• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pathways of intraseasonal Kelvin waves in the Indonesian Throughflow regions derived from satellite altimeter observation

    2016-11-23 04:47:22XUTengFeiWEIZeXunCAOGuoJiaoandLIShuJiang
    關(guān)鍵詞:向東印度尼西亞印度洋

    XU Teng-Fei, WEI Ze-Xun, CAO Guo-Jiaoand LI Shu-Jiang

    aFirst Institute of Oceanography, State Oceanic Administration, Qingdao, China;bLaboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China;cKey Laboratory of Marine Science and Numerical Modeling, State Oceanic Administration, Qingdao, China

    Pathways of intraseasonal Kelvin waves in the Indonesian Throughflow regions derived from satellite altimeter observation

    XU Teng-Feia,b,c, WEI Ze-Xuna,b,c, CAO Guo-Jiaoa,b,cand LI Shu-Jianga,b,c

    aFirst Institute of Oceanography, State Oceanic Administration, Qingdao, China;bLaboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China;cKey Laboratory of Marine Science and Numerical Modeling, State Oceanic Administration, Qingdao, China

    The gridded sea level anomaly (SLA) data-set provided by AVISO is used to track the propagation of intraseasonal Kelvin waves in the Indonesian Throughfow (ITF) region. The large root mean square of intraseasonal SLA along the Sumatra and Java coast is closely related to the propagation of intraseasonal Kelvin waves that derive from the equatorial Indian Ocean. These Kelvin waves are further found to propagate following diferent pathways at the Lombok Strait. Pathway A propagates eastward throughout the Sumba Strait and Savu Sea to reach the Ombai Strait. Pathway B penetrates into Lombok and propagates northward to reach the Makassar Strait. Pathway C propagates southeastward along the southwest coast of the Sumba Island. The equatorial Kelvin waves take around 15 days to travel from the equatorial Indian Ocean to Lombok Strait, and around 5 days to penetrate into the Makassar and Ombai straits. The Kelvin wave-induced SLA persists in the ITF region for an additional 5 days and then diminishes subsequently. The phase speeds of these intraseasonal Kelvin waves along Pathways A, B, and C are 1.91-2.86, 1.69, and 1.96 m s-1,respectively-in agreement with the frst two baroclinic modes of Kelvin waves.

    ARTICLE HISTORY

    Revised 9 April 2016

    Accepted 27 April 2016

    Indonesian Throughfow;Kelvin waves; intraseasonal variability; pathway;waveguide

    利用衛(wèi)星高度計(jì)資料,研究了季節(jié)內(nèi)Kelvin波在印度尼西亞貫穿流海域的傳播。起源于赤道印度洋的Kelvin波抵達(dá)印度洋東邊界后,以沿岸Kelvin波的形式沿蘇門答臘-爪哇島西南沿岸向東傳播,15天后抵達(dá)龍目海峽,并分為三支:一支向北傳播, 5天后抵達(dá)望加錫海峽,相速度約為1.69 m s-1;一支向東傳播,5天后抵達(dá)翁拜海峽,相速度約為1.91-2.86 m s-1;一支沿松巴島西南沿岸傳播,相速度約為1.96 m s-1。季節(jié)內(nèi)Kelvin波在該海域的傳播速度與第一和第二斜壓模Kelvin波一致。

    1. Introduction

    The Indonesian Throughfow (ITF), which fows from the equatorial Pacifc into the Indian Ocean through the Indonesian seas, provides the only oceanic channel for inter-ocean exchange in the tropical oceans. The importance of the ITF lies in the fact that it is the key component of the so-called ‘ocean conveyor belt’, which plays an important role in the heat and salt balance of the global ocean (Gordon 1986; Broeker 1991). In addition, the ITF also serves as a unique oceanic signal channel, through which tropical Indian Ocean anomalies can propagate to the equatorial Pacifc Ocean to infuence ENSO (Yuan et al. 2011; Yuan, Zhou, and Zhao 2013). Previous studies have suggested signifcant intraseasonal oceanic variability (ISV) in the main infow and outfow straits and passages of the ITF, i.e. the Lombok Strait, Ombai Strait, Timor Passage, and Makassar Strait, based on in situ observations(Arief and Murray 1996; Ffeld and Gordon 1996; Molcard,F(xiàn)ieux, and Ilahude 1996; Chong et al. 2000; Wijfels and Meyers 2004) and satellite data (Syamsudin, Kaneko, and Haidvogel 2004; Iskandar et al. 2005). These ISVs can be traced back to the intraseasonal equatorial Kelvin waves forced by the MJO over the equatorial central Indian Ocean(Qiu, Mao, and Kashino 1999; Schiller et al. 2010).

