• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous state and actuator fault estimation for satellite attitude control systems

    2016-11-23 06:12:10ChengYaoWangRixinXuMinqiangLiYuqing
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Cheng Yao,Wang Rixin,Xu Minqiang,Li Yuqing

    Deep Space Exploration Research Center,Harbin Institute of Technology,Harbin 150080,China

    Simultaneous state and actuator fault estimation for satellite attitude control systems

    Cheng Yao,Wang Rixin*,Xu Minqiang,Li Yuqing

    Deep Space Exploration Research Center,Harbin Institute of Technology,Harbin 150080,China

    In this paper,a new nonlinear augmented observer is proposed and applied to satellite attitude control systems.The observer can estimate system state and actuator fault simultaneously.It can enhance the performances of rapidly-varying faults estimation.Only original system matrices are adopted in the parameter design.The considered faults can be unbounded,and the proposed augmented observer can estimate a large class of faults.Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered,followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded.For the considered nonlinear system,convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method.Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities(LMIs).Finally,the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system.The simulation results show satisfactory performance in estimating states and actuator faults.It also shows that multiple faults can be estimated successfully.

    1.Introduction

    A satellite attitude control system is an essential subsystem for accomplishing successful space missions.Due to the increasing requirement for high safety and reliability,fault diagnosis for satellite attitude control systems has been an importantresearch topic.Fruitful results can befound in many researches.1–3

    During the last two decades,model-based fault diagnosis techniques have been widely researched and applied in modern systems.4,5Generally speaking,model-based fault diagnosis strategy performs three essential tasks:fault detection,fault isolation and fault estimation.6,7Fault estimation is the superior lever of the three tasks.Accurate fault estimation implies that it not only detects and isolates the fault automatically,but also provides details of the fault,such as the size and time varying behavior of the fault.Besides,once a fault is determined,fault tolerant control can be adopted to compensate for it,which requires a simultaneous state and fault estimation.8,9Thus,state estimation observers that can provide the required state and fault information within one design have attracted a lot of attention.

    Fig.1 State estimation errors in Case 1 by different methods.

    Much research effort has been devoted in this area and fruitful results have been published.To mention a few,proportional multi-integral observers were designed in Refs.10,11to achieve fault estimation for linear and nonlinear descriptor system.In Refs.12,13,actuator fault estimation based on neural network was considered.In Refs.14,15,adaptive observer technique has been used to estimate fault.In Refs.16,17,fault estimation is investigated by sliding mode observers.

    Among various approaches developed in the past,the augmented observer has attracted increasing attention due to its simplicity and the potential for simultaneously estimate system states and faults.The main idea of this kind of observer lies in addressing the faults as additional state variables.Accordingly,a variety of important results have been reported in the literature.For example,the actuator fault estimation based on augmented observer has been addressed in Refs.18,19for linear time invariant systems,and in Ref.20for linear parameter varying systems.Fault diagnosis using augmented observer for rotor systems and satellite attitude control systems have been investigated in Refs.21,22and Refs.23,24,respectively.In Ref.25,a nonlinear augmented observer is designed and applied to a quadrotor aircraft.There are also much literature which can be viewed as the transformations of the augmented observers,such as Refs.26,27.However,the traditional augmented observer is conservative as the faults are assumed to be slowly-varying.In this situation,the constant fault estimation is guaranteed to be unbiased,but it fails to deal with the rapidly-varying fault.Besides,systematic and convenient approaches for the design of nonlinear augmented observers remain lacking in the available literature.

    Inspired by the research problems above,in this paper,a nonlinear augmented observer is designed and applied to satellite attitude control systems.Unlike in Refs.23,24,the Takagi-Sugeno fuzzy model is used to linearise the satellite attitude dynamics or only slowly-varying fault is considered.The augmented observer proposed in this paper can handle the estimation problem for a large class of actuator faults.Moreover,no equivalent transformations are needed for obtaining this observer.Our design uses only original coefficient matrices,thus the observer is convenient and reliable in computations.

    In summary,the main contributions of this paper are as follows:(1)a new nonlinear augmented observer with a novel structure is proposed to estimate states and actuator faults for satellite attitude control systems;(2)the observer parameters can be computed directly using linear matrix inequalities(LMIs)with original coefficient matrices;(3)multiple rapidly-varying faults can be estimated within one design.

    The rest of this paper is organized as follows.Section 2 briefly describes problem statement.In Sections 3 and 4,the design of the augmented observers is developed in detail for two cases,respectively.Section 3 concerns with the ideal case in which the finite times derivatives of the faults is assumed to be zero piecewise.Section 4 deals with the general case that the finite times derivatives of the faults is not null but bounded and disturbances cannot be neglected.Simulations are provided in Section 5 via an example of a satellite attitude control system.Conclusions are drawn in Section 6.

