• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of cutting forces in ball-end milling of 2.5D C/C composites

    2016-11-23 06:13:16ShanChenweiWangXiaoYangXuanxuanLyuXiaobo
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Shan Chenwei,Wang Xiao,Yang Xuanxuan,Lyu Xiaobo

    Key Laboratory of Contemporary Design and Integrated Manufacturing Technology,Ministry of Education,Northwestern Polytechnical University,Xi'an 710072,China

    Prediction of cutting forces in ball-end milling of 2.5D C/C composites

    Shan Chenwei*,Wang Xiao,Yang Xuanxuan,Lyu Xiaobo

    Key Laboratory of Contemporary Design and Integrated Manufacturing Technology,Ministry of Education,Northwestern Polytechnical University,Xi'an 710072,China

    Machining of carbon/carbon(C/C)composite materials is difficult to carry out due to its high specific stiffness,brittleness,anisotropic,non-homogeneous and low thermal conductivity,which can result in tear,burr,poor surface quality and rapid wear of cutters.Accurate and fast prediction of cutting forces is important for milling C/C composite materials with high quality.This paper presents an alternative cutting force model involving the influences of the directions of fiber.Based on the calculated and experimental results,the cutting forces' coefficients of 2.5D C/C composites are evaluated using multiple linear regression method.Verification experiment has been carried out through a group of orthogonal tests.Results indicate that the proposed model is reliable and can be used to predict the cutting forces in ball-end milling of 2.5D C/C composites.

    1.Introduction

    C/C composites are carbon-fiber-reinforced carbon composites.They offers some superior properties,such as low weight,low thermal expansion coefficient,withstanding high temperatures and high resistance to corrosion.1,2C/C composites retain room temperature properties to be more than 3000°C in the inert atmosphere,and this is the main trend of the development of high-temperature structural materials in the future.3In addition,C/C composites are capable of replacing heart valves and hip due to its excellent biological compatibility.4

    There are several kinds of C/C composites according to their braided structures.One is called 2.5-dimensional(2.5D)C/C composite.The material is obtained by laminating nonwoven fabric layers and chopped carbon fiber felts one over another.A needling process transfers some fibers along the third direction,perpendicular to the layer,to prevent delamination propagation.The chemical vapor infiltration technique is used to synthesize the matrix in the preform,made of discontinuous fibers.5,6The microstructure of the 2.5D C/C composite with needle-punched felt is shown in Fig.1.Although this material is reinforced by needle punched felt,this material is strong in the fiber direction,but quite weak in the needle punched direction.This makes it easily crush.

    Fig.1 Illustration of 2.5D C/C composite structure.

    Machining of C/C composites is a complex area.Conventional machining practices,such as turning,drilling and milling,which are a problem as the fibers and fiber direction result in an uneven cutting force and high tool wear,can still be applied to the machining of C/C composites.Although decades have passed since C/C composites appeared for the first time,there is little open literature about milling technology of C/C composites.Ferreira et al.7used ceramics,cemented carbide,cubic boron nitride,and polycrystalline diamond(PCD)to research the turning process of C/C composites.The experimental results showed that PCD was the optimal tool in finish turning,and cemented carbide tools could be used in rough turning with appropriate cutting parameters.Li et al.8proposed that the ultrasound-assisted milling relative to the normal milling could improve the surface quality of C/C composites with lower cutting temperature,cutting force and tool wear.It is helpful to process composites with high precision,high efficiency and low cost.

    In milling of composites,most researches focus on carbon fibers-reinforced plastic(CFRP)composites.Hanasaki et al.9,10studied the tool wear mechanism in machining of CFRP and concluded that the fracture of carbon fiber was caused as a result of the shear stress perpendicular to the fiber direction exceeding the shear strength of fiber.Based on fiber and matrix mechanical properties,Hintze et al.11investigated machining CFRP during slot milling experiments and found that occurrence of delamination is closely related to tool wear and top layer fiber cutting angle.Turki et al.12conducted a cutting experiment to study unidirectional carbon/epoxy composites.They reached the conclusion that cutting forces increase with the increase of feed rate and cutting depth,and the forces are influenced by the fiber orientation.Krishnaraj et al.13determined the optimal cutting conditions of CFRP laminates at high speed drilling using K20 carbide drill.Chatelain and Zaghbani14studied the effect of tool geometry special features on cutting forces of multilayered CFRP laminates.They found that the special grooves reduce the axial force to approximately a null value.Hosokawa et al.15studied side milling tests of CFRP plate with two types of diamond-like carbon-coated carbide end mills with different helix angles.They found that the inclination milling with high helix angle end mill,in which the resultant cutting force acts parallel to the work surface,enables to reduce tool wear and to improve surface integrity with less delamination and fluffing.

