• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-precision RCS measurement of aircraft's weak scattering source

    2016-11-23 06:12:52HuChufengLiNanjingChenWeijunZhangLinxi
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Hu Chufeng,Li Nanjing,Chen Weijun,Zhang Linxi

    Science and Technology on UAV Laboratory,Northwestern Polytechnical University,Xi'an 710072,China

    High-precision RCS measurement of aircraft's weak scattering source

    Hu Chufeng*,Li Nanjing,Chen Weijun,Zhang Linxi

    Science and Technology on UAV Laboratory,Northwestern Polytechnical University,Xi'an 710072,China

    The radar cross section(RCS)of weak scattering source on the surface of an aircraft is usually less than-40 dBsm.How to accurately measure the RCS characteristics of weak scattering source is a technical challenge for the aircraft's RCS measurement.This paper proposes separating and extracting the two-dimensional(2D)reflectivity distribution of the weak scattering source with the microwave imaging algorithm and spectral transform so as to enhance its measurement precision.Firstly,we performed the 2D microwave imaging of the target and then used the 2D gating function to separate and extract the reflectivity distribution of the weak scattering source.Secondly,we carried out the spectral transform of the reflectivity distribution and eventually obtained the RCS of the weak scattering source through calibration.The prototype experimental results and their analysis show that the measurement method is effective.The experiments on an aircraft's low-scattering conformal antenna verify that the measurement method can eliminate the clutter on the surface of aircraft.The precision of measuring a-40 dBsm target is 3–5 dB better than the existing RCS measurement methods.The measurement method can more accurately obtain the weak scattering source's RCS characteristics.

    1.Introduction

    Both theoretical calculations and experimental measurements show that the aircraft's different positions consist of many local scattering sources in the high-frequency range.1,2The echoes of the local scattering sources form the total scatteredfield of a target.The scattered field produced by a weak scattering source is several orders of magnitude lower than that produced by a strong scattering source,and therefore can be well ignored in the normal design of an aircraft.However,the overall radar cross section(RCS)of a stealth aircraft is rather small.At this point,the contribution of the weak scattering source to the overall RCS increases greatly;in particular,its effect is very obvious under certain polarizations or attitude angles.For these reasons,the study of the RCS characteristics of weak scattering sources and their scattering mechanisms is of far-reaching importance for the design of a stealth aircraft.

    The RCS measurement is one of the methods for obtaining the scattering characteristics of a target.3The measurement of a target can not only help us understand the basic scattering mechanism but also obtain massive characteristic data of the target.Its RCS value is ultimately determined by measurement results.When the order of magnitude of its RCS value is rather big,the requirements for measurement system and measurement method are rather low,and the rather accurate results can be obtained with the normal RCS measurement method.4But when the order of magnitude of the RCS value of the target to be measured is rather low,for example,measuring the target whose RCS value is-40 dBsm requires that the error is2 dB and that the background noise level reaches-60 dBsm5,the measurement environment in an anechoic chamber cannot satisfy such requirements.Thus,the precise measurement of a weak scattering source has higher requirements for measurement system and measurement method.To improve the measurement environment,Ref.6designed a low-scattering foam column,enabling the measurement background environment ranging from 1.5 to 40 GHz to reach-50 dBsm and providing support for weak scattering source measurement.Refs.7,8proposed two RCS measurement methods to separate background environment from target signals,being favorable for the precise measurement of a weak scattering source.But they are difficult to apply these methods to an aircraft's weak scattering source measurement.Because the background for weak scattering source study is rather sensitive,there are few papers in the open literature on the topic related to an aircraft.Refs.9,10explained the importance of this type of measurement data for an aircraft's electromagnetic characteristic control and prediction.Refs.11,12gave the measurement results on edge diffraction source and slit diffraction source,demonstrated that this type of target is installed on the low-detectable diamond components and emphasized that the pertinent measurement data are scarce.Refs.13,14designed different measurement models for slit target and step target and performed experimental studies.Refs.15,16proposed the methods of image editing reconstruction,which are used for removing the clutter of background.The image of background is subtracted from the image of target with background.However,it is difficult to eliminate the effect of background when the scattering of target is very low.

    Because the weak scattering source mostly exists on the surface of an aircraft,the scattering from the airframe envelope is the major cause for measurement errors.However,the normal RCS measurement method cannot distinguish the RCS characteristics contributions made by the airframe envelope and weak scattering source.This paper proposes a method for extracting the weak scattering source reflectivity distribution on the surface of an aircraft through microwave imaging and reversely developing its RCS contributions.The method uses a turntable's 2D microwave imaging algorithm to separate and extract the weak scattering source reflectivity distribution on the airframe envelope and then uses the wave spectrum theory to transform the spatial distribution spectra,thus obtaining the weak scattering source's own RCS contributions after prototype comparison.The experiments verify that in a normal anechoic chamber,the error of measuring a standard sphere of-40 dBsm with the method is only 1 dB.After imaging several metal spheres,the image of one of the metal spheres is extracted and then its RCS is reversely developed and compared with that of the sphere directly measured,with the measurement error being less than 0.5 dB.Finally,a low-scattering conformal antenna is used to verify the measurement;the verification results indicate that the measurement accuracy is 3–5 dB better.

