MJO perdition skill, as the COR is always less than 0.5. However, its prediction skill can increase to 23 days if the initial conditions contain a strong MJO signal.

    The RMSE was the RMS diference between the observed and forecasted RMM index, withtaken as the maximum for useful skill. The prediction skill is around 9 days for IAP AGCM 4.1, as shown in Figure 4(b). It is interesting to note that the MJO prediction skills do not rely on the MJO amplitude in the initial conditions when using RMSE. Together with the COR results, it is indicated that the MJO phase is much easier to predict than the MJO amplitude.

    MSSS was 1 minus the value of the mean square error of the model forecasted RMM index divided by the climatological RMM index variance. Assuming an MSSS of 0 as the minimum for useful skill, the overall skill of IAP AGCM 4.1 is about 9 days, and we can see that the MJO prediction skill of IAP AGCM 4.1 is worse than the climatological forecast if it is initiated from conditions with a weak MJO signal (Figure 4(c)).

    4. Summary and discussion

    IAP AGCM 4.1, the latest version of the IAP’s atmospheric model, has been used in climate simulation and seasonal prediction, whereas the MJO prediction skill of the model has not yet been evaluated. To help further our understanding of the MJO forecasts, and their critical role in extended range forecasting, we examined the MJO prediction skill and estimated its predictability in IAP AGCM 4.1 in this study. It was found that the MJO single-member predictability for IAP AGCM 4.1 is 13 days and the ensemble estimate of MJO predictability is 24 days - much lower than other start-of-the-art models involved in the Intraseasonal Variability Hindcast Experiment (ISVHE), where the MJO single-member predictability is about 20-30 days and the ensemble-mean predictability is about 35-45 days (Neena et al. 2014). The prediction skill in IAP AGCM 4.1 measured using the single-member approach is about 9 days, while it is 10 days using the ensemble-member approach. The ISVHE hindcast has a single-member skill of 12-16 days and an ensemble-mean skill of 15-20 days. The results suggest that the current prediction skill of IAP AGCM 4.1 needs to be greatly improved.

    The dependence of the predictability and prediction skill on the MJO amplitude in the initial conditions was also explored. The single-member predictability initiated from a weak MJO was found to be 12 days, and the ensemble estimate 18 days. The predictability can increase by 7 days if the prediction is initiated from a strong MJO. Similarly,the prediction skill is also better if the initial conditions contain a strong MJO signal. This result indicates that MJO predictability and prediction skill initialized with strong MJO conditions is better than that with a weak MJO. Moreover, with stronger initial MJO amplitude, the predictability and prediction skill increase continuously.

    Many studies have shown that improvements in model initialization and ensemble forecasting strategies have contributed greatly to advancements in MJO prediction(Fu et al. 2011; Kang, Jang, and Almazroui 2014). In this hindcast experiment, which was originally designed for seasonal forecasting, the atmospheric initial conditions were taken from the CFSR without any careful implementation of initial atmospheric conditions. It is likely that an increase in MJO forecast skill could be accomplished with an improved initialization. Also, the skill could be further improved if a superior initial conditions perturbation method and accurate initials conditions are applied, especially at the beginning of the forecast. Meanwhile, many previous studies suggest that air-sea coupling improves the simulation and prediction performance of the MJO signifcantly (Fu and Wang 2004; Fu et al. 2003; Pegion and Kirtman 2008; Woolnough, Vitart,and Balmaseda 2007). The lack of air-sea coupling in IAP AGCM 4.1 may therefore also afect the forecast skill of the MJO. Therefore, prediction studies using a fully coupled global climate model will be undertaken in the future, to achieve a better understanding of the simulation and prediction of the MJO.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA05110200]; the Special Scientifc Research Fund of the Meteorological Public Welfare Profession of China [grant number GYHY201406021]; the National Natural Science Foundation of China [grant numbers 41575095, 41175073, 41575062,41520104008].