    Mahdi and Zhang16established a finite element method to predict the cutting force for the orthogonal cutting of CFRP.Zhang17presented a theoretical cutting force calculation method with fiber orientation varying from 0°to 90°for the orthogonal cutting of CFRP.Kalla et al.18simulated the cutting of CFRP with helical end mill by mechanistic modeling techniques,which can predict the cutting forces of unidirectional and multidirectional composites.Sahraie and Bahr19proposed a theoretical model based on material mechanical properties of the FRPs.Many factors are shown to affect the mechanical properties of the FRPs,including carbon fiber diameter,volumetric ratio of carbon fibers,curing conditions and so on.They concluded that their model works well when fracture plane angle is between 90°and 180°.Karpat et al.20proposed a mechanistic cutting force model for diamond cutter milling CFRP.And the cutting force coefficients in radial and tangential directions were evaluated by the sine function of fiber cutting angle.Karpat and Polat21designed a double helix end mill to eliminate the delamination of CFRP and built a mechanistic force model.By analyzing the instantaneous cutting force,Zaghbani et al.22considered that the main cause of the nonlinear change of average cutting force is the anisotropy of the material.They established a prediction model of cutting force of CFRP.Experiments showed that the measurement data and the theoretical data are in good agreement and the estimation error is approximately±12.5%.Davim and Reis23established a cutting force model using multiple regression analysis between cutting velocity and feed rate with the surface roughness and damage in a CFRP composite material.

    Literature review shows that for cutting mechanism,most previous researches have been concerned with metal materials and CFRP,only a few researches have been conducted on C/C composites.Mechanistic models of machining processes are aimed at the accurate prediction of dynamic cutting forces which can estimate other quantities of the cutting process including tool life,cutter and part deflection,NC code,surface quality and process stability.Because the ball-end milling process is suitable for machining freeform surfaces and can be used in finish milling of C/C composites,it is necessary to establish a ball-end milling force model and predict the cutting force of C/C composites to improve the machining quality and efficiency.

    In summary,the existing cutting force models have focused on either metal materials or CFRP.This paper presents an alternative cutting force model dedicated for ball-end milling of C/C composite materials.Influences of fiber directions on cutting forces are considered in detail.The proposed method is experimentally proven through a group of orthogonal tests.

    2.Cutting force model

    2.1.Deformation zones in machining of composite material

    In cutting of CFRP,a chip formation area consisting of three deformation zones17is shown in Fig.2.θ is the fiber orientation angle between carbon fiber orientation and tool motion direction,acthe actual cutting thickness.aclthe nominal cutting thickness,and γethe cutting tool edge radius.The height of uncut material compressed by the tool can be treated the same as the cutting tool edge radius.Hence,the actual cutting thickness can be calculated by Eq.(1).

    Fig.2 Three deformation regions in cutting zone of carbon fiber composite.

    The first deformation region in composite cutting locates in the front of the rake face,which is the region of chip formation.Because the surface of carbon fiber is smooth,the reinforced carbon fiber of C/C composites has poor compatibility and poor bonding performance with matrix.There are many defects existing in the interfaces.As a result,the interlaminar shear strength is poor,which may lead to the fracture damage taking place on the cross sections and interlaminar interface of carbon fibers.Then it may form an approximate step-like shear plane.This cutting deformation region corresponds to the first and second deformation regions in metal cutting.The second deformation region in composite cutting locates in the front of the tool edge.A portion of material is overwhelmed at the front-end of the cutting edge when the main cutting edge passes the cutting surface.Then it will generate mixed deformations,including elastic and plastic deformation.Hence,this region is also called an extruded region.The third deformation happens between tool flank face and the machined surface.This phenomenon is caused by the elastic rebound of the pressed part in the second region.In brief,it is also called a rebound region.17

    2.2.Cutting force model of 2.5D C/C composites

    Many researchers employed the cutting force prediction model of unidirectional carbon fibers-reinforced plastic(UCFRP)composites to study the mechanical model of all composite materials.When the cutting directions are along the 0°and 90°fiber orientation,the cutting forces are evaluated individually for UCFRP.Besides,the resultant cutting force is evaluated based on them.According to the material structure,the cutting force of 2.5D C/C composite can also be calculated by considering the effect of the fiber direction as UCFRP.

    2.2.1.Cutting force model in the first deformation region

    As shown in Fig.3,the shear slip deformation process along plane AB in C/C composite cutting can be decomposed into two components.One is along plane AC perpendicular to the fiber direction.The other is along plane BC parallel to the fiber direction.During cutting process,fibers are cut off along the plane AC,and then fibers and matrix materials slide out along the plane BC and become chips.