    2.Measurement system construction and measurement method

    2.1.Stepped-frequency wideband RCS measurement system

    To obtain longitudinal high range resolution,we use the stepped-frequency wideband signal.17The signal is a continuous wave signal with changes in equal-interval frequency and usually transmitted and received with the vector network analyzer in an anechoic chamber.The measurement of a target is carried out by transmitting stepped-frequency signals,thus obtaining its frequency response,whose inverse fast Fourier transform(IFFT)produces the high resolution time domain response of the target.The measurement system construction is shown in Fig.1.

    The target to be measured is placed in the quiet zone of an anechoic chamber.The vector network analyzer transmits the stepped-frequency signal,which is amplified by a power amplifier and then transmitted and received by the wideband horn antenna.The measurement is carried out with the quasimonostation mode.There are coupling signals between reception antenna and transmission antenna(about-20 dBsm at the X band).To minimize the influence of the coupling signals on measurement accuracy,we placed some wave-absorption materials between the two antennas during the measurement.The computer controls the rotational speed and sampling interval of the turntable through the network wire.While rotating,the turntable transmits a trigger signal to the vector network analyzer,which then starts to respectively measure the frequency domain data of the background environment,the target to be measured and the calibration body at the same initial angle.The intermediate frequency bandwidth of a vector network analyzer is set to be 1 kHz,and its dynamic range is around 100 dB.

    2.2.Microwave imaging algorithm

    The high resolution imaging in an anechoic chamber often uses a turntable mode.18The wideband signal transmission produces range resolution,while the cross range resolution is achieved by the turntable rotation.The microwave imaging algorithm is similar to the chroma to graph imaging in medicine.19The data obtained with the measurement at a certain angle are used to reconstruct the projection of a target's reflectivity distributed on a plane.The relationship between field and image obtained with measurement is given in Eq.(1)20:

    where the x-y coordinate system is a set of coordinates fixed in a target,and its origin is at the centre of turntable and changes with the change in the target;g(x,y)is the image of the target to be measured;k is the spatial frequency and θ is the azimuth angle.

    Because the integral limit in Eq.(1)does not satisfy the IFFT conditions,the algorithm implementation needs to shift the k frequency to kmin.If B′=kmax-kminand B′is the band-width of the spatial frequency k,then the following20is obtained:

    Fig.1 Diagram of measurement system.

    Because the measurement system transmits stepped frequency signal,their frequency points are discrete.According to the Nnumber of sampling frequency points, we discretize k.If k=nB′/N,n=0,1,...,N-1,then Eq.(2)is rewritten as

    The projection linelis equidistantly discretized according to range resolution lm=m.c/2B=m/B′,m=0,1,...N-1.If Gθ(n)=(B′.n/N+kmin)G(n,θ),then Eq.(5)is expressed as

    Pθ(lm)is the projection value obtained from different lmpoints.The projection linelin the process of integration changes with the θ angle.For g(x,y)at any space point,each θ corresponds to a different l.Therefore,Pθ(l)is the projection value obtained from the discrete l,and Pθ(l)needs to be obtained by interpolating Pθ(lm).The interpolation formulas are as follows:

    After the interpolation,the angle is integrated;the integration formula is given as follows:

    The three steps of IFFT,interpolation and angle integration constitute the microwave imaging algorithm.We then obtained the 2D image of the target to be measured.We used the Hamming window to process the images;as a result,their resolution decreases,around one half smaller than the theoretical resolution.

    2.3.Weak scattering source image extraction and RCS calibration

    To obtain the RCS of a weak scattering source,first and foremost,its reflectivity distribution is extracted from the 2D image of the target to be measured.Depending on the geometrical region where the weak scattering source is located,we use a 2D circular gating function21whose radius r is a to extract the reflectivity distribution within the geometrical region,and set the reflectivity distribution outside the region as zero,thus forming the following new 2D image:

    We perform the 2D Fourier transform of the new 2D image,thus obtaining the spectral domain data of the weak scattering source.

    where Kxand Kyare the horizontal axis and longitudinal axis of the spectral domain respectively;x1,x2,y1and y2correspond to the upper and lower limits of the x-y plane where g1(x,y)is located.

    The interpolation of G1(Kx,Ky)produces the spectral domain data G1(f,θ)that change with frequency and angle.The interpolation formulas are given in the following:

    where c is the velocity of light.Similarly,we measure a metal sphere whose RCS is already known to obtain its 2D image g0(x,y).We perform the 2D Fourier transform of the 2D reflectivity distribution,obtaining the spectral domain data G0(f,θ)of the metal sphere that change with frequency and angle;the comparison of the spectral domain data of the weak scattering source with those of the metal sphere eventually produces the RCS of the weak scattering source:

    where σsis the RCS of metal sphere.