    Beneft from the International Nusantara Stratifcation and Transport 2004-2006 program (Sprintall et al. 2004),the ISV of the ITF in the Indonesian seas has been further revealed (Sprintall et al. 2009; Gordon et al. 2010). Pujiana et al. (2009) suggested that the dominant variability of 45-90 days in the Makassar Strait thermocline is due to the combination of intraseasonal waves propagating from the Lombok Strait and Sulawesi Sea, rather than exertedby the local atmospheric ISV forcing. The ISV in Makassar is attributed to the second baroclinic mode of Kelvin waves propagating from the Lombok Strait along the 100-m isobaths, which is estimated to reduce the southward transport through the Makassar Strait by up to 2 Sv (Pujiana,Gordon, and Sprintall 2013). The along-channel fows in Lombok and Ombai have also been found to be subject to ISV, which explains the fow reversal during the monsoon transition period (Sprintall et al. 2009; Gordon et al. 2010). The ISVs in the outfow straits have been identifed to be associated with the frst and second baroclinic Kelvin waves that derive from the equatorial Indian Ocean, which propagate along the equator and the southwest coast of the Lesser Sunda Islands (Schiller et al. 2010; Iskandar et al. 2014).

    As supplements to in situ observations, satellite altimeter products provide high-resolution sea level anomaly (SLA) data, not only in the straits but over the entire ITF region, making it possible to track the propagation of intraseasonal Kelvin waves in the ITF region. Drushka et al. (2010) and Pujiana, Gordon, and Sprintall (2013) used weekly altimeter SLA data as evidence of the propagation of Kelvin waves. However, the pathways of intraseasonal Kelvin waves that derive from the equatorial Indian Ocean in the ITF region-in particular after being trapped by the eastern boundary-have not been examined using satellite altimeter observations. In this study, SLA data obtained from AVISO are used to describe the diferent pathways of the intraseasonal Kelvin waves in the ITF region.

    2. Data and methodology

    This study employs the gridded SLA products (Version 5.0)produced by Segment Sol multi-missions dALTimetrie,d’orbitographie et de localisation précise/Data Unifcation and Altimeter Combination System (SSALTO/DUACS) and distributed by AVISO, with support from CNES (http:// www.aviso.altimetry.fr/duacs/). The data-set is daily, with a resolution of 0.25° × 0.25°, available from October 1992 to the present day. The sea surface winds from ERA-Interim,which covers the period 1979 to the present day, with a horizontal resolution of 0.75° × 0.75° and time interval of 6 h (Dee et al. 2011), are also used to show the generation and propagation of wind-forced Kelvin waves.

    The SLA and sea surface wind are fltered by a 20-90-day band-pass flter, which are defned as intraseasonal anomalies in the following text. Positive intraseasonal events are defned as the peak of positive intraseasonal SLA greater than 1 standard deviation. The composite analysis is achieved by averaging each positive event in a time window of ±35 days. The lag correlations are calculated based on the band-passed anomalies, with the Student’s t-test used to represent the level of signifcance.

    3. Results

    The root mean square (RMS) of the intraseasonally bandpassed SLA in the ITF region shows strong variation along the Sumatra and Java coast, with the largest RMS beyond 5 cm (Figure 1). These ISVs are attributable to the propagation of intraseasonal Kelvin waves along the coast that derive from the equatorial Indian Ocean. Therefore, we defne some key areas and straits or passages to study the ISVs and their propagation in the ITF region. It should be noted that there is also a strong RMS in the southeastern Indian Ocean between 10 and 12°S, which is related to mesoscale eddies induced by the baroclinic instability of the South Equatorial Current (Feng and Wijfels 2002; Yang et al. 2015). The dynamics of these ISVs is beyond the scope of this paper because it is independent of the propagation of Kelvin waves.

    Figure 1.RMS of intraseasonal SLAs (20-90-day band-pass fltered) in the ITF region.

    Figure 2.Composite phase of ISV in diferent straits and passages of the ITF.

    Figure 2 shows the composite phase of positive intraseasonal events in each key area shown in Figure 1 using 20-90-day band-passed SLAs. The averaged period of ISVs along west coast of the Sumatra and in all straits isaround 25-30 days. The amplitude at the west coast of the Sumatra is 4 cm. The amplitudes in other areas varies from 5.5 cm south of Sunda Strait to 1.5 cm at Timor Passage, suggesting that the Kelvin waves have decayed during propagation, which may be attributable to the fact that the equatorial Kelvin waves are partly penetrating into each strait subsequently, and partly propagating along the southwest coast of the Lesser Sunda Islands during the propagation.