    Shear force FScan be resolved into FS1and FS2components.FS1is the cutting force vertical to the fiber direction and FS2the cutting force parallel to the fiber direction.They can be expressed by Eq.(2)when the cutting direction is along the 0°fiber direction.

    where φ is the shear angle,and ψ is the angle between the machining surface of workpiece and the working table.

    According to the definition of shear force,FS1and FS2can also be expressed as

    where τ1and τ2are the transverse shear strengths of carbon fiber and matrix,respectively.h is the side step.lACand lBCare the lengths of shear plane of AC and BC.

    As shown in Fig.3(c),the actual cutting thickness can be given by Eq.(4).

    From Eq.(4),the following expressions can be easily obtained.

    Finally,one can obtain the following equation.

    Normal force on the shear plane can be calculated by Eq.(7)according to Fig.3.

    where Fy1and Fz1are the horizontal and vertical cutting force in the first deformation zone,respectively.γ0is the tool rake angle,and β the friction angle.R is the resultant cutting force,and R'its reaction force in Fig.3.

    Fig.3 Illustration of the first deformation zone.

    Horizontal and vertical cutting forces in the first deformation zone can be evaluated by Eq.(9)when the cutting direction is along 0°fiber orientation,

    where γcis the coefficient of chip deformation.Because C/C composite is a kind of brittle material,γccan be set to be 1.

    Shear angle can be evaluated by Eq.(11).

    2.2.2.Cutting force model in the second deformation zone

    As shown in Fig.4,the second deformation zone can be seen as a 1/4 arc of a moving cylinder rolling the machined surface.The point O is the center of the arc.

    Fig.4 Cutting force in the second deformation region.

    The pressure perpendicular to the fiber orientation at the arc AB is denoted as P and can be evaluated by Eq.(12)

    where γeis the radius of the cutter and E*the effective elastic modulus.

    The effective elastic modulus can be evaluated by Eq.(13)

    where E is the elastic modulus,and μ Poisson ratio.

    Because there are elastic deformations in the second deformation region,the actual pressure Prealmust be evaluated by multiplying a coefficient K with P,as shown by Eq.(14).K is a function with respect to θ.

    The actual friction frealcan be evaluated by Eq.(15)

    where u is friction coefficient.

    Hence,the horizontal and vertical cutting forces,Fy2and Fz2,in the second deformation zone can be given by Eq.(16)according to the actual pressure and friction,Prealand freal,and the fiber orientation angle θ.

    when the angle θ is 0°,Fy2and Fz2can be evaluated by Eq.(17)

    2.2.3.Cutting force model in the third deformation region

    As shown in Fig.5,the third deformation zone appears under the interaction of flank face of the cutting tool and the machined surface of workpiece.The action force is caused by the elastic recovery of the workpiece materials.The pressure N acting to the workpiece material from flank face of the cutting tool is a constant for the same material.

    Fig.5 Cutting force in the third deformation region.

    For the convenience of calculations,it is assumed that all the materials depressed in the second deformation will rebound automatically.As shown in Fig.6,the contact length a between flank face and the workpiece can be evaluated by Eq.(18).γeis the rounded cutting edge radius,and α the tool relief angle.

    The pressure N can be evaluated by

    where E3is the effective elastic modulus in the third deformation zone,and E3lt;E.

    In Fig.5,f3is the friction between the tool flank face and the workpiece and it can be resolved into the horizontal force fz3and the vertical force fy3components.

    with

    Based on the above equations,the following equation can be obtained.

    Similarly,when the cutting direction is along the 90°fiber orientation in the three deformation regions,the cutting force can also be obtained.The cutting force for 90°fiber orientation in the first deformation zone is shown in Eq.(23).The cutting forces for 90°fiber orientation in the second and the third deformation regions equal those related to the case of 0°fiber orientation in the same deformation region.

    Fig.6 Contact length between flank face and workpiece.

    2.2.4.Resultant cutting force model

    The cutting forces of 2.5D C/C composites are associated with all the three deformation zones.Hence,it can be assumed that the resultant cutting force has a linear relationship with the cutting forces for 0°and 90°fiber orientations in three deformation regions and can be calculated by using Eq.(24).

    where a1,a2,a3,a4,b1and b2are the correction coefficients of linear superposition.All the correction coefficients can be evaluated by the multiple linear regression method based on the calculated and measured results.All the material parameters required in the calculation process of cutting force are obtained by mechanical tests.

    Table 1 Level table of orthogonal test.

    Fig.7 Cemented carbide ball-end mill.

    Table 2 Material parameters of 2.5D C/C composite used in test.

    Fig.8 Experimental setup.