    Notation.The notation used in the present paper is fairly standard.Rndenotes the n-dimensional Euclidean space,and RnXmis the set of all real matrices of dimension nXm.Pgt;0 means that P is real symmetric and positive definite.||.||stands for the usual L2norm.λmax(X)and λmin(X)denote the maximum and minimum eigenvalues of X.The symmetric terms in a symmetric matrix are denoted by''*quot;.

    2.Problem formulation

    Consider a nonlinear dynamic system with actuator fault as

    where x(t)∈Rnis the system state vector;u(t)∈Rmand y(t)∈Rpare the input and the output vectors,respectively;d(t)∈Rlis the unknown disturbance vector and it is assumed to be L2norm bounded;f(t)∈Rkis the unknown vector that represents all possible actuator faults;A,B,C,E andlare known constant real matrices of appropriate dimensions,and the pair(A,C)is observable;the nonlinear vector function Φ(x)is assumed to be Lipschitz nonlinear with a Lipschitz constant γ,i.e.,

    In this paper,our goal is to develop a new augmented observer to estimate system states and fault simultaneously.And then an effective way to calculate the design parameters is given.First,Section 3 discusses an augmented observer for an ideal case in which system disturbances are neglected and f(t)is assumed to be in a general form as follows:

    where Fi(i=0,1,...,q-1)are unknown constant vectors.One can see that the qth derivative of f(t)with respect to time is zero(i.e.,f(q)=0).And then,Section 4 discusses a robust augmented observer for a more general case in which the system is subjected to disturbances and f(q)is not null but bounded.One can see that the fault considered in this paper may be unbounded.

    It is worth noting that the fault in the form of Eq.(3)can describe a large class of faults.26,27For instance,constant faults correspond to Eq.(3)with q=1 and ramp-wise faults correspond to Eq.(3)with q=2.Actually,since f(q)is required to be bounded in Section 4,lots of faults can be described in the form of Eq.(3)using Taylor expansion.Thus,without loss of generality,we take Eq.(3)to express the considered fault.

    3.Augmented observer design:the ideal case

    Consider a nonlinear dynamic system without disturbance in the following form:

    Letting

    and using f(q)=0,an augmented system can be constructed as

    where

    According to the augmented system above,the observer can be constructed as

    The augmented state estimation error can be de fined asThe following main concern is to design an observer such thatthat is,andwhereandare the state estimation error and fault estimation error,respectively,withthe estimation of fault vector.

    Theorem 1.For the given constant γ,if there exist matrices Pgt;0 and fsuch that the following condition holds:

    then the observer in the form of Eq.(7)is asymptotically stable and the estimated error of state and fault converges exponentially to zero.

    Proof.According to thesystem Eq.(6)and observer Eq.(7),the dynamics of the augmented state error can be derived as

    Choose the following Lyapunov function:

    The time derivative of it reads

    It follows that

    Thus,the augmented observer ensures that ˉe(t)→ 0 as t→∞.

    On the other hand,the Lyapunov function satisfies that

    Thus,one has

    Substituting Eq.(15)into Eq.(17)gives

    Integrating Eq. (18), one can obtainwhere

    Fig.2 Faults and their estimates in Case 1 by different methods.

    Fig.3 State estimation errors in Case 2 by different methods.

    4.Robust augmented observer design:the general case

    In this section,the general case is considered.The nonlinear dynamic system is subject to disturbances and f(q)is not zero but assumed to be bounded.

    For the system given in Eq. (1), let ξi=f(i)(i=1,2,...,q-1)and define the augmented state vector as in Eq.(6),then we have an augmented system as

    where

    and the other symbols are the same as those defined in Eq.(6).

    Fig.4 Faults and their estimates in Case 2 by different methods.

    Theorem 2.For the given constant γ and δ,if there exist matrices Pgt;0 andfsuch that the following condition holds:then the observer in the form of Eq.(7)is robustly stable,that is,the estimated error of state and fault is uniformly bounded.

    Proof.According to the observer Eq.(7)and system Eq.(20),the dynamics of the augmented state error can be derived as

    Choose the following Lyapunov function:

    The time derivative of it reads

    Define

    Then it is clear that

    Under the zero initial condition,we have

    Therefore,

    Remark 1.If there are no disturbances and f(q)=0,Eq.(25)reduces to Eq.(14).Since the matrix Δ is a negative matrix according to Schur Complement Lemma,one can see that it is just the result which has been addressed in the ideal case.Thus,the observer designed in the ideal case serves as a particular case of robust augmented observer design.