    ORCID

    LIN Zhao-Hui http://orcid.org/0000-0003-1376-3106

    References

    Fu, X., and B. Wang. 2004. “Diferences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere-Ocean Coupled Model and an Atmosphere-only Model.”Journal of Climate 17: 1263-1271. doi:10.1175/1520-0442(2004)017<1263:dobsio>2.0.co;2.

    Fu, X., B. Wang, T. Li, and J. P. McCreary. 2003. “Coupling between Northward-propagating, Intraseasonal Oscillations and Sea Surface Temperature in the Indian Ocean.” Journal of the Atmospheric Sciences 60: 1733-1753. doi:10.1175/1520-0469(2003)060<1733:cbnioa>2.0.co;2.

    Fu, X. H., B. Wang, J. Y. Lee, W. Q. Wang, and L. Gao. 2011.“Sensitivity of Dynamical Intraseasonal Prediction Skills to Diferent Initial Conditions.” Monthly Weather Review 139: 2572-2592. doi:10.1175/2011mwr3584.1.

    Jones, C., D. E. Waliser, J. K. E. Schemm, and W. K. M. Lau. 2000.“Prediction Skill of the Madden and Julian Oscillation in Dynamical Extended Range Forecasts.” Climate Dynamics 16: 273-289. doi:10.1007/s003820050327.

    Kang, I. S., P. H. Jang, and M. Almazroui. 2014. “Examination of Multi-perturbation Methods for Ensemble Prediction of the MJO during Boreal Summer.” Climate Dynamics 42: 2627-2637. doi:10.1007/s00382-013-1819-4.

    Kim, H. M., P. J. Webster, V. E. Toma, and D. Kim. 2014.“Predictability and Prediction Skill of the MJO in Two Operational Forecasting Systems.” Journal of Climate 27: 5364-5378. doi:10.1175/jcli-d-13-00480.1.

    Lang, X. M., H. J. Wang, and D. B. Jiang. 2004. “Extraseasonal Short-term Predictions of Summer Climate with IAP 9L AGCM.” Chinese Journal of Geophysics (in Chinese) 47: 19-24. doi:10.1002/cjg2.450.

    Lin, Z. H., X. Li, Y. Zhao, G. Q. Zhou, H. J. Wang, C. G. Yuan, Y. F. Guo, and Q. C. Zeng. 1998. “An Improved Short-term Climate Prediction System and Its Application to the Extraseasonal Prediction of Rainfall Anomaly in China for 1998.” Climatic and Environmental Research (in Chinese) 4: 339-348. doi:10.3878/j.issn.1006-9585.1998.04.06.

    Lin, H., G. Brunet, and J. Derome. 2008. “Forecast Skill of the Madden-Julian Oscillation in Two Canadian Atmospheric Models.” Monthly Weather Review 136: 4130-4149. doi:10.1175/2008mwr2459.1.

    Lo, F., and H. H. Hendon. 2000. “Empirical Extended-range Prediction of the Madden-Julian Oscillation.” Monthly Weather Review 128: 2528-2543. doi:10.1175/1520-0493(2000)128<2528:eerpot>2.0.co;2.

    Madden, R. A., and P. R. Julian. 1971. “Detection of a 40-50 Day Oscillation in Zonal Wind in Tropical Pacifc.” Journal of the Atmospheric Sciences 28: 702-708. doi:10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2.

    Madden, R. A., and P. R. Julian. 1972. “Description of Globalscale Circulation Cells in the Tropics with a 40-50 Day Period.” Journal of the Atmospheric Sciences 29: 1109-1123. doi:10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2.

    Neale, R. B., J. H. Richter, and M. Jochum. 2008. “The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events.” Journal of Climate 21: 5904-5924. doi:10.1175/2008jcli2244.1.

    Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. N. Jiang. 2014. “Predictability of the Madden-Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE).”Journal of Climate 27: 4531-4543.