    Figure 3 shows snapshots of the intraseasonal SLA and sea surface wind anomalies for the composite phase shown in Figure 2. Since the Kelvin waves bifurcate at Lombok Strait,we therefore defne the ISVs of SLA at Lombok as the reference to show the propagation of intraseasonal Kelvin waves from the equatorial Indian Ocean to the Indonesian seas. The results using the ISVs in other straits as the reference show similar patterns and are thus omitted here. Day(0)indicates the peak of the intraseasonal SLA at Lombok Strait. On day(-20), before the Lombok peak, there are westerlies over the equatorial Indian Ocean that drive downwelling Kelvin waves to induce positive SLAs, which propagate eastward to reach western Sumatra on day(-15) (Figure 3(a)and (b)). Between day(-20) and day(+15), there are easterlies and negative SLAs in the Indonesian seas and south of Java. The equatorial Kelvin waves are trapped by the eastern boundary and then propagate along the southwest coast of Sumatra and Java, as revealed by the eastward moving positive SLAs from day(-10) to day(+5) (Figure 3(c)-(f)). It is also found that positive SLAs leap over the Sunda Strait on day(-10) and then arrive at Lombok on day(-5). The ensuing propagation is divided into three pathways: propagating eastward throughout the Sumba Strait and Savu Sea to reach the Ombai Strait (Pathway A); penetrating into Lombok and propagating northward to reach the Makassar Strait (Pathway B); and propagating southeastward along the southwest coast of the Sumba Island (Pathway C). Ittakes about fve days for the downwelling Kelvin waves to propagate from Lombok to Makassar and Ombai (Figure 3(d) and (e)). The positive SLA lasts for another fve days and diminishes in the following days (Figure 3(f)). Meanwhile,there are easterlies over the equatorial Indian Ocean around day(0), which drive upwelling Kelvin waves that propagate eastward following the same waveguides (Figure 3(e)-(i)). Throughout the propagation of downwelling Kelvin waves,there are westerly or onshore wind along the Sumatra and Java coast, favoring the enhancement of the Kelvin waves,and vice versa. This is corroborated by the increasing SLA during its propagation.

    Figure 3.Composite intraseasonal SLAs and sea surface wind anomalies over the equatorial Indian Ocean and Indonesian seas.

    Figure 4.Lag correlations of intraseasonal SLAs between diferent straits or passages of the ITF region and equatorial western Sumatra coast.

    The pathways are further confrmed by the lag correlations between the key areas and/or straits and passages in the ITF region (Figure 4). Figure 4(a)-(c) show the lag correlations along Pathway A. The results show that the maximum correlation between Sunda and Sumatra is 0.81,with Sunda lagging by 2 days; the maximum correlation between Lombok and Sumatra is 0.64, with Lombok lagging by 6 days; and the maximum correlation between Ombai and Sumatra is 0.35, with Ombai lagging by 12 days. The lag correlation analysis shows that the Kelvin waves take 2 days to travel for more than 540 km from Sumatra to Sunda, suggesting a phase speed of about 3.15 m s-1. Similarly, the phase speeds for the Kelvin waves from Sunda to Lombok and from Lombok to Ombai are estimated as 2.86 and 1.91 m s-1-in agreement with that of the frst and second baroclinic mode of the theoretical Kelvin wave, respectively.

    The lag correlation analysis for Pathway B shows a maximum correlation of 0.31/0.32 between the north of Lombok Strait in the Java Sea/Makassar Strait and Sumatra, with the former lagging by six and nine days,respectively (Figure 4(d)-(f)). This suggests that the phase speed for downwelling Kelvin waves propagating from Lombok to Makassar is around 1.69 m s-1-in agreement with that of the second baroclinic Kelvin waves. The correlation between Sumba and Sumatra is 0.27 at the time lag of nine days, which is three days later than Lombok Strait, and suggests a phase speed of 1.96 m s-1along Pathway C. The lag correlations between Timor and Sumatra are much smaller, and thus barely provide useful information for the propagation from Sumba to Timor.

    The Hovm?ller diagrams shown in Figure 5 indicate the eastward propagation of SLAs from the central equatorial Indian Ocean to the Ombai and Makassar straits and the Timor Passage along Pathways A, B, and C. The equatorial Kelvin waves take about 14 days to travel from the equatorial Indian Ocean (70°E) to the western coast of Sumatra,which are trapped by the eastern boundary of the Indian Ocean. The ensuing coastal Kelvin waves then propagate along the southwest coast of the Lesser Sunda Islands. After arriving at Lombok Strait, the Kelvin waves divide into three branches, with more energy intruding into the Makassar Strait than through the Sumba Strait to reach the Ombai Strait, evidenced by the fact that there are larger SLAs in the Makassar than Ombai Strait. The other branchalong Pathway C shows an eastward propagation terminating at Savu Strait, which is reminiscent of the lack of correlation in SLAs between the Timor Passage and equatorial western Sumatra.

    Figure 5.Hovm?ller diagrams of the 20-90-day band-passed SLAs along the diferent pathways of intraseasonal Kelvin waves.