    3.Model validation

    3.1.Experimental setup

    In order to validate the cutting force model,a set of tests were performed.The tests use orthogonal test design.The influencing factors are:milling speed vc,feed per tooth fz,milling depth apand cutting width ae.Each factor has four different levels.Table 1 lists each level factor of milling parameters.All the tests were conducted by using cemented carbide(K40)ballend mills with four flutes,a 40°helix angle,a 10°rake angle,a 12°relief angle and 12 mm diameter.A cemented carbide ball-end mill is schematically shown in Fig.7.

    The workpiece is 2.5D C/C composite.Material parameters are shown in Table 2.A VMC850 3-axis machining center with a FANUC-OI-MB NC unit has been employed to perform milling tests(see Fig.8).Cutting force signals were measured by using a Kistler dynamometer 9255B.

    3.2.Test results and analysis

    The results of calculated and measured cutting forces are shown in Table 3

    The formula of the resultant cutting force can be evaluated using Eq.(25)based on the data in Table 3.From Eq.(24)it can be seen that b1and b2in Eq.(24)can be omitted since they are very small and have no significant effect on the cutting forces.

    In order to verify the accuracy of the proposed cutting force model,three verification tests were performed.Comparisons were made between the measured and calculated results,as shown in Table 4.It can be seen that the errors between the measured and calculated results are less than 10%.Hence,the proposed cutting force model is reliable and can be used to predict the cutting forces in ball-end milling of 2.5D C/C composite materials.

    Table 3 Results of orthogonal test.

    Table 4 Comparison between measured and calculated cutting forces.

    4.Conclusions

    An alternative cutting force model for ball-end milling of 2.5D C/C composite materials is proposed.First,the chip formation area is divided into three deformation zones.The cutting forces for 0°and 90°fiber orientations in three deformation zones are calculated individually.Then the resultant cutting force is derived using multiple linear regression method.Finally,the model is verified by a group of orthogonal tests.Results show that the maximum error is about 10%;hence,it can be reliably used to predict the cutting forces in ball-end milling of 2.5D C/C composites.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.51105312)and the Fundamental Research Funds for the Central University of China(No.3102015JCS05005).

    1.Christ K,Hüttinger K.Carbon-fiber-reinforced carbon composites fabricated with mesophase pitch.Carbon 1993;31(5):731–50.

    2.Savage G.Applications of carbon–carbon composites.Carbon–carbon composites.Netherlands:Springer;1993.p.323–359.

    3.Buckley JD.Carbon–carbon,an overview.Am Ceram Soc Bull 1988;67(2):364–8.

    4.Windhorst T,Blount G.Carbon–carbon composites:a summary of recent developments and applications.Mater Des 1997;18(1):11–5.

    5.Crouzeix L,Périé JN,Collombet F,Douchin B.An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material.Compos Part A 2009;40(11):1732–40.

    6.Ren J,Li K,Zhang S,Yao X,Tian S.Preparation of carbon/carbon composite by pyrolysis of ethanol and methane.Mater Des 2015;65:174–8.

    7.Ferreira JR,Coppini NL,Levy NF.Characteristics of carbon–carbon composite turning.J Mater Process Technol 2001;109(1–2):65–71.

    8.Li ZD,Zhao B,Tong JL,Duan P.Study of carbon/carbon composite material surface morphology on ultrasonic vibration assisted milling.Key Eng Mater 2014;579–580:181–5.

    9.Hanasaki S,Fujiwara J,Nomura M.Tool wear mechanism in cutting of CFRP.JSME Int J Ser C 1994;60(569):297–302.

    10.Hanasaki S,Fujiwara J,Kawai T,Nomura M,Miyamoto T.Study on tool wear mechanism of CFRP cutting II.JSME Int J Ser C 2005;71(702):719–24.

    11.Hintze W,Hartmann D,Schütte C.Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics(CFRPs)–an experimental study.Compos Sci Technol 2011;71(15):1719–26.

    12.Turki Y,Habak M,Velasco R,Vantomme P,Khellil K.An experimental study of the routing of a unidirectional carbon/epoxy composite.AIP conference Proceedings;2011 April 27–29.Belfast,United Kingdom;2011.p.1013–8.

    13.Krishnaraj V,Prabukarthi A,Ramanathan A,Elanghovan N,Senthil KM,Zitoune R,Davim J.Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic(CFRP)laminates.Compos Part B 2012;43(4):1791–9.

    14.Chatelain J,Zaghbani I.Effect of tool geometry special features on cutting forces of multilayered CFRP laminates.Int J Mech 2012;6(1):52–9.

    15.Hosokawa A,Hirose N,Ueda T,Furumoto T.High-quality machining of CFRP with high helix end mill.CIRP Ann Manuf Technol 2014;63(1):89–92.

    16.Mahdi M,Zhang L.A finite element model for the orthogonal cutting of fiber-reinforced composite materials.J Mater Process Technol 2001;113(1):373–7.