    Pegion, K., and B. P. Kirtman. 2008. “The Impact of Air-Sea Interactions on the Predictability of the Tropical Intraseasonal Oscillation.” Journal of Climate 21: 5870-5886. doi:10.1175/ jcli-d-13-00624.1.

    Qu, S. J., and M. Zhang. 2004. “The Temporal and Spatial Characteristics of Madden and Julian Oscillation (MJO) in IAP9L AGCM.” Climatic and Environmental Research (in Chinese)9: 567-574. doi: 10.3878/j.issn.1006-9585.2004.04.02.

    Ren, H. L., J. Wu, C. B. Zhao, Y. J. Cheng, and X. W. Liu. 2015. “MJO Ensemble Prediction in BCC-CSM1. 1 (M) Using Diferent Initialization Schemes.” Atmospheric and Oceanic Science Letters 9: 1-6. doi:10.1080/16742834.2015.1116217.

    Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax. 2007. “Daily High-resolution-blended Analyses for Sea Surface Temperature.” Journal of Climate 20: 5473-5496. doi:10.1175/2007jcli1824.1.

    Richter, J. H., and P. J. Rasch. 2008. “Efects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere Model.” Journal of Climate 21: 1487-1499. doi:10.1175/2007jcli1789.1.

    Saha, S., S. Moorthi, H. L. Pan, X. R. Wu, J. D. Wang, S. Nadiga,P. Tripp, et al. 2010. “The NCEP Climate Forecast System Reanalysis.” Bulletin of the American Meteorological Society 91: 1015-1057. doi:10.1175/2010BAMS3001.1.

    Sun, H. C., G. Q. Zhou, and Q. C. Zeng. 2012. “Assessments of the Climate System Model (CAS-ESM-C) Using IAP AGCM4 as Its Atmospheric Component.” Chinese Journal of Atmospheric Sciences (in Chinese) 36: 215-233. doi:10.3878/j.issn.1006-9895.2011.11062.

    Waliser, D. E. 2011. “Predictability and Forecasting.” In Intraseasonal Variability of the Atmosphere-Ocean Climate System, edited by W. K. M. Lau and D. E. Waliser, 433-476. Berlin Heidelberg: Springer.

    Weaver, S. J., W. Q. Wang, M. Y. Chen, and A. Kumar. 2011.“Representation of MJO Variability in the NCEP Climate Forecast System.” Journal of Climate 24: 4676-4694. doi:10.1175/2011jcli4188.1.

    Wheeler, M. C., and H. H. Hendon. 2004. “An All-season Realtime Multivariate MJO Index: Development of an Index for Monitoring and Prediction.” Monthly Weather Review 132: 1917-1932. doi:10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2.

    Wheeler, M., and K. M. Weickmann. 2001. “Real-time Monitoring and Prediction of Modes of Coherent Synoptic to Intraseasonal Tropical Variability.” Monthly Weather Review 129: 2677-2694. doi:10.1175/1520-0493(2001)129<2677:rtm apo>2.0.co;2.

    Woolnough, S., F. Vitart, and M. Balmaseda. 2007. “The Role of the Ocean in the Madden-Julian Oscillation: Implications for MJO Prediction.” Quarterly Journal of the Royal Meteorological Society 133: 117-128. doi:10.1002/qj.4.

    Xiang, B. Q., M. Zhao, X. A. Jiang, S. J. Lin, T. Li, X. H. Fu, and G. Vecchi. 2015. “The 3-4-Week MJO Prediction Skill in a GFDL Coupled Model.” Journal of Climate 28: 5351-5364. doi:10.1175/jcli-d-15-0102.1.

    Yan, Z. B., Z. H. Lin, and H. Zhang. 2014. “The Relationship between the East Asian Subtropical Westerly Jet and Summer Precipitation over East Asia as Simulated by the IAP AGCM4.0.”Atmospheric and Oceanic Science Letters 7: 487-492. doi:10.10 80/16742834.2014.11447212.

    Zhang, C. 2013. “Madden-Julian Oscillation: Bridging Weather and Climate.” Bulletin of the American Meteorological Society 94: 1849-1870. doi:10.1175/bams-d-12-00026.1.