    4. Summary

    Gridded SLA data provided by AVISO are used in this study to track the propagation of intraseasonal Kelvin waves in the ITF region. The large RMS of intraseasonal SLAs along the Sumatra and Java coast is closely related to the propagation of intraseasonal Kelvin waves that derive from the equatorial Indian Ocean. These Kelvin waves are further found to propagate along diferent pathways in the Lombok Strait (Figure 1). Through lag correlation analysis and Hovm?ller diagrams of SLAs, we estimate the phase speed of the intraseasonal Kelvin waves for Pathways A, B,and C to be 1.91-2.86, 1.69, and 1.96 m s-1, respectivelyin agreement with the frst two baroclinic modes of Kelvin waves.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China (NSFC) [grant numbers 41476025,41506036, 41306031]; NSFC-Shandong Joint Fund for Marine Science Research Centers [grant number U1406404]; China Postdoctoral Science Foundation Funded Project [grant number 2014M561883]; Postdoctoral Innovation Foundation of Shandong Province [grant number 201403019].

    References

    Arief, D., and S. P. Murray. 1996. “Low-frequency Fluctuations in the Indonesian Throughfow through Lombok Strait.” Journal of Geophysical Research: Oceans 101: 12455-12464.

    Broecker, W. 1991. “The Great Ocean Conveyor.” Oceanography 4: 79-89.

    Chong, J. C., J. Sprintall, S. Hautala, W. L. Morawitz, N. A. Bray,W. Pandoe. 2000. “Shallow Throughfow Variability in the Outfow Straits of Indonesia.” Geophysical Research Letters 27(1): 125-128.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, et al. 2011. “The ERA-Interim Reanalysis: Confguration and Performance of the Data Assimilation System.” Quarterly Journal of the Royal Meteorological Society 137: 553-597.

    Drushka, K., J. Sprintall, S. T. Gille, and I. Brodjonegoro. 2010.“Vertical Structure of Kelvin Waves in the Indonesian Throughfow Exit Passages.” Journal of Physical Oceanography 40: 1965-1987.

    Feng, M., and S. E. Wijfels. 2002. “Intraseasonal Variability in the South Equatorial Current of the East Indian Ocean.” Journal of Physical Oceanography 32 (1): 265-277.

    Ffeld, A., and A. L. Gordon. 1996. “Tidal Mixing Signatures in the Indonesian Seas.” Journal of Physical Oceanography 26: 1924-1937.

    Gordon, A. L. 1986. “Interocean Exchange of Thermocline Water.”Journal of Geophysical Research 91 (4): 5037-5046.

    Gordon, A. L., J. Sprintall, H. M. Van Aken, R. D. Susanto, S. E. Wijfels, R. Molcard, A. Ffeld, W. Pranowo, and S. Wirasantosa. 2010. “The Indonesian Throughfow during 2004-2006 as Observed by the INSTANT Program.” Dynamics of Atmospheres and Oceans 50: 115-128.

    Iskandar, I., W. Mardiansyah, Y. Masumoto, and T. Yamagata. 2005. “Intraseasonal Kelvin Waves along the Southern Coast of Sumatra and Java.” Journal of Geophysical Research 119: C04013. doi:http://dx.doi.org/10.1029/2004JC002508.

    Iskandar, I., Y. Masumoto, K. Mizuno, H. Sasaki, A. K. Afandi, D. Setiabudidaya, and F. Syamsuddin. 2014.“Coherent Intraseasonal Oceanic Variations in the Eastern Equatorial Indian Ocean and in the Lombok and Ombai Straits from Observations and a Highresolution OGCM.” Journal of Geophysical Research 119: 615-630. Molcard, R., M. Fieux, and A. G. Ilahude. 1996. “The Indo-Pacifc Throughfow in the Timor Passage.” Journal of Geophysical Research: Oceans 101: 12411-12420.

    Pujiana, K., A. L. Gordon, J. Sprintall, and R. D. Susanto. 2009.“Intraseasonal Variability in the Makassar Strait Thermocline.”Journal of Marine Research 67: 757-777.

    Pujiana, K., A. L. Gordon, and J. Sprintall. 2013. “Intraseasonal Kelvin Wave in Makassar Strait.” Journal of Geophysical Research 118: 2023-2034.

    Qiu, B., M. Mao, and Y. Kashino. 1999. “Intraseasonal Variability in the Indo-Pacifc Throughfow and the Regions Surrounding the Indonesian Seas.” Journal of Physical Oceanography 29: 1599-1618.

    Schiller, A., S. E. Wijfels, J. Sprintall, R. Molcard, and P. R. Oke. 2010. “Pathways of Intraseasonal Variability in the Indonesian Throughfow Region.” Dynamics of Atmospheres and Oceans 50: 174-200.

    Sprintall, J., S Wijfels, A. L. Gordon, et al. 2004. “INSTANT: A New International Array to Measure the Indonesian Throughfow.”EOS Transactions American Geophysical Union 85 (39): 369-376.

    Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya. 2009.“Direct Estimates of the Indonesian Throughflow Entering the Indian Ocean: 2004-2006.” Journal of Geophysical Research 114: C07001. doi:http://dx.doi.org/10.1029/ 2008JC005257.