    3.Simulation results

    Fig.2 Enhancement effectiveness of image extraction method.

    The RCS measurement error level is mainly determined by the echo power ratio between target and background,and the resulted maximal error is expressed as follows:where ε denotes the echo power ratio between target and background environment.The formula indicates that when the echo power of the target is 10 dB higher than that of the background,the resulted error is 6 dB.

    To verify the enhancement effectiveness of the image extraction method,we simulated a metal sphere whose diameter is 150 mm and used a metal sphere whose diameter is 50 mm to simulate the interference of the background environment.When the metal sphere whose diameter is 50 mm is present,the synthetic RCS of the two balls produce a rather big oscillation,whose magnitude reaches 6 dB,satisfying the formula for measuring errors.The image extraction method was used to form the images of the two metal spheres and then extract the 2D image of the metal sphere whose diameter is 150 mm.Then the spectral transformation and calibration of the images were performed,thus obtaining the RCS curves as shown by the dotted lines in Fig.2.The figure shows that the RCS oscillation of the metal sphere is already less than 1 dB.The simulation results thus show that the image extraction method can eliminate the interference of the background environment,with the measurement accuracy being 5 dB better than before.

    4.Experimental verification

    4.1.Verifying RCS measurement precision with microwave imaging

    In an anechoic chamber,we constructed the measurement system as shown in Fig.1.We first measured a metal sphere whose diameter is 11 mm,as shown in Fig.3(a);its theoretical RCS is-40 dBsm.The frequency range for measurement is 8 to 12 GHz;the frequency interval is 5 MHz.The range of rotational angle is 360°the angle interval is 0.2°.The microwave imaging algorithm in Section 2 is used to process the echoes of the metal sphere,obtaining the 2D image of the target as shown in Fig.3(b).

    The 2D image is used to retrieve the RCS of the metal sphere,and then the RCS whose measurement frequency is 10 GHz is selected,as shown in Fig.4.The figure shows that the precision of the RCS measurement with the microwave imaging is less than 1 dB,indicating that the method for retrieving RCS with the microwave imaging is feasible.

    Fig.3 Metal sphere and its 2D image.

    Fig.4 RCS at 360°retrieved by microwave imaging.

    4.2.Experimental results of RCS retrieved by image extraction

    The objects to be measured include five metal spheres whose diameter is 53 mm(see Fig.5(a))and one metal sphere whose diameter is also 53 mm(see Fig.5(b));the measurement frequency range and frequency interval are the same as above.The rotational angle is-25°to 25°;the angle interval does not change.In one case,first,the five metal spheres are imaged;next,the 2D reflectivity distribution of the metal sphere in the same position as Fig.5(b)is extracted and finally its RCS is retrieved.In another case,the metal sphere in Fig.5(b)is tested by the normal RCS measurement.After calibrating them with the metal sphere whose diameter is 150 mm,we compared the differences in the RCS of the single metal sphere between the two cases.

    As shown in Fig.6(a),first,the 2D images of the five metal spheres are obtained,and then the reflectivity distribution of the metal sphere located at the upper-right corner is extracted,as shown in Fig.6(b).

    The spectral transform and calibration of the extracted reflectivity distribution of one metal sphere produce its RCS,as shown by the solid line in Fig.7.Similarly,the result of the metal sphere in Fig.5(b)with normal RCS measurement is given by the dotted line in Fig.7.The figure shows that in an angular domain for measurement,the retrieved RCS with image extraction and the normal RCS measurement have a difference of only less than 0.5 dB,indicating that the method for extracting a local scattering source through imaging and then retrieving its RCS is feasible.

    4.3.Experimental verification of low-scattering conformal antenna of an aircraft

    The typical weak scattering sources of an airplane and their scattering mechanisms are shown in Table 1.To enhance the stealth performance of an aircraft,conformal antenna is designed.

    Fig.5 Five metal spheres and one metal sphere.

    Fig.6 2D images of five metal spheres and reflectivity distribution of one metal sphere.

    Fig.7 Diagram for comparing RCS obtained in two cases.

    Table 1 Typical weak scattering sources of an airplane and their scattering mechanisms.

    During RCS measurement,the incidence electric field and conformal antenna basically remain in a parallel state and therefore form a weak scattering source on the aircraft surface.The conformal antenna in an installation state is measured,as shown in Fig.8(a).The antenna is embedded into the metal envelope of an analogue airframe,which is wrapped with wave-absorption materials to ensure that the scattering at the edge of metal envelope is as small as possible.The frequency range for measurement is 9–11 GHz;the frequency interval is 5 MHz.The rotational angle is-45°to 45°;the angle interval is 0.2°.

    The microwave imaging algorithm produces the 2D image of metal envelope,as shown in Fig.8(b),from which the 2D reflectivity distribution in the area of the conformal antenna is extracted,as shown in Fig.8(c).The spectral transform of the 2D reflectivity distribution produces the spectral distribution of the target,as shown in Fig.8(d).After its calibration with the metal sphere,the RCS whose measurement frequency is 10 GHz is selected,as shown in Fig.9.

