• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Yaw controller design of stratospheric airship based on phase plane method

    2016-11-23 06:12:30MioJinggngZhouJinghuNieYingYngXin
    CHINESE JOURNAL OF AERONAUTICS 2016年3期

    Mio Jinggng,Zhou Jinghu,Nie Ying,Yng Xin

    aAcademy of Opto-Electronics,Chinese Academy of Science,Beijing 100094,China

    bUniversity of Chinese Academy of Science,Beijing 100049,China

    Yaw controller design of stratospheric airship based on phase plane method

    Miao Jingganga,b,*,Zhou Jianghuaa,Nie Yinga,Yang Xina

    aAcademy of Opto-Electronics,Chinese Academy of Science,Beijing 100094,China

    bUniversity of Chinese Academy of Science,Beijing 100049,China

    Recently,stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control,rather than the control surfaces like common low-altitude airship.The load capacity of vectored mechanism and propellers are always limited by the weight and strength,which bring challenges for the attitude controller.In this paper,the yaw channel of airship dynamics is firstly rewritten as a simplified two-order dynamics equation and the dynamic characteristics is analyzed with a phase plane method.Analysis shows that when ignoring damping,the yaw control channel is available to the minimum principle of Pontryagin for optimal control,which can obtain a Bang–Bang controller.But under this controller,the control output could be bouncing around the theoretical switch curve due to the presence of disturbance and damping,which makes adverse effects for the servo structure.Considering the structure requirements of actuators,a phase plane method controller is employed,with a dead zone surrounded by several phase switch curve.Thus,the controller outputs are limited to finite values.Finally,through the numerical simulation and actual flight experiment,the method is proved to be effective.

    1.Introduction

    Stratospheric airship is a kind of light-than-air aircraft long endurance floating on about 20 km height.Many countries have been making efforts on this new field of flight vehicle,for their advantages of heavy load capacity,high costeffective ratio,good stealth performance and strong survival ability.1–3

    The dynamic characteristics of stratospheric airship are different from traditional vehicle,which brings variety of issues to control system design.4Attitude control is the inner circle of aircraft control system,relative to the trajectory control.Effective and smooth attitude control is the basic requirement of stable flight.At the early stages of conceptual design and initial development,researchers considered that the stratospheric airship was familiar with traditional low-altitude airship on control configuration,which relies on the rudders and elevators for attitude control.Many efforts on flight control design are made,such as traditional PID control,5sliding mode control,6feedback linearization control,7,8linear matrix inequality(LMI)optimization control,9etc.Such kinds of control methods receive effective results and play an important role in low-altitude airship controlling.Some of low-altitude airships are built to verify the control algorithms,such as SPF2 airship5in Japan,VIA-50 airship7in Korea,and AURURA airship10in Brazil.

    According to the development of stratospheric airship engineering practice,researchers realized the differences between stratospheric airship and low-altitude airship.Considering the low atmospheric density and low airspeed,rudders and elevators have to be of huge scale to provide effects for stratospheric airships,which bring challenge to weight,structure and equilibrium.So some new methods of attitude control actuators are employed,such as moving mass or ballonet for the pitch control,and vectored propeller on stern or differential main propellers for the yaw control.5,11These kinds of actuators bring new control problems that attract researchers to try a variety of control methods.For a new configuration of multi-vectored thrust,Han12and Chen13et al.designed a controller based on back stepping12and a airship attitude control strategy coupled the moving mass,ballonet and vectored thrust.13Yang et al.14designed airship vectored thrust control system using fuzzy sliding mode method.These works focus on the different methods on flight controller,which archive good results in simulation,but merely attach importance to the actuator limitation.

    Considering the thin atmosphere,even the capacity of attitude control is weak,propellers have to be of large scale and low rotor speed.Thus the mechanical strength of motor or deflection mechanism is generally limited,hardly to move arbitrarily and frequently.HiSential airship tested one vectored tail propeller for yaw control but a mechanical failure occurred during flight.3For engineering limitation,the primary requirement for controller on the current stage achieves a basic yaw control capacity,while reducing the risks of structure damage.For instance,for reducing the risk of deflection mechanism damage,which is always the weakest parts of aircraft,the controller command should be less changeable.

    In this paper,the phase plane method controller is employed for reducing the risk of actuator overload.Phase plane theory is first proposed by Poincare in 1885 and played a significant role in the analysis of nonlinear systems.This theory has been more widely used in low dynamic systems or satellites control design.The yaw channel dynamics are firstly analyzed in Section 2 by a simplified phase-plane-form equation.A controller of phase plane method is consequently designed in Section 3 for a configuration of vectored tail propeller.By several zones divided in phase plane,the commands of tail propeller and deflection mechanism are limited to a finite amount,while the yaw angle error is constrained within a limited range,acquiring both the airship mechanism restrictions and performance requirements.A simulation and flight test veri fication is provided in Section 4.