    Zhang, H., Z. H. Lin, and Q. C. Zeng. 2009. “The Computational Scheme and the Test for Dynamical Framework of IAP AGCM-4.”Chinese Journal of Atmospheric Sciences (in Chinese) 33: 1267-1285. doi:10.3878/j.issn.1006-9895.2009.06.13.

    Zheng, F., and J. Zhu. 2010. “Coupled Assimilation for an Intermediated Coupled ENSO Prediction Model.” Ocean Dynamics 60: 1061-1073. doi:10.1007/s10236-010-0307-1.

    MJO; IAP AGCM 4.1;predictability; prediction skill關鍵詞

    熱帶大氣季節(jié)內振蕩; IAP大氣環(huán)流模式; MJO潛在可預報性; MJO預報技巧

    26 April 2016

    CONTACT LIN Zhao-Hui lzh@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    科學研究中科院環(huán)流
    歡迎訂閱《林業(yè)科學研究》
    內環(huán)流控溫技術應用實踐與發(fā)展前景
    歡迎訂閱《紡織科學研究》
    紡織科學研究
    紡織科學研究
    加大授權力度中科院先行一步
    科技傳播(2019年23期)2020-01-18 07:57:10
    中科院沈陽生態(tài)研究所技術
    新農業(yè)(2018年3期)2018-07-08 13:26:56
    熱鹽環(huán)流方程全局弱解的存在性
    謎底大揭秘
    中科院位列自然指數(shù)全球首位
    国产一区二区三区综合在线观看| av网站免费在线观看视频| 99国产精品一区二区三区| 亚洲免费av在线视频| 久久久亚洲精品成人影院| 国产欧美日韩精品亚洲av| 亚洲欧美色中文字幕在线| 婷婷成人精品国产| 国产精品一区二区免费欧美 | 婷婷成人精品国产| 久久青草综合色| 婷婷色综合大香蕉| 国产男女超爽视频在线观看| 亚洲成人免费av在线播放| 日本欧美国产在线视频| 国产精品欧美亚洲77777| 欧美黄色淫秽网站| av网站免费在线观看视频| 黄片小视频在线播放| av在线老鸭窝| 另类精品久久| 亚洲av电影在线观看一区二区三区| 亚洲精品久久久久久婷婷小说| 精品人妻熟女毛片av久久网站| 99久久人妻综合| 亚洲精品在线美女| 一级毛片女人18水好多 | 91九色精品人成在线观看| 精品一区二区三区av网在线观看 | 久久99一区二区三区| 成年动漫av网址| 精品人妻1区二区| 久久久精品区二区三区| 亚洲欧美一区二区三区国产| netflix在线观看网站| 欧美大码av| 色综合欧美亚洲国产小说| 狂野欧美激情性xxxx| 国产成人一区二区三区免费视频网站 | 欧美性长视频在线观看| 亚洲综合色网址| 大香蕉久久网| 一区二区日韩欧美中文字幕| 亚洲国产成人一精品久久久| av不卡在线播放| 日日爽夜夜爽网站| av一本久久久久| 18禁裸乳无遮挡动漫免费视频| 两性夫妻黄色片| a级片在线免费高清观看视频| 在线观看一区二区三区激情| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美精品永久| 99精品久久久久人妻精品| 久久精品国产亚洲av高清一级| 国产伦理片在线播放av一区| 97在线人人人人妻| 建设人人有责人人尽责人人享有的| 丝袜美足系列| 久久ye,这里只有精品| 亚洲av成人精品一二三区| 日韩av不卡免费在线播放| 女人久久www免费人成看片| 在线观看免费视频网站a站| 男人舔女人的私密视频| 曰老女人黄片| 中文字幕高清在线视频| 久久ye,这里只有精品| 国产精品亚洲av一区麻豆| 一区在线观看完整版| 亚洲成色77777| 久久精品国产a三级三级三级| 另类精品久久| 精品福利观看| 亚洲欧美日韩高清在线视频 | 