    17.Zhang HJ.Study on cutting forces of unidirectional carbon fiber reinforced plastics under orthogonal cutting.Acta Aeron et Astron Sinica 2005;26(5):604–9[Chinese].

    18.Kalla D,Sheikh AJ,Twomey J.Prediction of cutting forces in helical end milling fiber reinforced polymers.Int J Mach Tools Manuf 2010;50(10):882–91.

    19.Sahraie JA,Bahr B.An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites.Compos Sci Technol 2010;70(16):2290–7.

    20.Karpat Y,Bahtiyar O,Degěr B.Milling force modelling of multidirectional carbon fiber reinforced polymer laminates.Proc CIRP 2012;1:460–5.

    21.Karpat Y,Polat N.Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools.CIRP Ann Manuf Technol 2013;62(1):95–8.

    22.Zaghbani I,Chatelain JF,Songmene V,Berube S,Atarsia A.A comprehensive analysis of cutting forces during routing of multilayer carbon fiber-reinforced polymer laminates.J Compos Mater 2012;46(16):1955–71.

    23.Davim JP,Reis P.Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments.J Mater Process Technol 2005;160(2):160–7.

    Shan Chenweiis an associate professor at School of Mechanical Engineering,Northwestern Polytechnical University,Xi'an,China.He received the Ph.D.degree from the same university in 2009.His main research interests are deformation prediction and control of thinwalled sculptured surface,CAD/CAM and C/C Composite structures'CNC machining.

    Wang Xiaois an M.S.student at School of Mechanical Engineering,Northwestern Polytechnical University.His main research interest is C/C Composite structures' CNC machining.

    Yang Xuanxuanis an M.S.student at School of Mechanical Engineering,Northwestern Polytechnical University.His main research interest is C/C Composite structures' CNC machining.

    Lyu Xiaobois an M.S.student at School of Mechanical Engineering,Northwestern Polytechnical University.His main research interest is C/C Composite structures' CNC machining.

    29 June 2015;revised 18 September 2015;accepted 16 October 2015

    Available online 22 December 2015

    Ball-end milling;

    C/C composites;

    Cutting force;

    Fiber orientation;

    Orthogonal test

    ?2015 The Authors.Production and hosting by Elsevier Ltd.on behalf of Chinese Society of Aeronautics and Astronautics.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 29 88492576.

    E-mail address:shancw@nwpu.edu.cn(C.Shan)

    Peer review under responsibility of Editorial Committee of CJA.