    Syamsudin, F., A. Kaneko, and D. B. Haidvogel. 2004. “Numerical and Observational Estimates of Indian Ocean Kelvin Wave Intrusion into Lombok Strait.” Geophysical Research Letters 31: L24307. doi:http://dx.doi.org/10.1029/2004GL021227.

    Wijfels, S. E., and G. Meyers. 2004. “An Intersection of Oceanic Waveguides: Variability in the Indonesian Throughfow Region.” Journal of Physical Oceanography 34: 1232-1253.

    Yang, G., W. D. Yu, Y. L. Yuan, X. Zhao, F. Wang, G. X. Chen, L. Liu,and Y. L. Duan. 2015. “Characteristics, Vertical Structures, and Heat/Salt Transport of Mesoscale Eddies in the Southeastern Tropical Indian Ocean.” Journal of Geophysical Research 120: 6733-6750. doi:http://dx.doi.org/10.1002/2015JC011130.

    Yuan, D. L., J. Wang, T. F. Xu, P. Xu, H. Zhou, X. Zhao, Y. H. Luan,W. P. Zheng, and Y. Q. Yu. 2011. “Forcing of the Indian Ocean Dipole on the Interannual Variations of the Tropical Pacifc Ocean: Roles of the Indonesian Throughfow.” Journal of Climate 24: 3593-3608.

    Yuan, D. L., H. Zhou, and X. Zhao. 2013. “Interannual Climate Variability over the Tropical Pacifc Ocean Induced by the Indian Ocean Dipole through the Indonesian Throughfow.”Journal of Climate 26: 2845-2861.