一边摸一边抽搐一进一出视频| 丰满少妇做爰视频| 久久人人爽av亚洲精品天堂| 久久ye,这里只有精品| 欧美久久黑人一区二区| 欧美国产日韩亚洲一区| 18禁裸乳无遮挡免费网站照片 | 亚洲久久久国产精品| 精品久久久久久,| 日本五十路高清| 欧美日韩黄片免| 亚洲五月色婷婷综合| 美女国产高潮福利片在线看| 看免费av毛片| 两个人看的免费小视频| 久久热在线av| 中文字幕最新亚洲高清| 别揉我奶头~嗯~啊~动态视频| 国产成人精品无人区| 国产午夜精品久久久久久| av中文乱码字幕在线| 亚洲午夜精品一区,二区,三区| 亚洲午夜理论影院| 精品久久久久久久人妻蜜臀av| 精品国产乱子伦一区二区三区| 亚洲中文日韩欧美视频| 欧美最黄视频在线播放免费| 一本精品99久久精品77| 国产高清videossex| √禁漫天堂资源中文www| 亚洲欧美精品综合久久99| bbb黄色大片| 亚洲成av人片免费观看| 国产精品久久久久久人妻精品电影| 国产黄a三级三级三级人| 黄色女人牲交| 亚洲国产精品999在线| 人人妻,人人澡人人爽秒播| 不卡一级毛片| av免费在线观看网站| 欧美日韩瑟瑟在线播放| 亚洲国产日韩欧美精品在线观看 | 亚洲人成电影免费在线| 他把我摸到了高潮在线观看| 国产亚洲精品第一综合不卡| 一二三四在线观看免费中文在| 亚洲 欧美 日韩 在线 免费| 免费在线观看影片大全网站| 精品不卡国产一区二区三区| av免费在线观看网站| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 午夜亚洲福利在线播放| 国产欧美日韩一区二区三| 午夜免费成人在线视频| 久久久久久九九精品二区国产 | 国产精品1区2区在线观看.| 欧美精品啪啪一区二区三区| 久久久久久久久中文| 亚洲 欧美一区二区三区| 一本精品99久久精品77| 男女那种视频在线观看| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 免费一级毛片在线播放高清视频| 中文在线观看免费www的网站 | 免费在线观看亚洲国产| 男女视频在线观看网站免费 | 国产av不卡久久| 国产精品九九99| 国产一区二区激情短视频| 19禁男女啪啪无遮挡网站| 欧美激情极品国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 女性生殖器流出的白浆| 亚洲av美国av| 亚洲av成人av| 久久天堂一区二区三区四区| 国产主播在线观看一区二区| av在线播放免费不卡| 啦啦啦免费观看视频1| www日本黄色视频网| 国产亚洲精品第一综合不卡| 伊人久久大香线蕉亚洲五| 久久久久久人人人人人| 国产在线观看jvid| 成人特级黄色片久久久久久久| 国产精品亚洲一级av第二区| 午夜两性在线视频| www.自偷自拍.com| 男女下面进入的视频免费午夜 | 免费av毛片视频| 亚洲成人国产一区在线观看| 女性生殖器流出的白浆| 黄频高清免费视频| 狠狠狠狠99中文字幕| 少妇裸体淫交视频免费看高清 | 欧美日韩精品网址| 亚洲熟女毛片儿| 亚洲成人免费电影在线观看| 国产99白浆流出| 亚洲 国产 在线| 此物有八面人人有两片| 美女午夜性视频免费| 久久天堂一区二区三区四区| 精品乱码久久久久久99久播| 草草在线视频免费看| 宅男免费午夜| 国产午夜精品久久久久久| 欧美成人性av电影在线观看| 久久中文字幕一级| 亚洲七黄色美女视频| 1024视频免费在线观看| 国产成人影院久久av| 欧美日韩一级在线毛片| 欧美色欧美亚洲另类二区| 国产精品久久电影中文字幕| 可以在线观看毛片的网站| 91老司机精品| 制服人妻中文乱码| 一级毛片精品| 久久 成人 亚洲| 亚洲中文日韩欧美视频| 中文字幕精品免费在线观看视频| 激情在线观看视频在线高清| av免费在线观看网站| 亚洲电影在线观看av| 久久婷婷成人综合色麻豆| 97碰自拍视频| 夜夜看夜夜爽夜夜摸| 欧美日韩精品网址| 热re99久久国产66热| 一级毛片精品| 欧美 亚洲 国产 日韩一| 亚洲午夜精品一区,二区,三区| 中文亚洲av片在线观看爽| 亚洲专区中文字幕在线| 久久人人精品亚洲av| 久久99热这里只有精品18| 午夜福利一区二区在线看| 亚洲精品色激情综合| 满18在线观看网站| 