    The dotted line in Fig.9 shows the results obtained with the normal RCS measurement method.It contains the scattering of the airframe envelope with the conformal antenna.The curve fluctuates somewhat in the angular domain;the major cause is the scattering on the surface of the airframe envelope.The antenna's RCS is obtained with the extraction and then spectral transform of the reflectivity distribution in the area of conformal antenna is shown by the solid line.It is smoother and 3–5 dB lower than the previous dotted line,indicating that this image extraction method can well separate the scattering of the conformal antenna from that of the airframe envelope,enhancing the measurement accuracy of a weak scattering source.

    Fig.8 Measurement of low-scattering conformal antenna.

    Fig.9 Comparison of two measurement results.

    5.Conclusions

    (1)The experiments with the known prototypes and the conformal antenna of an aircraft show that the method is effective,with the measurable RCS reaching below-40 dBsm.Therefore,it can be applied to the high precision measurement of an aircraft's weak scattering source.

    (2)Its strong scattering sources are separating and extracting the information on the scattering of a target and eliminating clutter.It can build an algorithm into a universal software module,which is embedded into the normal RCS measurement system to perform quasi-realtime processing,thus obtaining a higher precision than the normal RCS measurement method.

    (3)Because the RCS by image extraction involves the extraction area of a target,the results on different extraction areas may be different.Therefore,to obtain optimal results,the complete scattering points in the concerned area should be selected in accordance with the scattering properties of the target.Besides,when the measurement frequency is rather low and the target is rather small,the extracted area of the target should not be too small;if smaller than the wavelength,the information on the scattering of the target may be lost,causing rather great errors.

    (4)The minimum spacing has something to do with the imaging resolution.When the resolution can distinguish between the images of two targets,the distance between the two targets is the minimum spacing.If there is enough movable space,the RCS can also separate the targets that have great differentiation.

    (5)The method mainly uses microwave imaging,whose theoretical foundation is the model of multiple scattering centers.According to the electromagnetic field theory,each scattering center is equivalent to the mathematical discontinuity in the Stratton-Chu integral.The weak scattering source just results from the electromagnetic waves irradiated by the discontinuous structure on the surface of an airplane.Therefore,the method is applicable to the scattering characteristic analysis of a weak scattering source.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(Nos.61201320,61371023)and the Fundamental Research Funds for the Central Universities of China(No.3102014JCQ01103).

    1.Mensa DL.Wideband radar cross section diagnostic measurements.IEEE Trans Instrum Meas 1984;33(3):206–14.

    2.Melin JO.Measuring radar cross section at short distance.IEEE Trans Antennas Propag 1987;35(8):991–6.

    3.Hess DW.Introduction to RCS measurements.Antennas and propagation conference,2008 Mar 17–18;Loughborough,UK.Piscataway,NJ:IEEE Press;2008.p.37–44.

    4.Tice TE.An overview of radar cross section measurement techniques.IEEE Trans Instrum Meas 1990;39(1):205–7.

    5.Knott EF,Shaeffer JF,Tuley MT.Radar cross section.4th ed.Raleigh,NC:Sci Tech Publishing Inc.;2004.p.449–83.

    6.Baggett M,Thomas T.Obtaining high quality RCS measurements with a very large foam column.AMTA annual meetingamp;symposium;2005 Oct 13–15;Newport,USA.New York:Curran Associates Inc.;2005.p.1–5.

    7.Muth LA,Wang CM,Conn T.Robust separation of background and target signals in radar cross section measurements.IEEE Trans Instrum Meas 2005;54(6):2462–8.

    8.Burns JW,Subotic NS.Reduction of clutter contamination in radar cross section measurements using independent components analysis.IEEE antennas and propagation society symposium,2004 Jun 20-25;Monterey,USA.Piscataway,NJ:IEEE Press;2004.p.731–4.

    9.White MO.Radar cross-section measurement prediction and control.Electron Commun Eng J 1998;10(4):169–80.

    10.Kemptner E,Klement D,Wagner H.RCS determination for DLR stealth design F7.The ROT SCI symposium on''non-cooperative air target identification using radarquot;,1998 Apr 22–24,Mannheim,Germany.p.1–12.

    11.Smith FC.Measurement of diffraction radar cross section.Electron Lett 2000;36(9):830–1.

    12.Wang HTG,Sanders ML.Benchmarking of RCS codes.IEEE antennas and propagation society symposium,1992 Jun18–25,Chicago,USA.Piscataway,NJ:IEEE Press;1992.p.1320–2.

    13.Huang PL,Liu ZH.Research on electromagnetic scattering characteristics of slits on aircraft.Acta Aeronautica et Astronautica Sinica 2008;29(3):675–80(Chinese).

    14.Huang PL,Liu ZH,Wu Z.Analysis of electromagnetic scattering characteristics of steps.Acta Aeronautica et Astronautica Sinica 2008;29(2):399–404(Chinese).