    印度尼西亞貫穿流; Kelvin波; 季節(jié)內(nèi)變化; 波導(dǎo); 傳播路徑

    15 March 2016

    CONTACT WEI Ze-Xun weizx@fo.org.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    向東印度尼西亞印度洋
    我的爸爸
    河南電力(2022年3期)2022-03-18 05:48:06
    未來的家園
    趕集歸來
    金秋(2021年24期)2021-12-01 11:15:21
    與南亞高壓相聯(lián)的歐亞大陸-印度洋經(jīng)向環(huán)流
    印度尼西亞—省的天空變成了紅色
    于向東
    寶藏(2018年1期)2018-04-18 07:39:21
    去印度洋
    滇池(2018年1期)2018-01-17 21:34:30
    論馬來西亞和印度尼西亞群島的仿宋錫錢
    中國錢幣(2016年6期)2016-06-15 20:29:57
    印度洋上接“嫦娥”回家:遠(yuǎn)望3號(hào)船精確測(cè)控探月三期試驗(yàn)返回器順利再入返回側(cè)記
    太空探索(2014年12期)2014-07-12 15:17:10
    火車向東
    小說月刊(2014年12期)2014-04-19 02:40:17
    久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 老司机深夜福利视频在线观看 | 国产99久久九九免费精品| 国产高清国产精品国产三级| 国产亚洲最大av| 久久影院123| 日韩成人av中文字幕在线观看| 大片电影免费在线观看免费| 99精品久久久久人妻精品| 69精品国产乱码久久久| 性少妇av在线| 免费高清在线观看日韩| 免费在线观看完整版高清| 国产乱人偷精品视频| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 亚洲熟女精品中文字幕| 多毛熟女@视频| 久久精品亚洲熟妇少妇任你| 国产一区有黄有色的免费视频| 久久精品人人爽人人爽视色| 最黄视频免费看| 黄片播放在线免费| 亚洲精品第二区| 在线观看人妻少妇| 免费少妇av软件| 天天躁夜夜躁狠狠躁躁| 激情视频va一区二区三区| 一级黄片播放器| 亚洲欧美一区二区三区国产| 欧美日韩av久久| 欧美日韩精品网址| 欧美精品亚洲一区二区| 激情视频va一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 午夜影院在线不卡| 亚洲视频免费观看视频| 国产成人精品福利久久| 香蕉丝袜av| 十八禁人妻一区二区| 国产极品粉嫩免费观看在线| 日韩av免费高清视频| 精品一区二区三区av网在线观看 | 亚洲在久久综合| 婷婷色麻豆天堂久久| 国产精品 欧美亚洲| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| av免费观看日本| 观看美女的网站| 丰满饥渴人妻一区二区三| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 91精品三级在线观看| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 免费看av在线观看网站| 看免费成人av毛片| av片东京热男人的天堂| 男人爽女人下面视频在线观看| 精品视频人人做人人爽| a级片在线免费高清观看视频| 香蕉丝袜av| 国产成人欧美在线观看 | 青春草国产在线视频| 国产不卡av网站在线观看| a级毛片在线看网站| 午夜久久久在线观看| 在线 av 中文字幕| 日韩电影二区| 亚洲激情五月婷婷啪啪| 综合色丁香网| 欧美亚洲日本最大视频资源| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 午夜免费观看性视频| 黄频高清免费视频| 亚洲av男天堂| 久热爱精品视频在线9| 赤兔流量卡办理| 亚洲av中文av极速乱| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 最近中文字幕2019免费版| 国产成人免费观看mmmm| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 别揉我奶头~嗯~啊~动态视频 | 中国国产av一级| 国产精品一区二区精品视频观看| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀 | 宅男免费午夜| 中文字幕另类日韩欧美亚洲嫩草| 日韩一本色道免费dvd| 天天躁夜夜躁狠狠久久av| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 在线观看免费高清a一片| 亚洲国产精品成人久久小说| 欧美成人午夜精品| 欧美 日韩 精品 国产| 久久久国产欧美日韩av| 日韩电影二区| 国产探花极品一区二区| 女性生殖器流出的白浆| 成年美女黄网站色视频大全免费| 又大又爽又粗| 性少妇av在线| 可以免费在线观看a视频的电影网站 | 中国国产av一级| 91精品伊人久久大香线蕉| 99久国产av精品国产电影| 99热全是精品| 日韩 亚洲 欧美在线| 99久久人妻综合| 日韩电影二区| 亚洲欧美成人精品一区二区| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻丝袜制服| 国产精品国产三级专区第一集| 少妇被粗大猛烈的视频| 最近最新中文字幕免费大全7| 国产精品欧美亚洲77777| 国产成人a∨麻豆精品| 九色亚洲精品在线播放| 亚洲av在线观看美女高潮| 久久久欧美国产精品| 久久精品国产亚洲av高清一级| 精品酒店卫生间| 国产极品天堂在线| 波多野结衣一区麻豆| av在线观看视频网站免费| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 王馨瑶露胸无遮挡在线观看| 欧美国产精品va在线观看不卡| 麻豆乱淫一区二区| 欧美成人精品欧美一级黄| 午夜福利乱码中文字幕| 大陆偷拍与自拍| 操出白浆在线播放| 久久久久人妻精品一区果冻| 女性被躁到高潮视频| 极品少妇高潮喷水抽搐| 欧美最新免费一区二区三区| 日本av免费视频播放| 亚洲国产av影院在线观看| 亚洲av福利一区| 亚洲色图综合在线观看| 亚洲欧美激情在线| 国产片特级美女逼逼视频| 久久久久久久国产电影| 男女床上黄色一级片免费看| 日韩熟女老妇一区二区性免费视频| 久久99一区二区三区| 国产黄频视频在线观看| 国产成人啪精品午夜网站| 9热在线视频观看99| 国产成人系列免费观看| 亚洲中文av在线| 国产熟女欧美一区二区| 色网站视频免费| 国产精品二区激情视频| 十八禁高潮呻吟视频| 午夜影院在线不卡| 黑丝袜美女国产一区| 操出白浆在线播放| 日韩av免费高清视频| 一级毛片我不卡| 美女福利国产在线| 秋霞在线观看毛片| 99久国产av精品国产电影| 街头女战士在线观看网站| 极品人妻少妇av视频| 男女国产视频网站| 午夜福利视频精品| 国产精品一二三区在线看| 国产日韩欧美亚洲二区| 热99久久久久精品小说推荐| 日本欧美视频一区| 亚洲中文av在线| 国产熟女欧美一区二区| 美女主播在线视频| 大码成人一级视频| e午夜精品久久久久久久| 啦啦啦在线观看免费高清www| 亚洲,一卡二卡三卡| 最近手机中文字幕大全| 亚洲成人一二三区av| 亚洲成人一二三区av| 丁香六月天网| 天天躁夜夜躁狠狠躁躁| 男女午夜视频在线观看| 伊人久久国产一区二区| 精品人妻熟女毛片av久久网站| 人妻一区二区av| 国产伦理片在线播放av一区| 蜜桃在线观看..