    Remark 2.To obtain the augmented observer discussed, how to calculate the corresponding matrices F,T,G and N is an important problem.In the following section,the solution of the above theorem is achieved by transferring inequality(21)to an LMI with the required transformation.Thus,the problem can be solved easily from the standard scientific computing software.

    According to Schur Complement Lemma,Ξlt;0 in inequality(21)can be rewritten into the following matrix inequality form:

    This matrix inequality can be solved by using MATLAB LMI toolbox with X,Y and P as the matrix variables.Once X,Y and P are obtained,one can get N=XP-1and G=YP-1.Furthermore,T andfcan be determined by using Eqs.(8)and(9)and then the observer is obtained.

    Remark 3.In order to compare the proposed method with the traditional method,a system without disturbance is considered and the fault is assumed to be in the form of Eq.(3).

    However,as designed in Section 3,our proposed augmented observer can achieve an unbiased estimation of the state and the fault.Case 1 in simulation part is carried out to verify the above analysis and show the effectiveness.

    5.Application

    5.1.Mathematical model of satellite attitude control system

    In this section,the effectiveness of the proposed estimation method is illustrated by considering a satellite attitude control system.The dynamics model with actuator faults can be given in state space formulation as Ref.28.

    5.2.Simulation results

    In this simulation,two fault cases are considered to illustrate the performance of the designed augmented observer.The first case concerns with the single-fault in ideal situation and the second case deals with the multiple-fault in general situation.

    Case 1.Assume that x-axis actuator suffers a ramp-wise fault in the following form.That is,friction torque suddenly increases at 50 s and continued to increase.

    It can be seen that the second times derivatives of the fault is zero piecewise.Therefore,a two-step augmentation(the augmented system in the form of Eq.(20)with q=2)is carried out to illustrate the performance of the proposed method.

    The curves of the state estimation errors generated by the proposed method are given in Fig.1(a).In order to show that the proposed method is superior to the conventional method,a traditional augmented observer is also designed.The corresponding simulation results are given in Fig.1(b).The trajectories of the faults and their estimates are exhibited in Fig.2.It can be seen that the tracking performance is desired.From Fig.1(a),it is shown that the state estimation errors converge to zero.From Fig.2(a),one can see that the fault is estimated successfully.Therefore not only the x-axis actuator fault is detected,but also the accurate fault information is provided.It can be seen that the state estimation errors in Fig.1(b)are bounded but not converge to zero.It is not surprising,because the traditional observer serves as one-step augmented observer.This observer can only achieve the unbiased estimation for the fault whose first times derivatives is zero.The estimation performance shown in Fig.2(b)is obviously less satisfactory than that shown in Fig.2(a).

    Case 2.It is supposed that the x-axis actuator and y-axis actuator are prone to faults simultaneously,and z-axis actuator is fault free.The faults are considered in the following form.Friction torque of x-axis actuator rapidly increased after 50 s and stabilized at a certain value after 80 s.Friction torque of y-axis actuator increased periodically after 40 s.

    We still use the observer designed in Case 1.The curves of the state estimation errors and the estimated faults by the proposed method and traditional method are shown in Figs.3 and 4,respectively.Since the disturbances exist and the second times derivatives of the faults are not zero,the state estimation errors in Fig.3(a)are not zero but bounded.It can be seen from Fig.4(a)that the two faults are estimated satisfactorily.Therefore,both the faults of x-axis actuator and y-axis actuator are detected and identified successfully by our proposed method,which means that the designed augmented observer has the ability to diagnose multiple faults simultaneously.From Fig.3(b)and Fig.4(b),it can be seen that the two faults can also be detected and estimated,but the estimation performance is less accurate than the results of our proposed method obviously.

    From the above simulation results,it can be concluded that for the ramp-wise fault in Case 1,an unbiased estimation of the fault can be achieved using our proposed method,but the traditional method can only achieve a biased estimation.As for the two rapidly-varying faults in Case 2,estimation of two simultaneous faults can be both achieved using our proposed and traditional methods,but our method can enhance the performances of rapidly-varying faults estimation.Thus,our proposed augmented observer outperforms the traditional augmented observer.

    6.Conclusions

    (1)In this paper,an augmented observer is presented to simultaneously estimate the states and actuator faults for nonlinear Lipschitz systems.Both of an ideal case and a more general case are considered with detailed theoretical analyses.The design of the observer only adopts the original coefficient matrices.Based on LMIs techniques,the observer parameters are conveniently computed.Compared with the conventional method,the proposed augmented observer can improve the performances of fault estimation.The effectiveness is illustrated by a satellite attitude control system.It is shown that not only single fault but also multiple rapidly varying faults can be estimated successfully.