    15.Bati A,To L,Hilliard D.Advanced radar cross section clutter removal algorithms.Antennas and propagation conference,2010 Apr 12–16;Barcelona,Spain.Piscataway,NJ:IEEE Press;2010.p.1–5.

    16.Tulgar O,Ergin AA.Improved pencil back-projection method with image segmentation for far field near field SAR imaging and RCS extraction.IEEE Trans Antennas Propag 2015;63(6):2572–84.

    17.Karakasiliotis AV,Lazarov AD,Frangos PV,Boultadakis G,Kalognomos G.Two-dimensional ISAR model and image reconstruction with stepped frequency-modulated signal.IET Signal Proc 2008;2(3):277–90.

    18.Hu CF,Zhou Z,Li NJ,Zhang K.Multi-dimensional scattering properties diagnosis system of scale aircraft model in an anechoic chamber.J Syst Eng Electron 2014;25(1):1–9.

    19.Cheng GG,Zhu Y,Grzesik J.Microwave medical imaging techniques.Antennas and propagation conference,2013 Apr 8–12;Gothenburg,Sweden.Piscataway,NJ:IEEE Press;2013.p.2669–73.

    20.?zdemir C.Inverse synthetic aperture radar imaging with MATLAB algorithms.Hoboken,NJ:Wiley;2012.p.133–9.

    21.Patrosky A,Sekora R.Structural integration of a thin conformal annular slot antenna for UAV applications.Antennas and propagation conference,2010 Nov 8–9;Lough borough,UK.Piscataway,NJ:IEEE Press;2010.p.229–32.

    Hu Chufengreceived the degrees of B.S.,M.S.and Ph.D.from Northwestern Polytechnical University in 2004,2007 and 2010,respectively.Now he is an associate professor in Science and Technology on UAV Laboratory,Northwestern Polytechnical University.His research interests include radar cross section measurement,microwave imaging and radar remote sensing.

    31 August 2015;revised 30 January 2016;accepted 28 February 2016

    Available online 9 May 2016

    Microwave imaging;

    RCS measurement;

    Reflectivity distribution;

    Spectral transform;

    Weak scattering source

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 29 88451041 810.

    E-mail address:huchufeng@nwpu.edu.cn(C.Hu).

    Peer review under responsibility of Editorial Committee of CJA.