| 亚洲精品一二三| 亚洲精品美女久久av网站| 久久女婷五月综合色啪小说| 街头女战士在线观看网站| 狂野欧美激情性xxxx| 国产男人的电影天堂91| 亚洲精品av麻豆狂野| 成年人午夜在线观看视频| 性色av一级| tube8黄色片| 国产成人午夜福利电影在线观看| 国产成人精品福利久久| 国产在线免费精品| 五月开心婷婷网| 亚洲久久久国产精品| 天堂中文最新版在线下载| 亚洲人成77777在线视频| 黑丝袜美女国产一区| 久久99精品国语久久久| 久久久精品94久久精品| 免费黄色在线免费观看| 亚洲精华国产精华液的使用体验| 国产成人精品无人区| 狂野欧美激情性xxxx| 女性被躁到高潮视频| 极品少妇高潮喷水抽搐| 十八禁网站网址无遮挡| 在线观看免费日韩欧美大片| 国产精品欧美亚洲77777| 热re99久久国产66热| 亚洲精品国产av成人精品| 一边摸一边做爽爽视频免费| 国产伦理片在线播放av一区| 精品国产乱码久久久久久小说| 搡老乐熟女国产| 欧美日韩av久久| 成人午夜精彩视频在线观看| 国产av码专区亚洲av| 亚洲一级一片aⅴ在线观看| 国产精品 国内视频| 18禁动态无遮挡网站| 国产成人精品福利久久| 亚洲国产av影院在线观看| 又黄又粗又硬又大视频| 精品一区二区三卡| 久久天躁狠狠躁夜夜2o2o | 中国国产av一级| 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密 | 又大又黄又爽视频免费| 午夜福利视频精品| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| 日本色播在线视频| 最近的中文字幕免费完整| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| 在线观看人妻少妇| 亚洲精品aⅴ在线观看| 看非洲黑人一级黄片| 久久热在线av| 亚洲三区欧美一区| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 精品第一国产精品| 熟妇人妻不卡中文字幕| 久久久国产精品麻豆| 国产麻豆69| 日韩成人av中文字幕在线观看| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 色播在线永久视频| 女的被弄到高潮叫床怎么办| 日本黄色日本黄色录像| 国产精品免费大片| 搡老岳熟女国产| 一区二区av电影网| 国产一级毛片在线| 91国产中文字幕| 国产精品嫩草影院av在线观看| 欧美激情极品国产一区二区三区| 黄色怎么调成土黄色| avwww免费| 色婷婷av一区二区三区视频| 亚洲精品久久久久久婷婷小说| 丝袜美足系列| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av | 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o | 久久精品熟女亚洲av麻豆精品| 欧美日韩成人在线一区二区| 久久精品久久精品一区二区三区| 侵犯人妻中文字幕一二三四区| 久久毛片免费看一区二区三区| 亚洲精品视频女| 国产麻豆69| www日本在线高清视频| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 国产成人欧美在线观看 | 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 亚洲av欧美aⅴ国产| 国产成人免费观看mmmm| 欧美成人午夜精品| 日韩大码丰满熟妇| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 国产成人一区二区在线| 搡老乐熟女国产| 精品视频人人做人人爽| 亚洲欧洲日产国产| 成年动漫av网址| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 国产熟女午夜一区二区三区| 狂野欧美激情性bbbbbb| 天天躁夜夜躁狠狠久久av| 国产成人a∨麻豆精品| 男女床上黄色一级片免费看| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 日本色播在线视频| 国产精品久久久久久久久免| 欧美日韩一级在线毛片| 婷婷成人精品国产| 久久99精品国语久久久| 国产亚洲一区二区精品| 亚洲精品aⅴ在线观看| 美国免费a级毛片| 黄色视频不卡| 精品少妇内射三级| 大陆偷拍与自拍| 亚洲婷婷狠狠爱综合网| 国产男女超爽视频在线观看| 好男人视频免费观看在线| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 热re99久久国产66热| 美女高潮到喷水免费观看| 日韩成人av中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频| 日本av手机在线免费观看| 久久亚洲国产成人精品v| 国产高清国产精品国产三级| 欧美老熟妇乱子伦牲交| 观看美女的网站| 中文字幕人妻丝袜一区二区 | 在线精品无人区一区二区三| 一区二区三区四区激情视频| 国产免费现黄频在线看| 一级毛片我不卡| 叶爱在线成人免费视频播放| 美国免费a级毛片| 国产熟女欧美一区二区| www日本在线高清视频| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 免费观看人在逋| 精品久久久精品久久久| 大话2 男鬼变身卡| 一本大道久久a久久精品| 美女脱内裤让男人舔精品视频| 精品少妇内射三级| 中文字幕人妻丝袜制服| 亚洲欧美中文字幕日韩二区| 一级片免费观看大全| 欧美日韩精品网址| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 免费高清在线观看视频在线观看| 国产一级毛片在线| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区| 