    (2)Further research work includes two aspects.The first one is that although the robust nonlinear augmented observer is designed in this paper,disturbances should be further tackled using perfect or approximate decoupling strategy.Since only dynamics model of satellite attitude is considered,extension of the system model by adding kinemics model has more research significance,which should be investigated to further verify the proposed method.

    Acknowledgements

    This work was supported by the National Basic Research Program of China(No.2012CB720003)and the National Natural Science Foundation of China(No.61203151).

    1.Gao CY,Zhao Q,Duan GR.Robust actuator fault diagnosis scheme for satellite attitude control systems.J Franklin Inst 2013;350(9):2560–80.

    2.Zhang J,Swain AK,Nguang SK.Robust sensor fault estimation scheme for satellite attitude control systems.J Franklin Inst 2013;350(9):2581–604.

    3.Pirmoradi FN,Sassani F,de Silva CW.Fault detection and diagnosis in a spacecraft attitude determination system.Acta Astronaut 2009;65(5):710–29.

    4.Niu EZ,Wang Q,Dong CY.Robust fault detection and optimization for a network of unmanned vehicles with imperfect communication channels.Chin J Aeronaut 2014;27(1):65–75.

    5.Wang ZL,Wang Q,Dong CY,Gong LG.Closed-loop fault detection for full-envelope flight vehicle with measurement delays.Chin J Aeronaut 2015;28(3):832–44.

    6.Ding SX. Model-based fault diagnosis techniques. New York:Springer;2012.p.3–11.

    7.Marzat J,Piet-Lahanier H,Damongeot F,Walter E.Model-based fault diagnosis for aerospace systems:a survey.Proc Inst Mech Eng,Part G:J Aerosp Eng 2012;226(10):1329–60.

    8.Xiao B,Hu Q,Singhose W,Huo X.Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking.J Guid Control Dyn 2013;36(6):1565–75.

    9.Zhong L,Fe′lix M-C.A two-stage approach for managing actuators redundancy and its application to fault tolerant flight control.Chin J Aeronaut 2015;28(2):469–77.

    10.Gao ZW,Ding SX.Fault estimation and fault-tolerant control for descriptor systems via proportional,multiple-integral and derivative observer design.IET Control Theory Appl 2007;1(5):1208–18.

    11.Gao ZW,Ding SX.Actuator fault robust estimation and faulttolerant control for a class of nonlinear descriptor systems.Automatica 2007;43(5):912–20.

    12.Talebi HA,Khorasani K.A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems.IEEE Trans Control Syst Technol 2013;21(3):842–51.

    13.Wang ZH,Shen Y,Zhang XL.Actuator fault estimation for a class of nonlinear descriptor systems.Int J Syst Sci 2014;45(3):487–96.

    14.Zhang K,Jiang B,Cocquempot V.Adaptive observer-based fast fault estimation.Int J Control Autom Syst 2008;6(3):320–6.

    15.Shahriari-kahkeshi M,Sheikholeslam F,Askari J.Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems.Nonlinear Dyn 2015;79(4):2623–37.

    16.Alwi H,Edwards C,Tan CP.Sliding mode estimation schemes for incipient sensor faults.Automatica 2009;45(7):1679–85.

    17.Menon PP,Edwards C.A sliding mode observer for monitoring and fault estimation in a network of dynamical systems.Int J Robust Nonlinear Control 2014;24(17):2669–85.

    18.Shi F,Patton RJ.Simultaneous state and fault estimation for descriptor systems using an augmented PD observer.Proceedings of the 19th IFAC world congress;2014 Aug 24–29;Cape Town,South Africa.Heidelberg:IFAC;2014.p.8006–11.

    19.Patton RJ,Klinkhieo S.Actuator fault estimation and compensation based on an augmented state observer approach.Proceedings of the 48h IEEE conference on decision and control;2009 Dec 16–18;Shanghai,China.Piscataway(NJ):IEEE Press;2009.p.8482–7.

    20.Wang ZH,Mickael R,Didier T,Shen Y.Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems.Int J Adapt Control Signal Process 2015;29(2):242–58.

    21.Wang Z,Schittenhelm RS,Borsdorf M,Rinderknecht S.Application of augmented observer for fault diagnosis in rotor systems.Eng Lett 2013;21(1):10–7.

    22.Wang Z,Schittenhelm RS,Rinderknecht S.Design of augmented observer for rotor systems.In:Kim HK,Ao SI,Amouzegar MA,Rieger BB,editors.IAENG transactions on engineering technologies.New York:Springer,Netherlands;2014.p.67–82.