    高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 国产高清不卡午夜福利| 欧美日本亚洲视频在线播放| 乱人视频在线观看| 久久久国产成人免费| 免费看日本二区| 青春草视频在线免费观看| 亚洲经典国产精华液单| 日本与韩国留学比较| 97超视频在线观看视频| 成人午夜高清在线视频| 久久草成人影院| 黄色欧美视频在线观看| 国产老妇女一区| 亚洲成av人片在线播放无| 国产成人精品久久久久久| 哪个播放器可以免费观看大片| 黑人高潮一二区| 91在线精品国自产拍蜜月| 午夜免费激情av| 亚洲国产精品久久男人天堂| 亚洲最大成人中文| 欧美+亚洲+日韩+国产| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 欧美高清性xxxxhd video| 国产成人freesex在线| 国产女主播在线喷水免费视频网站 | 国产精品嫩草影院av在线观看| 欧美成人免费av一区二区三区| 国产av麻豆久久久久久久| 国产在线男女| 日韩精品青青久久久久久| 99热只有精品国产| 成人午夜高清在线视频| 国产乱人偷精品视频| 国产午夜精品论理片| 色哟哟哟哟哟哟| 国产一区亚洲一区在线观看| 一边摸一边抽搐一进一小说| 婷婷色av中文字幕| 大香蕉久久网| 在线观看一区二区三区| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 久久99热6这里只有精品| 亚洲三级黄色毛片| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 成人av在线播放网站| 国产成人精品一,二区 | 久久久精品欧美日韩精品| 国产美女午夜福利| 成人欧美大片| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 69av精品久久久久久| 久久人人爽人人片av| 免费av观看视频| 国内精品美女久久久久久| 色噜噜av男人的天堂激情| 日日干狠狠操夜夜爽| 国产日本99.免费观看| 亚洲人成网站高清观看| 天天躁夜夜躁狠狠久久av| 亚洲av男天堂| 毛片一级片免费看久久久久| 久久精品夜色国产| 久久这里有精品视频免费| 国产熟女欧美一区二区| 国产极品天堂在线| 岛国在线免费视频观看| 午夜精品国产一区二区电影 | av国产免费在线观看| 久久婷婷人人爽人人干人人爱| 免费人成视频x8x8入口观看| 蜜桃亚洲精品一区二区三区| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 久久这里只有精品中国| 欧美性感艳星| 九九爱精品视频在线观看| 特级一级黄色大片| 免费观看a级毛片全部| 免费观看人在逋| 欧美xxxx性猛交bbbb| 国产在线精品亚洲第一网站| 国产探花极品一区二区| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 亚洲av不卡在线观看| 老熟妇乱子伦视频在线观看| 在线观看av片永久免费下载| 观看美女的网站| 99久国产av精品| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 噜噜噜噜噜久久久久久91| 国产视频内射| 婷婷精品国产亚洲av| 91麻豆精品激情在线观看国产| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线 | 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲激情五月婷婷啪啪| 国产一区二区三区在线臀色熟女| 最近手机中文字幕大全| 小蜜桃在线观看免费完整版高清| 变态另类成人亚洲欧美熟女| 亚洲自偷自拍三级| 久久精品国产亚洲网站| 国产精品不卡视频一区二区| 少妇人妻一区二区三区视频| 日本爱情动作片www.在线观看| 桃色一区二区三区在线观看| 久久久久免费精品人妻一区二区| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 久久久久性生活片| 国产精品一区二区三区四区免费观看| 亚洲精品成人久久久久久| 免费大片18禁| 免费黄网站久久成人精品| 国产精品乱码一区二三区的特点| 日本与韩国留学比较| or卡值多少钱| 熟女人妻精品中文字幕| 校园春色视频在线观看| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 老司机影院成人| 亚洲欧美日韩高清在线视频| 久久热精品热| 九九热线精品视视频播放| 国产日本99.免费观看| 91精品一卡2卡3卡4卡| 国产乱人视频| 精品免费久久久久久久清纯| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 久久久久久伊人网av| 日韩高清综合在线| 日韩视频在线欧美| 边亲边吃奶的免费视频| 日本免费a在线| 国产精品伦人一区二区| 成年版毛片免费区| 色吧在线观看| 午夜爱爱视频在线播放| 小蜜桃在线观看免费完整版高清| 精华霜和精华液先用哪个| 99国产精品一区二区蜜桃av| 国产色爽女视频免费观看| 国产一级毛片七仙女欲春2| 丰满人妻一区二区三区视频av| 国产黄片视频在线免费观看| 国产精品一二三区在线看| 99久久九九国产精品国产免费| www日本黄色视频网| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 91狼人影院| 久久人人精品亚洲av| 丰满乱子伦码专区| 国产单亲对白刺激| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 国产精品野战在线观看| 大型黄色视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 中文字幕av成人在线电影| 国产精品三级大全| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片| 日本与韩国留学比较| 日本爱情动作片www.在线观看| 久久人妻av系列| 我的老师免费观看完整版| 成年女人永久免费观看视频| 免费黄网站久久成人精品| 在线观看免费视频日本深夜| 天堂√8在线中文| 亚洲一区高清亚洲精品| 免费无遮挡裸体视频| 久久这里只有精品中国| 国产精品一二三区在线看| 黄色配什么色好看| www.