    90打野战视频偷拍视频| 久久人人爽人人爽人人片va | 国内精品美女久久久久久| 91九色精品人成在线观看| 国产久久久一区二区三区| 色视频www国产| 嫩草影院入口| 99在线人妻在线中文字幕| 亚洲精品在线观看二区| 少妇熟女aⅴ在线视频| 夜夜躁狠狠躁天天躁| 在线观看一区二区三区| 日本成人三级电影网站| 国产精品不卡视频一区二区 | 成人一区二区视频在线观看| 国产精品伦人一区二区| 午夜免费成人在线视频| 性色av乱码一区二区三区2| 悠悠久久av| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 非洲黑人性xxxx精品又粗又长| 91久久精品国产一区二区成人| 久久这里只有精品中国| 精品人妻偷拍中文字幕| 国产伦在线观看视频一区| 亚洲男人的天堂狠狠| 亚洲精品影视一区二区三区av| 丰满人妻一区二区三区视频av| 人妻夜夜爽99麻豆av| 91在线观看av| 亚洲不卡免费看| 俺也久久电影网| 最近视频中文字幕2019在线8| 亚洲片人在线观看| 色哟哟哟哟哟哟| 欧美激情国产日韩精品一区| 高潮久久久久久久久久久不卡| 给我免费播放毛片高清在线观看| www.www免费av| 宅男免费午夜| 国产野战对白在线观看| 在线a可以看的网站| 亚洲三级黄色毛片| 日韩有码中文字幕| 一个人免费在线观看电影| 五月玫瑰六月丁香| 神马国产精品三级电影在线观看| 精品久久久久久久人妻蜜臀av| 毛片一级片免费看久久久久 | 看十八女毛片水多多多| 午夜久久久久精精品| 51国产日韩欧美| 亚洲国产欧美人成| 国产av在哪里看| 欧美日韩国产亚洲二区| 国产av一区在线观看免费| 在线免费观看不下载黄p国产 | .国产精品久久| av黄色大香蕉| 日韩有码中文字幕| 两个人视频免费观看高清| 婷婷六月久久综合丁香| 每晚都被弄得嗷嗷叫到高潮| 熟妇人妻久久中文字幕3abv| 精品久久久久久成人av| 久99久视频精品免费| 女人十人毛片免费观看3o分钟| 国产精品av视频在线免费观看| 人人妻人人看人人澡| 欧美3d第一页| 老鸭窝网址在线观看| 在线观看66精品国产| 欧美3d第一页| 两个人视频免费观看高清| 高清日韩中文字幕在线| 波野结衣二区三区在线| 日本一本二区三区精品| 欧美成人一区二区免费高清观看| 热99在线观看视频| 大型黄色视频在线免费观看| 一个人看视频在线观看www免费| 麻豆成人午夜福利视频| 日本a在线网址| 亚洲成人中文字幕在线播放| 成年女人看的毛片在线观看| 亚洲成av人片在线播放无| 亚洲精品456在线播放app | 两性午夜刺激爽爽歪歪视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品爽爽va在线观看网站| 高清日韩中文字幕在线| 美女免费视频网站| 中文字幕av成人在线电影| 成年版毛片免费区| 99热6这里只有精品| 亚洲av熟女| 天堂√8在线中文| 国产蜜桃级精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 精品午夜福利视频在线观看一区| 久久精品综合一区二区三区| 搡女人真爽免费视频火全软件 | av黄色大香蕉| 日韩亚洲欧美综合| 亚洲五月天丁香| 搡老妇女老女人老熟妇| 免费电影在线观看免费观看| 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区四那| 国产亚洲欧美98| 简卡轻食公司| 久久久久国内视频| 九色成人免费人妻av| 午夜福利高清视频| 搞女人的毛片| 亚洲在线观看片| 国产成人欧美在线观看| 可以在线观看的亚洲视频| 亚洲欧美清纯卡通| 在线观看美女被高潮喷水网站 | 色哟哟哟哟哟哟| 老女人水多毛片| 91在线精品国自产拍蜜月| 久久久久久九九精品二区国产| 精品久久久久久久久久免费视频| 最新在线观看一区二区三区| 亚洲av免费高清在线观看| 欧美zozozo另类| 丰满的人妻完整版| 一a级毛片在线观看| 欧美日本亚洲视频在线播放| 久久精品人妻少妇| 老熟妇仑乱视频hdxx| 亚洲色图av天堂| 9191精品国产免费久久| 日韩大尺度精品在线看网址| 国产久久久一区二区三区| 男人狂女人下面高潮的视频| 欧美成人性av电影在线观看| 嫩草影院精品99| 最近视频中文字幕2019在线8| 长腿黑丝高跟| 在线免费观看的www视频| 最新中文字幕久久久久| 免费看a级黄色片| 久久久久久九九精品二区国产| 国产精品一区二区性色av| 中文亚洲av片在线观看爽| 亚洲色图av天堂| 欧美激情国产日韩精品一区| 国模一区二区三区四区视频| 日韩高清综合在线| 十八禁人妻一区二区| 在线观看午夜福利视频| 亚洲欧美日韩卡通动漫| 婷婷六月久久综合丁香| 日本黄大片高清| 国产视频一区二区在线看| 欧美绝顶高潮抽搐喷水| 国产免费男女视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产午夜精品论理片| 亚洲欧美日韩东京热| 欧美激情国产日韩精品一区| 人妻制服诱惑在线中文字幕| 成人特级黄色片久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 97碰自拍视频| 男女下面进入的视频免费午夜| 宅男免费午夜| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 高清毛片免费观看视频网站| 精品一区二区三区视频在线| 可以在线观看的亚洲视频| 免费在线观看成人毛片| 少妇人妻精品综合一区二区 | 国产亚洲精品av在线| 91狼人影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 日韩中文字幕欧美一区二区| 在线观看66精品国产| 日韩国内少妇激情av| 亚洲国产精品合色在线| 国产黄片美女视频| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉精品热| 国产精品亚洲一级av第二区| 国产亚洲精品久久久久久毛片| 亚洲第一区二区三区不卡| 国产三级在线视频| 91字幕亚洲| 三级国产精品欧美在线观看| 动漫黄色视频在线观看| 久久精品人妻少妇| 我的老师免费观看完整版| 全区人妻精品视频| 中文字幕av成人在线电影| 国产野战对白在线观看| 3wmmmm亚洲av在线观看| 国产精品av视频在线免费观看| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 欧美性感艳星| 欧美日韩国产亚洲二区| 国产伦一二天堂av在线观看| 国语自产精品视频在线第100页| 