欧美色视频一区免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产真实乱freesex| 97超级碰碰碰精品色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 脱女人内裤的视频| √禁漫天堂资源中文www| 黄片播放在线免费| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av| 精品电影一区二区在线| 国产三级在线视频| 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 亚洲av熟女| 三级毛片av免费| 正在播放国产对白刺激| 日日爽夜夜爽网站| 欧美精品亚洲一区二区| 国产99白浆流出| 亚洲精品在线观看二区| 1024香蕉在线观看| 亚洲七黄色美女视频| 99精品久久久久人妻精品| 97超级碰碰碰精品色视频在线观看| 性欧美人与动物交配| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久| 窝窝影院91人妻| www日本在线高清视频| 久久香蕉精品热| 亚洲专区中文字幕在线| 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女| a级毛片在线看网站| 热99re8久久精品国产| 国产高清videossex| 香蕉久久夜色| 久久香蕉精品热| 天天躁狠狠躁夜夜躁狠狠躁| 18禁国产床啪视频网站| 国产一区二区三区在线臀色熟女| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 精品久久蜜臀av无| 国产人伦9x9x在线观看| 国产成人精品久久二区二区免费| 亚洲av五月六月丁香网| 成人av一区二区三区在线看| 搡老岳熟女国产| 国产av不卡久久| 母亲3免费完整高清在线观看| 国产麻豆成人av免费视频| 午夜福利成人在线免费观看| 精品国内亚洲2022精品成人| 成人国产综合亚洲| 嫩草影视91久久| 欧美激情 高清一区二区三区| 听说在线观看完整版免费高清| 国产精品久久视频播放| 老司机午夜十八禁免费视频| 国产成人av激情在线播放| 国语自产精品视频在线第100页| 12—13女人毛片做爰片一| 国产免费av片在线观看野外av| cao死你这个sao货| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久电影中文字幕| 亚洲一区二区三区不卡视频| 身体一侧抽搐| 88av欧美| 欧美黑人巨大hd| 色综合欧美亚洲国产小说| 好看av亚洲va欧美ⅴa在| 成人国产一区最新在线观看| 天堂√8在线中文| 香蕉国产在线看| 久久久久精品国产欧美久久久| 黄色毛片三级朝国网站| 国产精品1区2区在线观看.| 精品人妻1区二区| 久久久久久大精品| av福利片在线| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| 久久狼人影院| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 夜夜躁狠狠躁天天躁| 精品卡一卡二卡四卡免费| 亚洲人成网站在线播放欧美日韩| 精华霜和精华液先用哪个| 久久人妻福利社区极品人妻图片| 很黄的视频免费| 国产1区2区3区精品| 国产精品亚洲一级av第二区| 丁香欧美五月| 午夜免费观看网址| 老鸭窝网址在线观看| 人妻久久中文字幕网| 成人精品一区二区免费| 国产一级毛片七仙女欲春2 | 男人的好看免费观看在线视频 | 国产精品亚洲av一区麻豆| 色播在线永久视频| 国产高清视频在线播放一区| 男女床上黄色一级片免费看| a在线观看视频网站| 欧美国产日韩亚洲一区| 国产精品国产高清国产av| 神马国产精品三级电影在线观看 | 97人妻精品一区二区三区麻豆 | 久久九九热精品免费| 欧美另类亚洲清纯唯美| 免费在线观看视频国产中文字幕亚洲| 国产精品综合久久久久久久免费| 亚洲成人国产一区在线观看| 欧美黑人巨大hd| 成熟少妇高潮喷水视频| 国产亚洲欧美98| 在线播放国产精品三级| 欧美精品啪啪一区二区三区| 人人妻人人澡欧美一区二区| 久久香蕉国产精品| 麻豆国产av国片精品| 91老司机精品| 国产爱豆传媒在线观看 | 精华霜和精华液先用哪个| 