    23.Challoo R,Dubey S.Simultaneous state and actuator fault estimation with fuzzy descriptor PMID and PD observers for satellite control systems.Int J Robot Autom 2011;2(5):344–59.

    24.Wang ZH,Shen Y,Zhang XL.Augmented observer-based actuator fault diagnosis for nonlinear systems.J Astronaut 2012;33(12):1742–6[Chinese].

    25.Wang XH,Shirinzadeh B.Nonlinear augmented observer design and application to quadrotor aircraft.Nonlinear Dyn 2015;80(3):1463–81.

    26.Gao ZW,Ho DW.State/noise estimator for descriptor systems with application to sensor fault diagnosis.IEEE Trans Signal Process 2006;54(4):1316–26.

    27.Koenig D.Unknown input proportional multiple-integral observer design for linear descriptor systems:application to state and fault estimation.IEEE Trans Autom Control 2005;50(2):212–7.

    28.Wang RX,Cheng Y,Xu MQ.Analytical redundancy based fault diagnosis scheme for satellite attitude control systems.J Franklin Inst 2015;352(5):1906–31.

    Cheng Yaoreceived the M.E.degree in general and fundamental mechanics from Harbin Institute of Technology,Harbin,China,in 2012,where he is currently working toward the Ph.D.degree in the Deep Space Exploration Research Center.His current research interests include fault diagnosis for dynamical systems,soft-computing methods and qualitative reasoning.

    Wang Rixinis an associate professor with Harbin Institute of Technology.His research interests include fault detection and diagnosis for machinery and spacecraft.

    Xu Minqiangis a professor with Harbin Institute of Technology.His research interests include machinery and spacecraft fault diagnosis,signal processing and space debris modeling.

    Li Yuqingis an instructor with Harbin Institute of Technology.His main research interests are planning and scheduling,satellite range scheduling,and autonomous spacecraft.

    21 August 2015;revised 10 December 2015;accepted 7 January 2016

    Available online 10 May 2016

    Actuator fault estimation;

    Augmented state observer;

    Fault diagnosis;

    Lipschitz nonlinear system;

    Satellite attitude control

    system

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 451 86418320.

    E-mail address:wangrx@hit.edu.cn(R.Wang).

    Peer review under responsibility of Editorial Committee of CJA.