    2.Dynamics simplification and analysis

    2.1.Dynamics equations of yaw control

    The 6-DOF dynamic equations based on the assumption of a rigid airship are as15

    where v and ω are the airship flight velocity and angular rate.The first term in the left is the mass matrix,where the coupling elements of added mass in oblique diagonal lines are ignored;I stands for the identity matrix of 3X3;m and m′stand for the total mass and added mass matrix of airship;J stands for the moment of inertia matrix of airship including added inertia matrix;the second term in the left is the inertial force;the first term and the second term in the right are Gravity and buoyancy,where rGand rVare the radius vector of the center of gravity and center of volume,g the gravity acceleration;ρ and VBthe atmospheric density and airship volume;rV=0 while the body coordinates are based on the center of volume;FADand MADare aerodynamic forces and moments with not considering the additional mass;FCand MCare control force and moments.

    The lateral equations of a rigid airship consist of 6 equations,such as the state equations of the lateral velocity/yaw/roll,the roll/yaw angular rate motion equations,and a side slip angle equation.

    Airships shape are always symmetric in longitudinal profile,which means rG=[ax,0,az]Tand at the moment of inertia matrix J,Jxy=Jyz=0.axand azstand for the location of mass center in x and z axis,while Jxyand Jyzthe products of inertia on xOy and yOz plane.In addition,stratospheric airship is usually neutral buoyant,thus mg=ρVBg.Considering above,simplified equations for the lateral channels are as follows:14,15

    where mx,myand mzdenote airship mass including added mass on each axis;Jx,Jy,Jzand Jzxdenote elements of inertia matrix J;u,v,w and p,q,r denote items of linear speed flight velocity v and angular rate ω;φ,θ and ψ denote the Euler angle of airship motion;FAy,MAxand MAzdenote the elements of aerodynamics force FADand moment MADon each corresponding axis;FCy,MCxand MCzdenote the elements of control force FCand moment MCon each corresponding axis;β denotes the sideslip angle.

    Roll control is always given up due to its inherent stable oscillation and the lack of effective control actuators.In addition,lateral speed is not the direct control objectives.Thus these equations can be removed from the dynamics equations.Dynamics equations are left with only a second-degree system composed by yaw channel and can be written to a simplified model as follows:

    where

    where J=Jzdenotes the airship inertia of z-axis moment(accounting additional inertia),D the damping associated with the yaw rate,S the disturbance for all other factors and M the yaw moment control.Besides,denotes the dynamic damping items generated by aerodynamics,which will be discussed in the following section as well as other details of the terms in Eq.(4).

    2.2.Damping and disturbance

    A brief analysis of yaw channel dynamics is given here to describe the characteristics of stratospheric airship yaw movement.In Eq.(4),both Jzxand q are small,while q is in the oscillatory mode,resulting a small effect on the damping.axis the relative position between the center of gravity and the center of volume,and this term describes the moment of inertia caused by the airship forward velocity,which is proportional to the forward velocity.is the dynamic damping generated by aerodynamic because of the yaw angular speed of airship.For a certain speed,usually16

    where ρ∞and U∞denote air flow density and speed;Shandldenote airship characteristic area and length;denotes the coefficient of dynamic derivative which is a function of sideslip angle β.

    That is,the dynamic derivativeis proportional to airspeed.In fact,even if airspeed is zero,the dynamic derivative still exists,which are not described in the existing model.Even an airship was rotating while staying at a permanent position,the dynamic derivative makes the airship reach a steady state of a constant angular velocity,preventing the unlimited growth of yaw speed.

    All items are considered as disturbances in Eq.(4)except the control moment and the damping.Roll states(φ,p,˙p)are in oscillatory(subsidence)mode and typically disturbance.Steady state aerodynamic MAzis related to airspeed and side slip angle.In low speed situation,aerodynamic moment is very small thus MAzcould be treated as the disturbance.At a certain speed,yaw channel has a weakly unstable characteristic in a small sideslip angle,and becomes stable when sideslip angle increased Aerodynamic forces in this situation will lead to a yaw damping mode.

    The brief analysis shows that in low-speed situation(e.g.,zero speed turning),the simplification is reasonable and effective.When the velocity increases,the disturbance will increase and become complicated under the impact of the aerodynamic forces,while the damping increases.