色视频.com| 日韩 亚洲 欧美在线| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 狠狠狠狠99中文字幕| 国产日韩欧美在线精品| 亚洲精品乱码久久久久久按摩| 悠悠久久av| 亚洲av一区综合| 人妻久久中文字幕网| 国内精品美女久久久久久| 久久久久久久久大av| 久久综合国产亚洲精品| 亚州av有码| 国产高清激情床上av| АⅤ资源中文在线天堂| 一区二区三区四区激情视频 | 亚洲精品国产av成人精品| 日韩高清综合在线| 国产麻豆成人av免费视频| 亚洲精品456在线播放app| 国产大屁股一区二区在线视频| 成人永久免费在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产爱豆传媒在线观看| 丰满的人妻完整版| 激情 狠狠 欧美| 男插女下体视频免费在线播放| 亚洲精品456在线播放app| 老司机福利观看| 最近最新中文字幕大全电影3| 欧美日本视频| 亚洲成人av在线免费| 亚洲精品自拍成人| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 男人的好看免费观看在线视频| 一区二区三区免费毛片| 国产成人影院久久av| 丰满乱子伦码专区| 日日干狠狠操夜夜爽| 日本黄色片子视频| 日韩一区二区三区影片| 久久精品国产亚洲av天美| 精品久久久噜噜| 两性午夜刺激爽爽歪歪视频在线观看| 在线天堂最新版资源| 你懂的网址亚洲精品在线观看 | 国产黄片美女视频| 午夜福利高清视频| 久久久成人免费电影| 中文字幕熟女人妻在线| 国产亚洲av嫩草精品影院| 成人二区视频| 中文字幕av在线有码专区| 边亲边吃奶的免费视频| 亚洲av.av天堂| 日本爱情动作片www.在线观看| 极品教师在线视频| 亚洲成av人片在线播放无| 欧美区成人在线视频| 岛国毛片在线播放| 在线观看免费视频日本深夜| 精华霜和精华液先用哪个| 黄片wwwwww| 长腿黑丝高跟| 日本av手机在线免费观看| 国模一区二区三区四区视频| 欧美3d第一页| 亚洲久久久久久中文字幕| 蜜桃久久精品国产亚洲av| 久久精品国产鲁丝片午夜精品| 亚洲人成网站在线播| 国产在线男女| 伦精品一区二区三区| 欧美又色又爽又黄视频| 国产男人的电影天堂91| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 免费黄网站久久成人精品| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 久久九九热精品免费| 啦啦啦韩国在线观看视频| 国产乱人视频| 99久久中文字幕三级久久日本| 国产黄a三级三级三级人| 一个人观看的视频www高清免费观看| 久久久久久久亚洲中文字幕| 成人毛片a级毛片在线播放| a级毛片a级免费在线| 热99re8久久精品国产| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 亚洲最大成人av| 日韩一区二区三区影片| 久久久久久久久久成人| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 直男gayav资源| 欧美日韩综合久久久久久| 日韩欧美一区二区三区在线观看| 色播亚洲综合网| 直男gayav资源| 变态另类成人亚洲欧美熟女| 一级毛片电影观看 | 在线国产一区二区在线| av.在线天堂| 日日撸夜夜添| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 美女脱内裤让男人舔精品视频 | 婷婷色综合大香蕉| a级毛片免费高清观看在线播放| 欧美激情在线99| 少妇熟女欧美另类| 亚洲人成网站在线播| 日韩在线高清观看一区二区三区| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 九九在线视频观看精品| 久久99热这里只有精品18| 国产精品一区www在线观看| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| 久久6这里有精品| 欧美丝袜亚洲另类| 两性午夜刺激爽爽歪歪视频在线观看| 少妇熟女aⅴ在线视频| 国产精品无大码| 欧美一区二区亚洲| 久久九九热精品免费| 老司机福利观看| 国产高清三级在线| 亚洲在久久综合| 亚洲精品成人久久久久久| 亚洲国产欧美人成| 人妻少妇偷人精品九色| 波多野结衣巨乳人妻| 日本黄大片高清| 日韩欧美三级三区| 久久久久九九精品影院| 99久久人妻综合| 欧美日韩国产亚洲二区| 边亲边吃奶的免费视频| 精品国产三级普通话版| 岛国在线免费视频观看| 乱系列少妇在线播放| 又爽又黄a免费视频| .国产精品久久| av免费观看日本| 亚洲国产欧美人成| 国产成人a∨麻豆精品| 可以在线观看的亚洲视频| 99热这里只有精品一区| 国产成人午夜福利电影在线观看| 12—13女人毛片做爰片一| av免费在线看不卡| 一边摸一边抽搐一进一小说| 亚洲国产精品国产精品| 麻豆一二三区av精品| 亚洲精品日韩在线中文字幕 | 久久6这里有精品| 成年免费大片在线观看| kizo精华| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 国产黄a三级三级三级人| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| www.av在线官网国产| 精华霜和精华液先用哪个| 综合色av麻豆| 国产精品久久久久久精品电影小说 | 男女做爰动态图高潮gif福利片| 日本爱情动作片www.在线观看| 欧美成人精品欧美一级黄| 少妇的逼水好多| 麻豆久久精品国产亚洲av| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 老司机福利观看| 在线播放无遮挡| 亚洲成人久久性| 搡女人真爽免费视频火全软件| 偷拍熟女少妇极品色| 亚洲最大成人手机在线| 十八禁国产超污无遮挡网站| 成人高潮视频无遮挡免费网站| 亚洲精品久久久久久婷婷小说 | 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 中文资源天堂在线| 国产高潮美女av| 国产高清激情床上av| 国产精品久久久久久av不卡| 在线播放国产精品三级| 免费观看在线日韩| 深夜精品福利| 男人和女人高潮做爰伦理| 黄色欧美视频在线观看| 天堂中文最新版在线下载 | 久久精品国产亚洲av天美| 少妇高潮的动态图| 国产精品av视频在线免费观看| 99久久无色码亚洲精品果冻| 嘟嘟电影网在线观看| 特级一级黄色大片| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人精品久久久久久| 