    aaaaa片日本免费| 国产成人欧美在线观看| 亚洲伊人色综图| 国产精品亚洲一级av第二区| 性欧美人与动物交配| 亚洲成av人片免费观看| 视频区欧美日本亚洲| 午夜福利一区二区在线看| 日本五十路高清| 又黄又粗又硬又大视频| 国产成人一区二区三区免费视频网站| 中亚洲国语对白在线视频| 国产主播在线观看一区二区| av天堂在线播放| 在线观看www视频免费| 亚洲天堂国产精品一区在线| 国产亚洲欧美精品永久| 亚洲色图 男人天堂 中文字幕| 亚洲五月天丁香| 成人免费观看视频高清| 国产精品综合久久久久久久免费 | 别揉我奶头~嗯~啊~动态视频| 母亲3免费完整高清在线观看| 成人免费观看视频高清| 欧美老熟妇乱子伦牲交| 美女免费视频网站| 免费在线观看视频国产中文字幕亚洲| 很黄的视频免费| a在线观看视频网站| 搡老妇女老女人老熟妇| 欧美黄色片欧美黄色片| avwww免费| 嫩草影视91久久| 黑人巨大精品欧美一区二区mp4| 女人爽到高潮嗷嗷叫在线视频| 亚洲在线自拍视频| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 久久精品91无色码中文字幕| 久久人妻福利社区极品人妻图片| 精品乱码久久久久久99久播| 国产又爽黄色视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品av在线| 怎么达到女性高潮| 日韩欧美在线二视频| 精品欧美一区二区三区在线| 黄色片一级片一级黄色片| www.www免费av| 亚洲aⅴ乱码一区二区在线播放 | 我的亚洲天堂| √禁漫天堂资源中文www| 亚洲成国产人片在线观看| av福利片在线| 最近最新免费中文字幕在线| 国产精品精品国产色婷婷| 女生性感内裤真人,穿戴方法视频| 无遮挡黄片免费观看| 久久人人精品亚洲av| 村上凉子中文字幕在线| 亚洲精品一区av在线观看| 国产亚洲精品久久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 色播在线永久视频| 精品卡一卡二卡四卡免费| 9191精品国产免费久久| 日日摸夜夜添夜夜添小说| 两个人看的免费小视频| svipshipincom国产片| 男女之事视频高清在线观看| 淫秽高清视频在线观看| 精品久久久久久久毛片微露脸| 女生性感内裤真人,穿戴方法视频| 午夜福利,免费看| 美女午夜性视频免费| 伊人久久大香线蕉亚洲五| 日韩中文字幕欧美一区二区| 国语自产精品视频在线第100页| 搞女人的毛片| 淫妇啪啪啪对白视频| 久久人人爽av亚洲精品天堂| 国产精品一区二区免费欧美| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全电影3 | 90打野战视频偷拍视频| 亚洲av成人av| 久久中文看片网| 久久天堂一区二区三区四区| 一进一出好大好爽视频| 久热这里只有精品99| 日韩 欧美 亚洲 中文字幕| 美女免费视频网站| 日本欧美视频一区| 欧美在线黄色| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av香蕉五月| 国产成人系列免费观看| 人人妻,人人澡人人爽秒播| 久久精品91蜜桃| 手机成人av网站| 不卡av一区二区三区| 香蕉久久夜色| 国产亚洲精品综合一区在线观看 | 女生性感内裤真人,穿戴方法视频| 久久久水蜜桃国产精品网| 精品久久久久久久毛片微露脸| 高清黄色对白视频在线免费看| 一级,二级,三级黄色视频| 亚洲五月婷婷丁香| av福利片在线| 久久久国产成人精品二区| 午夜久久久在线观看| 黄色a级毛片大全视频| 一级毛片高清免费大全| 女人爽到高潮嗷嗷叫在线视频| 9热在线视频观看99| 中文亚洲av片在线观看爽| 每晚都被弄得嗷嗷叫到高潮| 日本五十路高清| 午夜a级毛片| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 嫁个100分男人电影在线观看| 三级毛片av免费| 午夜福利成人在线免费观看| 成人18禁高潮啪啪吃奶动态图| 一级毛片精品| 久久精品亚洲精品国产色婷小说| 欧美日韩精品网址| 亚洲成人久久性| 国产精品久久久av美女十八| 久久久久久大精品| 满18在线观看网站| 国产亚洲av嫩草精品影院| 老司机午夜十八禁免费视频| 亚洲avbb在线观看| 高潮久久久久久久久久久不卡| 香蕉久久夜色| 亚洲国产高清在线一区二区三 | 搞女人的毛片| 亚洲成人免费电影在线观看| 亚洲全国av大片| 美女大奶头视频| 久久中文看片网| 成在线人永久免费视频| 国产精品 国内视频| 大香蕉久久成人网| 性少妇av在线| 伦理电影免费视频| 丝袜美足系列| 久久国产精品影院| 成人国产一区最新在线观看| 国产不卡一卡二| 天堂√8在线中文| 久久精品国产亚洲av高清一级| 两性夫妻黄色片| 国产成人欧美在线观看| 精品国产乱子伦一区二区三区| 欧美国产精品va在线观看不卡| 老汉色∧v一级毛片| 国产一区在线观看成人免费| 国产欧美日韩一区二区三| 淫秽高清视频在线观看| 欧美成人一区二区免费高清观看 | 免费一级毛片在线播放高清视频 | 久久中文字幕一级| 香蕉国产在线看| 中出人妻视频一区二区| 我的亚洲天堂| 日韩精品中文字幕看吧| 男人舔女人的私密视频| 久久亚洲精品不卡| or卡值多少钱| 又大又爽又粗| 亚洲免费av在线视频| 高潮久久久久久久久久久不卡| 超碰成人久久| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 久久久精品欧美日韩精品| 黄片大片在线免费观看| 99久久综合精品五月天人人| 中文字幕av电影在线播放| 在线观看66精品国产| 男女午夜视频在线观看| 亚洲av美国av| 69av精品久久久久久| 国产精品秋霞免费鲁丝片| 制服人妻中文乱码| 亚洲自偷自拍图片 自拍| 在线观看www视频免费| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久久久99蜜臀| 一夜夜www| 中文字幕人妻熟女乱码| 免费久久久久久久精品成人欧美视频| 精品久久久久久久人妻蜜臀av | 久久狼人影院| or卡值多少钱| 香蕉国产在线看| 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 欧美日韩精品网址| 亚洲少妇的诱惑av| 亚洲男人天堂网一区| 国产高清有码在线观看视频 | 九色亚洲精品在线播放| 男女午夜视频在线观看| 男女床上黄色一级片免费看| 老鸭窝网址在线观看| 