一边亲一边摸免费视频| 1024香蕉在线观看| 我的亚洲天堂| 国产免费现黄频在线看| 一本大道久久a久久精品| 国产成人精品久久久久久| 不卡av一区二区三区| 天堂中文最新版在线下载| 超碰成人久久| 色精品久久人妻99蜜桃| 建设人人有责人人尽责人人享有的| 成人手机av| 在线观看www视频免费| 亚洲美女黄色视频免费看| 超碰97精品在线观看| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频| 国产一区二区激情短视频 | 哪个播放器可以免费观看大片| 久久久久久久大尺度免费视频| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 午夜激情久久久久久久| av视频免费观看在线观看| 丰满乱子伦码专区| 久久久久精品人妻al黑| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 女性被躁到高潮视频| a级毛片在线看网站| 黄网站色视频无遮挡免费观看| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区 | 99国产精品免费福利视频| 丁香六月欧美| 免费观看av网站的网址| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 精品人妻在线不人妻| 国产人伦9x9x在线观看| 精品少妇黑人巨大在线播放| 午夜91福利影院| 满18在线观看网站| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 国产色婷婷99| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 在线天堂中文资源库| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 一二三四在线观看免费中文在| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 一本色道久久久久久精品综合| 精品一区二区三卡| 青青草视频在线视频观看| www.av在线官网国产| 精品国产国语对白av| 黄频高清免费视频| 国产日韩欧美视频二区| 日韩伦理黄色片| 少妇精品久久久久久久| 男女国产视频网站| 亚洲中文av在线| 久久久久久免费高清国产稀缺| 国产黄色免费在线视频| 激情视频va一区二区三区| 美女主播在线视频| 午夜影院在线不卡| 国产一区二区 视频在线| 久久久国产精品麻豆| 久久精品亚洲熟妇少妇任你| 一区二区三区精品91| 久久久久久久大尺度免费视频| 成人国产av品久久久| 免费观看a级毛片全部| 国产乱人偷精品视频| 高清av免费在线| 亚洲成人国产一区在线观看 | 高清在线视频一区二区三区| 精品午夜福利在线看| 国产一卡二卡三卡精品 | 亚洲欧美成人精品一区二区| 美女福利国产在线| 亚洲av欧美aⅴ国产| 999精品在线视频| 一级毛片 在线播放| av视频免费观看在线观看| 国产99久久九九免费精品| 欧美激情高清一区二区三区 | 亚洲美女视频黄频| 在线观看免费视频网站a站| 欧美久久黑人一区二区| 波野结衣二区三区在线| 97人妻天天添夜夜摸| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 国产高清国产精品国产三级| 免费高清在线观看日韩| 少妇人妻精品综合一区二区| 亚洲美女视频黄频| 久热这里只有精品99| 观看美女的网站| 国产有黄有色有爽视频| 一级黄片播放器| 亚洲国产av新网站| 考比视频在线观看| 热re99久久国产66热| 男的添女的下面高潮视频| 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 黄片小视频在线播放| 嫩草影院入口| 亚洲精品视频女| 日韩制服丝袜自拍偷拍| 欧美另类一区| 久久女婷五月综合色啪小说| 久热爱精品视频在线9| 视频区图区小说| 日韩一区二区视频免费看| 亚洲精品av麻豆狂野| 成人毛片60女人毛片免费| 如何舔出高潮| 大码成人一级视频| 日本黄色日本黄色录像| 国产片特级美女逼逼视频| 亚洲天堂av无毛| av在线老鸭窝| 久久久久久久精品精品| 精品免费久久久久久久清纯 | 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到| 国产日韩欧美在线精品| 国产99久久九九免费精品| 亚洲一码二码三码区别大吗| 18禁动态无遮挡网站| 2018国产大陆天天弄谢| 欧美日本中文国产一区发布| 久久精品亚洲熟妇少妇任你| 69精品国产乱码久久久| avwww免费| 午夜福利视频精品| 午夜日本视频在线| videos熟女内射| av天堂久久9| 香蕉丝袜av| 国产无遮挡羞羞视频在线观看| 日韩中文字幕视频在线看片| 熟女av电影| 国产精品久久久久成人av| 汤姆久久久久久久影院中文字幕| 国产亚洲av片在线观看秒播厂| 欧美久久黑人一区二区| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 国产精品 欧美亚洲| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 国产精品亚洲av一区麻豆 | 亚洲国产最新在线播放| 91国产中文字幕| 一级爰片在线观看| 国精品久久久久久国模美| 永久免费av网站大全| 欧美日韩亚洲高清精品| 欧美另类一区| 丝袜美腿诱惑在线| 热re99久久精品国产66热6| 在线观看三级黄色| 性高湖久久久久久久久免费观看| 亚洲五月色婷婷综合| 十分钟在线观看高清视频www| 欧美人与善性xxx| 日本欧美国产在线视频| 观看av在线不卡| 久久久精品免费免费高清| av卡一久久| 免费人妻精品一区二区三区视频| 免费少妇av软件| 卡戴珊不雅视频在线播放| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 中文字幕av电影在线播放| 亚洲av中文av极速乱| tube8黄色片| 高清不卡的av网站| 又大又爽又粗| 搡老岳熟女国产| 在线观看免费高清a一片| 十八禁人妻一区二区| 在线观看一区二区三区激情| 啦啦啦中文免费视频观看日本| 日韩人妻精品一区2区三区| 精品亚洲成a人片在线观看| 精品少妇久久久久久888优播| 老鸭窝网址在线观看| 精品亚洲成a人片在线观看| 日本爱情动作片www.在线观看| 亚洲国产欧美一区二区综合| 丁香六月天网| 亚洲精品av麻豆狂野| 日韩大码丰满熟妇| 国产xxxxx性猛交| 精品卡一卡二卡四卡免费| 久久99精品国语久久久| 男人添女人高潮全过程视频| 91精品伊人久久大香线蕉| 国产精品成人在线| 日韩一区二区视频免费看| 日韩免费高清中文字幕av| 少妇被粗大猛烈的视频| 欧美老熟妇乱子伦牲交| a级毛片黄视频| 国产成人免费观看mmmm|