色播亚洲综合网| 丰满人妻熟妇乱又伦精品不卡| 黄网站色视频无遮挡免费观看| 黄色女人牲交| 亚洲aⅴ乱码一区二区在线播放 | 女警被强在线播放| 日日爽夜夜爽网站| 神马国产精品三级电影在线观看 | 香蕉av资源在线| 成年人黄色毛片网站| 黄色毛片三级朝国网站| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 久久久精品国产亚洲av高清涩受| 丰满人妻熟妇乱又伦精品不卡| 日韩精品中文字幕看吧| 99re在线观看精品视频| 一个人观看的视频www高清免费观看 | 这个男人来自地球电影免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合一区二区三区| 丁香欧美五月| 中国美女看黄片| 久久人妻av系列| 在线观看www视频免费| 在线天堂中文资源库| 好男人在线观看高清免费视频 | 亚洲中文字幕一区二区三区有码在线看 | 一个人免费在线观看的高清视频| 高清毛片免费观看视频网站| 国产人伦9x9x在线观看| 精品福利观看| 久热这里只有精品99| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看 | 大型av网站在线播放| 国产亚洲欧美精品永久| 在线观看66精品国产| 久久中文看片网| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添小说| 999精品在线视频| 国产午夜精品久久久久久| 无人区码免费观看不卡| 在线观看舔阴道视频| 嫩草影视91久久| 亚洲九九香蕉| 成人国语在线视频| 国产精品国产高清国产av| 草草在线视频免费看| 久久久久九九精品影院| 人人澡人人妻人| 老司机靠b影院| 国产亚洲欧美在线一区二区| 人人妻人人澡人人看| 无限看片的www在线观看| 男人舔奶头视频| 搡老妇女老女人老熟妇| 久久热在线av| 日本免费一区二区三区高清不卡| 国产av不卡久久| bbb黄色大片| 国产成人精品久久二区二区免费| 国产三级在线视频| 母亲3免费完整高清在线观看| 看免费av毛片| 18禁黄网站禁片免费观看直播| 欧美zozozo另类| 成人18禁在线播放| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 国产片内射在线| 自线自在国产av| 久久久国产精品麻豆| 免费在线观看黄色视频的| 久久国产精品影院| 变态另类丝袜制服| 国产视频内射| 国产成+人综合+亚洲专区| avwww免费| 嫁个100分男人电影在线观看| 久久 成人 亚洲| 国产av在哪里看| 一边摸一边抽搐一进一小说| 脱女人内裤的视频| 精华霜和精华液先用哪个| 亚洲国产欧美一区二区综合| www.熟女人妻精品国产| 日韩免费av在线播放| 成人午夜高清在线视频 | 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 91麻豆av在线| 亚洲精品在线美女| 国产亚洲精品av在线| 欧美在线黄色| 制服诱惑二区| 无限看片的www在线观看| 国内揄拍国产精品人妻在线 | 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 国产av在哪里看| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 亚洲欧美一区二区三区黑人| 99国产精品99久久久久| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 中文字幕精品免费在线观看视频| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看| 在线天堂中文资源库| 91麻豆av在线| 亚洲精品国产区一区二| 少妇裸体淫交视频免费看高清 | 两个人视频免费观看高清| 黄色a级毛片大全视频| 亚洲成人精品中文字幕电影| 丝袜人妻中文字幕| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区| 亚洲国产高清在线一区二区三 | 久99久视频精品免费| 激情在线观看视频在线高清| 变态另类丝袜制服| 一卡2卡三卡四卡精品乱码亚洲| 黄色 视频免费看| 国产亚洲精品久久久久5区| 