桃色一区二区三区在线观看| 窝窝影院91人妻| 在线观看www视频免费| 国产主播在线观看一区二区| 国产av精品麻豆| 真人一进一出gif抽搐免费| 日本在线视频免费播放| 韩国av一区二区三区四区| 欧美成人午夜精品| 免费少妇av软件| 女生性感内裤真人,穿戴方法视频| a级毛片在线看网站| 亚洲免费av在线视频| 成人欧美大片| 国产精品免费视频内射| 丁香欧美五月| 精品久久久久久久毛片微露脸| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 精品电影一区二区在线| 99精品欧美一区二区三区四区| 日日干狠狠操夜夜爽| 日本vs欧美在线观看视频| 9色porny在线观看| 国产乱人伦免费视频| 久久国产精品男人的天堂亚洲| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 国产在线精品亚洲第一网站| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影 | 成人免费观看视频高清| 久久性视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久二区二区免费| 老司机靠b影院| 在线免费观看的www视频| 亚洲一码二码三码区别大吗| 午夜老司机福利片| 我的亚洲天堂| 久热爱精品视频在线9| 国产精品久久久av美女十八| 淫秽高清视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品永久免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 女性生殖器流出的白浆| 成年人黄色毛片网站| 校园春色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 日本五十路高清| 亚洲av电影在线进入| 国产欧美日韩一区二区精品| 九色国产91popny在线| 亚洲欧美激情在线| av欧美777| av视频在线观看入口| 免费不卡黄色视频| 成人欧美大片| 免费在线观看影片大全网站| 99热只有精品国产| 1024视频免费在线观看| 女人精品久久久久毛片| 亚洲色图综合在线观看| 亚洲欧美激情在线| 国产高清激情床上av| 满18在线观看网站| 日本一区二区免费在线视频| 亚洲情色 制服丝袜| 老司机在亚洲福利影院| 美女午夜性视频免费| 国产亚洲精品久久久久5区| 99久久国产精品久久久| 脱女人内裤的视频| 免费在线观看影片大全网站| 亚洲av美国av| 给我免费播放毛片高清在线观看| 久久人妻av系列| 女同久久另类99精品国产91| 国产在线观看jvid| 国产精品精品国产色婷婷| 男人操女人黄网站| 亚洲天堂国产精品一区在线| 在线观看66精品国产| 他把我摸到了高潮在线观看| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 免费看a级黄色片| 日韩视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 精品久久久久久久人妻蜜臀av | 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片 | 一区在线观看完整版| 久久国产精品人妻蜜桃| 久久香蕉精品热| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 不卡一级毛片| 欧美日本中文国产一区发布| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 91麻豆精品激情在线观看国产| 黄片大片在线免费观看| 91大片在线观看| 日韩中文字幕欧美一区二区| 欧美老熟妇乱子伦牲交| 日韩大码丰满熟妇| 久久国产精品人妻蜜桃| 在线观看www视频免费| 99热只有精品国产| 亚洲成av人片免费观看| 中文字幕久久专区| 亚洲一区二区三区色噜噜| 久久精品影院6| 在线观看免费午夜福利视频| 精品高清国产在线一区| 国产av在哪里看| 黄频高清免费视频| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 久久青草综合色| 好男人电影高清在线观看| videosex国产| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 色播亚洲综合网| 色尼玛亚洲综合影院| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 中亚洲国语对白在线视频| 久久影院123| 亚洲中文字幕日韩| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 国产精品久久久久久亚洲av鲁大| 99国产综合亚洲精品| 久久久久国产一级毛片高清牌| 手机成人av网站| 国产91精品成人一区二区三区| 后天国语完整版免费观看| 国产1区2区3区精品| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 久久伊人香网站| 不卡一级毛片| 久久久久久国产a免费观看| 国产麻豆69| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆成人av在线观看| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 色播在线永久视频| 在线视频色国产色| av网站免费在线观看视频| 黄色丝袜av网址大全| 久久久久久人人人人人| 90打野战视频偷拍视频| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女 | 在线播放国产精品三级| 悠悠久久av| 午夜亚洲福利在线播放| 久久精品国产99精品国产亚洲性色 | 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频 | а√天堂www在线а√下载| 国产成人啪精品午夜网站| 国产午夜福利久久久久久| 美女高潮到喷水免费观看| 免费不卡黄色视频| 欧美激情久久久久久爽电影 | 级片在线观看| 妹子高潮喷水视频| 久久久国产精品麻豆| 成人国语在线视频| 国产亚洲av高清不卡| 亚洲av日韩精品久久久久久密| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区不卡视频| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器 | 国产成人啪精品午夜网站| 久久精品91蜜桃| 亚洲性夜色夜夜综合| 国产高清videossex| 国产高清视频在线播放一区| 日韩欧美免费精品| 久久人妻av系列| 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频| 国产av在哪里看| 久久亚洲真实| 国产精品一区二区免费欧美| 国产亚洲精品第一综合不卡| 午夜福利在线观看吧| 看黄色毛片网站| 久久亚洲精品不卡| 波多野结衣一区麻豆| 精品久久久精品久久久| 国产精品久久久人人做人人爽| 在线观看日韩欧美| 成年版毛片免费区| 久久久国产精品麻豆| 国产片内射在线| 国产男靠女视频免费网站| 久久精品成人免费网站| 一级毛片精品| 亚洲美女黄片视频| 视频在线观看一区二区三区| 中文字幕高清在线视频| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 韩国av一区二区三区四区| 精品人妻在线不人妻| 香蕉国产在线看| 搞女人的毛片| 十八禁网站免费在线| 女人精品久久久久毛片| 欧美成人午夜精品| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 99国产极品粉嫩在线观看| 视频在线观看一区二区三区| 满18在线观看网站| 免费久久久久久久精品成人欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 国产高清激情床上av| 欧美色欧美亚洲另类二区 | 亚洲黑人精品在线| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片 | 国产精品电影一区二区三区| 亚洲国产看品久久| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美中文日本在线观看视频| 身体一侧抽搐| 欧美在线一区亚洲| 黄色毛片三级朝国网站| 午夜a级毛片| x7x7x7水蜜桃| 亚洲电影在线观看av| 香蕉丝袜av| 看免费av毛片| 在线视频色国产色| 久久香蕉激情| 欧美不卡视频在线免费观看 | 男人操女人黄网站| 757午夜福利合集在线观看| 美女高潮到喷水免费观看| 欧美国产日韩亚洲一区| 久久久国产欧美日韩av| 后天国语完整版免费观看| 激情在线观看视频在线高清| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 国产成人欧美在线观看| 自线自在国产av| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 最好的美女福利视频网| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 日韩欧美在线二视频| 好男人电影高清在线观看| 亚洲精华国产精华精| 色播在线永久视频| 婷婷丁香在线五月| 12—13女人毛片做爰片一| 一级,二级,三级黄色视频| 咕卡用的链子| 亚洲精品美女久久av网站| 久久伊人香网站| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 99香蕉大伊视频| 欧美日韩精品网址| 亚洲人成77777在线视频| 黄色a级毛片大全视频| 久热这里只有精品99| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 免费无遮挡裸体视频| 亚洲精品中文字幕一二三四区| 欧美日本视频| 国产精品爽爽va在线观看网站 | 国产精品美女特级片免费视频播放器 | 99精品在免费线老司机午夜| 免费在线观看完整版高清| 欧美国产日韩亚洲一区| 一a级毛片在线观看| 国产单亲对白刺激| 国产精品影院久久| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 成人手机av| 亚洲国产高清在线一区二区三 | 18禁国产床啪视频网站| 亚洲国产中文字幕在线视频| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 欧美在线黄色| 亚洲男人的天堂狠狠| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址 | 波多野结衣巨乳人妻| 日本免费a在线| 免费无遮挡裸体视频| 两个人视频免费观看高清| 一本大道久久a久久精品| 国产精品精品国产色婷婷| 久久久久久久久中文| 亚洲中文av在线| 看片在线看免费视频| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三| svipshipincom国产片| 亚洲片人在线观看| 免费久久久久久久精品成人欧美视频| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 最新在线观看一区二区三区| av天堂在线播放| 午夜老司机福利片| 日韩免费av在线播放| 69精品国产乱码久久久| 久久婷婷成人综合色麻豆| 老鸭窝网址在线观看| 亚洲精品一卡2卡三卡4卡5卡| a级毛片在线看网站| 黄色成人免费大全| 1024视频免费在线观看| 少妇 在线观看| 又大又爽又粗| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站| 99精品久久久久人妻精品| 男人舔女人的私密视频| 国产麻豆69| 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色 | 伊人久久大香线蕉亚洲五| 国内精品久久久久久久电影| 波多野结衣高清无吗| 两人在一起打扑克的视频| 在线视频色国产色| 色av中文字幕| av视频免费观看在线观看| 久久伊人香网站| 亚洲久久久国产精品| 波多野结衣巨乳人妻| 久久中文字幕一级| 天天一区二区日本电影三级 | 欧美日韩瑟瑟在线播放| 香蕉国产在线看| 午夜免费成人在线视频| 久久久久精品国产欧美久久久| 欧美日本中文国产一区发布| 欧美乱色亚洲激情| 一本久久中文字幕| 自线自在国产av| 中文字幕色久视频| 日韩欧美一区视频在线观看| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 国产精品98久久久久久宅男小说| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲| 看免费av毛片| 午夜亚洲福利在线播放| 精品国产超薄肉色丝袜足j|