亚洲综合色惰| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 99久久精品热视频| 美女内射精品一级片tv| 国产成人精品一,二区 | 中国国产av一级| 亚洲精品国产av成人精品| 国产一级毛片在线| 大香蕉久久网| 成人三级黄色视频| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 国产高清激情床上av| 好男人在线观看高清免费视频| 久久久久久久久中文| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 99久久中文字幕三级久久日本| 久久九九热精品免费| 亚洲,欧美,日韩| 国产精品一及| 亚洲欧美清纯卡通| 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| 久久久国产成人精品二区| 日本-黄色视频高清免费观看| 中国国产av一级| 日韩欧美国产在线观看| 久久精品人妻少妇| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 高清日韩中文字幕在线| 直男gayav资源| 少妇被粗大猛烈的视频| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 性插视频无遮挡在线免费观看| 国产精品野战在线观看| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 97超碰精品成人国产| 亚洲美女视频黄频| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 国产在线男女| av免费在线看不卡| 欧美丝袜亚洲另类| 看十八女毛片水多多多| 国产精品国产三级国产av玫瑰| 麻豆精品久久久久久蜜桃| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 亚洲四区av| 在线观看av片永久免费下载| 国产精品蜜桃在线观看 | 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久| 国产男人的电影天堂91| 国产精品99久久久久久久久| 一级毛片我不卡| 男女啪啪激烈高潮av片| 精品99又大又爽又粗少妇毛片| 亚洲自偷自拍三级| 久久久久久久久久成人| 久久午夜福利片| 午夜福利高清视频| 中文字幕制服av| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添av毛片| 嫩草影院新地址| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 国产成人freesex在线| 偷拍熟女少妇极品色| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 悠悠久久av| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 成年av动漫网址| 哪里可以看免费的av片| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 看十八女毛片水多多多| 亚洲欧美清纯卡通| 精品熟女少妇av免费看| 51国产日韩欧美| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| www日本黄色视频网| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 十八禁国产超污无遮挡网站| 国产精品爽爽va在线观看网站| 国产成人一区二区在线| 嫩草影院新地址| 变态另类成人亚洲欧美熟女| 99久国产av精品国产电影| 日本与韩国留学比较| 午夜精品国产一区二区电影 | 久久久久久久久久久丰满| 日日撸夜夜添| 国产精品不卡视频一区二区| 岛国在线免费视频观看| 国产女主播在线喷水免费视频网站 | 熟女电影av网| 好男人在线观看高清免费视频| 男的添女的下面高潮视频| 91精品国产九色| 精品一区二区免费观看| 国产在视频线在精品| 舔av片在线| 天天一区二区日本电影三级| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 免费看av在线观看网站| av又黄又爽大尺度在线免费看 | 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 国产三级在线视频| 高清毛片免费看| 丰满乱子伦码专区| 搞女人的毛片| 两个人视频免费观看高清| 国产精品一区二区性色av| 免费在线观看成人毛片| 91aial.com中文字幕在线观看| 蜜桃久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 久久这里只有精品中国| 久久久精品大字幕| 舔av片在线| 你懂的网址亚洲精品在线观看 | 午夜久久久久精精品| 国产男人的电影天堂91| 国产精品一区二区三区四区免费观看| 男人的好看免费观看在线视频| 欧美日韩在线观看h| 老女人水多毛片| 欧美一区二区国产精品久久精品| 国产精品.久久久| 亚洲五月天丁香| 国产亚洲5aaaaa淫片| 日本一本二区三区精品| 久久久久久大精品| 全区人妻精品视频| 国产精品久久久久久久久免| 久久婷婷人人爽人人干人人爱| 亚洲欧美成人精品一区二区| 久久国内精品自在自线图片| 又粗又爽又猛毛片免费看| 午夜久久久久精精品| 久久综合国产亚洲精品| 在线观看免费视频日本深夜| 又爽又黄无遮挡网站| avwww免费| 日韩在线高清观看一区二区三区| 日本av手机在线免费观看| 男的添女的下面高潮视频| 久久精品久久久久久久性| 中文精品一卡2卡3卡4更新| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 在线观看66精品国产| 午夜福利视频1000在线观看| eeuss影院久久| 真实男女啪啪啪动态图| 岛国在线免费视频观看| 寂寞人妻少妇视频99o| 亚洲欧美精品综合久久99| 国产精品,欧美在线| 精品久久久久久久人妻蜜臀av| 夜夜爽天天搞| 国产女主播在线喷水免费视频网站 | 99久久精品一区二区三区| 国产精品人妻久久久久久| 狠狠狠狠99中文字幕| 1000部很黄的大片| 成人鲁丝片一二三区免费| 有码 亚洲区| 国内精品一区二区在线观看| 99热6这里只有精品| 国产伦精品一区二区三区视频9| 中文资源天堂在线| 日韩欧美精品免费久久| 亚洲真实伦在线观看| 午夜久久久久精精品| 五月玫瑰六月丁香| 黄色日韩在线|