国产精品久久久久久久电影| 我的老师免费观看完整版| 此物有八面人人有两片| 国产高清视频在线播放一区| 日韩欧美 国产精品| 两个人的视频大全免费| 色哟哟哟哟哟哟| 国产精品久久久久久亚洲av鲁大| 日韩欧美精品v在线| 久久精品国产自在天天线| 午夜免费成人在线视频| 日韩免费av在线播放| 久久国产乱子伦精品免费另类| 日韩中字成人| 亚洲片人在线观看| 午夜福利欧美成人| 美女黄网站色视频| 90打野战视频偷拍视频| 我要看日韩黄色一级片| 搡老妇女老女人老熟妇| 99久久无色码亚洲精品果冻| 午夜福利在线观看吧| 天天躁日日操中文字幕| 久久久色成人| 男人和女人高潮做爰伦理| 国产精品美女特级片免费视频播放器| 国产视频内射| 日韩欧美在线二视频| 人人妻人人看人人澡| 国产免费男女视频| 夜夜看夜夜爽夜夜摸| 亚洲精品在线观看二区| 久久国产乱子免费精品| 丰满的人妻完整版| 亚洲狠狠婷婷综合久久图片| 亚洲av第一区精品v没综合| 亚洲国产色片| 久久久国产成人精品二区| 国产中年淑女户外野战色| 亚洲欧美精品综合久久99| 在线播放国产精品三级| 校园春色视频在线观看| 国产高清三级在线| 国产亚洲精品av在线| av福利片在线观看| 男人舔奶头视频| 免费电影在线观看免费观看| 国产免费av片在线观看野外av| 国产91精品成人一区二区三区| 国产精品自产拍在线观看55亚洲| 久久久久久久精品吃奶| 久久久国产成人免费| 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色| 乱码一卡2卡4卡精品| 在线观看舔阴道视频| 免费av不卡在线播放| 91字幕亚洲| 男人舔女人下体高潮全视频| 久久人人爽人人爽人人片va | 我要看日韩黄色一级片| 美女高潮喷水抽搐中文字幕| 性插视频无遮挡在线免费观看| 欧美成人免费av一区二区三区| 亚洲中文日韩欧美视频| 国产一级毛片七仙女欲春2| 草草在线视频免费看| a级毛片免费高清观看在线播放| 国产成人影院久久av| 99热这里只有精品一区| 757午夜福利合集在线观看| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 午夜久久久久精精品| 国产视频一区二区在线看| 国产伦精品一区二区三区视频9| 亚洲国产精品成人综合色| 色av中文字幕| 小说图片视频综合网站| 成人三级黄色视频| 色哟哟·www| 午夜精品久久久久久毛片777| 乱码一卡2卡4卡精品| 欧美日韩亚洲国产一区二区在线观看| 两个人的视频大全免费| 亚洲精品一卡2卡三卡4卡5卡| 美女xxoo啪啪120秒动态图 | x7x7x7水蜜桃| 国产在线男女| 人人妻人人看人人澡| 欧美区成人在线视频| 在线观看一区二区三区| 国精品久久久久久国模美| 国产一级毛片在线| 国产精品不卡视频一区二区| 2022亚洲国产成人精品| 我要看日韩黄色一级片| 免费看日本二区| 国产毛片a区久久久久| 又大又黄又爽视频免费| 能在线免费看毛片的网站| 男女那种视频在线观看| 永久网站在线| eeuss影院久久| 深爱激情五月婷婷| 色婷婷久久久亚洲欧美| 日本黄色片子视频| 一个人看视频在线观看www免费| 亚洲成人精品中文字幕电影| 久久久久久久精品精品| 男人狂女人下面高潮的视频| 黄色一级大片看看| 亚洲欧美日韩无卡精品| 在线观看美女被高潮喷水网站| 国产一级毛片在线| 成人亚洲精品一区在线观看 | 色网站视频免费| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| 91在线精品国自产拍蜜月| 成年av动漫网址| 国产精品一区二区在线观看99| 国产精品国产三级国产av玫瑰| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区大全| 欧美另类一区| 久久久久精品性色| 国产伦在线观看视频一区| 免费播放大片免费观看视频在线观看| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 欧美xxⅹ黑人| 国产黄a三级三级三级人| 亚洲欧美日韩另类电影网站 | 干丝袜人妻中文字幕| 熟女av电影| 亚洲精品视频女| 久久久久久久精品精品| 嘟嘟电影网在线观看| 国产一区二区三区综合在线观看 | 欧美日韩国产mv在线观看视频 | 亚洲欧美中文字幕日韩二区| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 自拍欧美九色日韩亚洲蝌蚪91 | 人妻一区二区av| 久久久午夜欧美精品| 18禁在线播放成人免费| 日韩一区二区三区影片| 人妻 亚洲 视频| 久久久久久九九精品二区国产| 综合色av麻豆| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 亚洲怡红院男人天堂| 午夜老司机福利剧场| 国产成人a区在线观看| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 亚洲精品第二区| 国产成人freesex在线| 久久久久精品久久久久真实原创| 丝袜美腿在线中文| 欧美高清性xxxxhd video| 精品国产露脸久久av麻豆| 97超视频在线观看视频| 男人爽女人下面视频在线观看| 久久久欧美国产精品| 男人舔奶头视频| 美女内射精品一级片tv| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 麻豆国产97在线/欧美| 欧美日韩亚洲高清精品| 永久网站在线| 校园人妻丝袜中文字幕| 精品一区二区三卡| 少妇丰满av| 亚洲国产色片| 日日摸夜夜添夜夜添av毛片| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 九草在线视频观看| 五月玫瑰六月丁香| 国产美女午夜福利| 十八禁网站网址无遮挡 | videos熟女内射| 亚洲精品乱码久久久久久按摩| 丝袜美腿在线中文| 秋霞伦理黄片| 又大又黄又爽视频免费| 午夜福利视频精品| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 国产老妇伦熟女老妇高清| 国产精品99久久久久久久久| 少妇人妻 视频| 免费看av在线观看网站| 一级毛片黄色毛片免费观看视频| 久久久精品欧美日韩精品| 观看免费一级毛片| 免费看a级黄色片| 欧美成人一区二区免费高清观看| 午夜免费观看性视频| 国产精品久久久久久精品电影| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 我要看日韩黄色一级片| 直男gayav资源| 久久久久久九九精品二区国产| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 搞女人的毛片| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频 | 亚洲av日韩在线播放| 欧美日韩视频高清一区二区三区二| 丝袜喷水一区| 亚洲精品日韩av片在线观看| 在现免费观看毛片| 白带黄色成豆腐渣| 嫩草影院精品99| 成人美女网站在线观看视频| av国产免费在线观看| 国产淫片久久久久久久久| 亚洲成色77777| 久久久精品欧美日韩精品| 国产综合懂色| 欧美日韩视频精品一区| 毛片女人毛片| 国产精品一区二区三区四区免费观看| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 自拍偷自拍亚洲精品老妇| 久久久色成人| .