人人澡人人妻人| 搡老岳熟女国产| 国产极品粉嫩免费观看在线| 侵犯人妻中文字幕一二三四区| 午夜福利免费观看在线| 一本精品99久久精品77| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 国产精品一区二区精品视频观看| 嫩草影院精品99| 淫妇啪啪啪对白视频| 中文字幕人成人乱码亚洲影| 国产成人av教育| 麻豆成人av在线观看| 亚洲九九香蕉| 一级毛片女人18水好多| 久久亚洲精品不卡| 最新在线观看一区二区三区| 日韩欧美 国产精品| 午夜免费激情av| 搞女人的毛片| 国产三级黄色录像| 欧美久久黑人一区二区| 午夜a级毛片| 久久久久久亚洲精品国产蜜桃av| 久久婷婷成人综合色麻豆| 日韩大码丰满熟妇| 亚洲最大成人中文| 淫秽高清视频在线观看| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| 免费在线观看黄色视频的| www日本黄色视频网| 很黄的视频免费| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 99久久综合精品五月天人人| 久久精品人妻少妇| 精品欧美国产一区二区三| 手机成人av网站| 久久中文字幕一级| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 校园春色视频在线观看| 国产在线观看jvid| 97超级碰碰碰精品色视频在线观看| 日韩欧美 国产精品| 久久九九热精品免费| 少妇 在线观看| 亚洲九九香蕉| 精品国内亚洲2022精品成人| 岛国视频午夜一区免费看| 国产精品永久免费网站| 国产又色又爽无遮挡免费看| 国产区一区二久久| 午夜影院日韩av| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 中亚洲国语对白在线视频| 女性被躁到高潮视频| 久久人妻福利社区极品人妻图片| 丁香六月欧美| 久久久水蜜桃国产精品网| 黑人欧美特级aaaaaa片| 91麻豆精品激情在线观看国产| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| 久久精品国产99精品国产亚洲性色| 国产精品影院久久| 一进一出抽搐动态| 精品国产亚洲在线| 一本久久中文字幕| 亚洲成人免费电影在线观看| a级毛片在线看网站| 国产黄片美女视频| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 黑丝袜美女国产一区| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 亚洲av熟女| 一二三四在线观看免费中文在| 国产黄色小视频在线观看| 韩国av一区二区三区四区| 亚洲av电影在线进入| 精品国内亚洲2022精品成人| 亚洲成av片中文字幕在线观看| 欧美大码av| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区| 成人三级做爰电影| 欧美在线黄色| 精品日产1卡2卡| 欧美在线黄色| 特大巨黑吊av在线直播 | 嫁个100分男人电影在线观看| 一级黄色大片毛片| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 男女视频在线观看网站免费 | 亚洲一区二区三区不卡视频| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 国产精品自产拍在线观看55亚洲| 亚洲av片天天在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产欧美网| 成在线人永久免费视频| 好看av亚洲va欧美ⅴa在| 丝袜美腿诱惑在线| 亚洲专区字幕在线| 黄频高清免费视频| 757午夜福利合集在线观看| 国产成人精品久久二区二区91| 日韩国内少妇激情av| 两个人视频免费观看高清| 婷婷亚洲欧美| av超薄肉色丝袜交足视频| 国产精品免费视频内射| 亚洲精品久久国产高清桃花| 熟女电影av网| 久久九九热精品免费| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 精品久久蜜臀av无| 久久狼人影院| 国产片内射在线|