国产精品久久| 超碰av人人做人人爽久久| 联通29元200g的流量卡| 亚洲欧美日韩无卡精品| 国产片特级美女逼逼视频| 亚洲最大成人中文| 久久精品国产亚洲av天美| 亚洲精华国产精华液的使用体验| 丰满人妻一区二区三区视频av| 一级av片app| 91久久精品电影网| 性色avwww在线观看| 不卡视频在线观看欧美| 久久久久久国产a免费观看| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 国产成人精品福利久久| av在线天堂中文字幕| 亚洲人成网站高清观看| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说 | 99久国产av精品国产电影| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 美女被艹到高潮喷水动态| 日本wwww免费看| 国产精品久久久久久久久免| 午夜福利在线在线| av女优亚洲男人天堂| 色综合色国产| 亚洲精品国产成人久久av| 99热这里只有是精品50| 国产精品久久久久久精品电影| 欧美 日韩 精品 国产| 国产精品国产三级专区第一集| 国产淫片久久久久久久久| 欧美日韩综合久久久久久| 日本av手机在线免费观看| 亚洲精品一二三| 一边亲一边摸免费视频| 老女人水多毛片| 视频区图区小说| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 国产亚洲精品久久久com| 波野结衣二区三区在线| 久久97久久精品| av在线亚洲专区| 午夜激情久久久久久久| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 建设人人有责人人尽责人人享有的 | 国内精品宾馆在线| 插逼视频在线观看| 王馨瑶露胸无遮挡在线观看| 久久久久国产网址| 一区二区三区四区激情视频| 伦精品一区二区三区| 嫩草影院精品99| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 亚洲av成人精品一区久久| 国产精品久久久久久精品电影| 晚上一个人看的免费电影| 国产永久视频网站| 久久国内精品自在自线图片| 国产精品一区二区在线观看99| 欧美zozozo另类| 天天一区二区日本电影三级| 国产综合精华液| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 成年女人在线观看亚洲视频 | 国产乱人偷精品视频| 久久久久精品久久久久真实原创| 女人被狂操c到高潮| 国产精品偷伦视频观看了| 人妻少妇偷人精品九色| 在线天堂最新版资源| 好男人视频免费观看在线| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 小蜜桃在线观看免费完整版高清| 欧美精品国产亚洲| 国产精品麻豆人妻色哟哟久久| 精华霜和精华液先用哪个| 欧美3d第一页| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 在线观看av片永久免费下载| 亚洲精品日本国产第一区| 大陆偷拍与自拍| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频 | 成人鲁丝片一二三区免费| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 国产精品成人在线| 国产精品蜜桃在线观看| 哪个播放器可以免费观看大片| 久久99热6这里只有精品| freevideosex欧美| 免费黄色在线免费观看| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| av网站免费在线观看视频| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 亚洲av日韩在线播放| 国产片特级美女逼逼视频| 1000部很黄的大片| 久久久久精品性色| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 国产精品99久久99久久久不卡 | 久久久欧美国产精品| 国国产精品蜜臀av免费| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区 | 国产av码专区亚洲av| 久久久久九九精品影院| 寂寞人妻少妇视频99o| 大香蕉97超碰在线| 午夜福利高清视频| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久久久按摩| 国产视频内射| 美女主播在线视频| 国产91av在线免费观看| 久久久成人免费电影| 国产大屁股一区二区在线视频| av又黄又爽大尺度在线免费看| 日韩视频在线欧美| 国产精品三级大全| 秋霞伦理黄片| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 最近中文字幕高清免费大全6| 伦理电影大哥的女人| 婷婷色综合www| 精品人妻偷拍中文字幕| 一级黄片播放器| 亚洲熟女精品中文字幕| 高清毛片免费看| av免费在线看不卡| 久久精品熟女亚洲av麻豆精品| 精品一区在线观看国产| 人妻一区二区av| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区| 亚洲激情五月婷婷啪啪| 成人鲁丝片一二三区免费| 日本午夜av视频| av线在线观看网站| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| 少妇裸体淫交视频免费看高清|