    2.3.Phase plane trajectory

    Ignoring disturbance,the phase plane trajectory equation can be achieved by Eq.(3).

    where C denote a constant value determined by initial conditions.Asymptote of the phase plane trajectory is the ultimate angular rate airship when turning

    If M=0 N.m in Eq.(7),which means no control forces,the system will converge to the direction of r=0 rad/s.Phase trajectory at this time will be

    Fig.1 shows the phase trajectory of the airship yaw movement diagram.The vertical axis is the yaw rate,and the horizontal axis is the yaw angle error.If Mgt;0 N.m,the airship approaches to the asymptote along blue track,and eventually stabilizes at the extreme angular rate.Conversely,if Mlt;0 N.m,the airship approaches to the extreme angular rate along the green track.When control force disappears,the airship will be sliding slowly to the zero angular velocity point along the straight path.The final yaw angle is determined by the initial value.In fact,there are disturbances making the airship actual movement not strictly follow the curve,instead shaking right and left from the curves,but the basic law of motion is still valid.The dash line is the phase trajectory in the mathematical sense,but actually hard to occur,because the airship cannot exceed the limit angular rate theoretically.

    The above phase trajectory analysis shows the change process of airship yaw movement.With sufficiently precise dynamics model,the phase trajectory can be used to control law design.However,Eq.(7)still has a complicated form of too much dependent variable.Meanwhile it is difficult to obtain the precise model of the aerodynamic forces,hence there are difficulties in practical application.If ignoring all damping term,that is D=0 N.m.s,it can be expected that the system is in a tough situation.Then the phase trajectory of the system is

    Fig.1 Phase plane trajectory of yaw motion.

    Fig.2 Phase plane trajectory of yaw motion when ignoring damping.

    The phase trajectory becomes a parabola,as shown in Fig.2.Depending on the direction of external forces,airship angular rate continues to increase or decrease after the limit is reached,performing continued accelerate increase of yaw angle.The angular acceleration is constantly M/J,determined by control torques and inertias.In this case,the damping is ignored(mainly aerodynamic damping),which seems that the airship is moving in''vacuumquot;.

    3.Controller design

    3.1.Minimum time controller

    According to the analysis above,when the damping is ignored,the yaw channel control becomes

    It is a classic optimal control problem which could be solved by minimum theory on minimum time target for this system.

    where the maximum control inputwith|M|maxthe maximum moment could be applied;t0and tfdenote the initial and finish time;~ψ0and r0denote the yaw error and yaw speed values at initial time.This is an optimal control problem of fixed terminal,free time and constrained control input.Let Hamiltonian:

    where λ1and λ2denote Lagrange multiplier.According to the canonical equation,we have

    where c0and c1are the coefficients to be determined.The transversality condition is

    where the superscript*stands for optimal value under the optimal controller.Hence the optimal control is

    The phase plane trajectory equation under the control becomes

    The above phase trajectories are all parabolas.The optimal trajectory satisfying terminal requirement is

    As a result,a Bang–Bang controller will be gained as shown in Fig.3.When the initial phase point is in P0,firstly apply control according to u*=-a,until the phase trajectory moving and achieving the gamma curve at P1,apply control according to u*=+a,making the phase trajectory move to the origin point.The control logic becomes

    When initial yaw angle rate is zero,which means x2(t0)=0,x1location corresponding to point P1can be calculated by the Eq.(17):The control strategy is equivalent to:applying the–|M|maxtorque control before the control error is reduced toand then applying|M|maxtorque control,which achieves the target with minimum time.

    3.2.Phase plane controller

    Fig.3 Phase plane trajectory with Bang–Bang controller.

    When ignoring the damping,the airship yaw control can be solved by Bang–Bang controller based on optimal control theory.However,similar to the sliding mode controller,the existence of disturbance will result in a repeating switch of control output in the ideal track,as the dash arrow curve shown in Fig.3.The Trajectory will not smoothly slide along to origin point,but swing along the ideal curve because of the damping and control inputs.This will cause the decline of control effect and overburden of actuator.A dead zone can be employed here to solve this problem.

    A simple control strategy is shown in Fig.4.Four phase trajectory curves divide the phase plane into three zones,with the control inputs becoming three discrete numerical conditions of u*=+a,-a and 0.When the system is in the zone I,airship is controlled to turn left at full speed.When the system is in the zone II,turn right at full speed.At the zone III,yaw control input is set to zero.This strategy assures that yaw angle error is limited within the zone III.The width of the dead zones is preset byandwherestands for demanded yaw angle error limits andis a designed angle rate which is less than the maximum yaw angle rate.Considering Fig.1,an idealshould be the intersection point of M=0 N.m curve(translation to passing origin point)and the control curve,which means while actuator shuts down,the airship will slide to the origin point itself.It's hard to find that value and accurate simulation will help.

    The applied control algorithm will be

    where

    Furthermore,more control outputs could be added for better effects,not only a switch curve of u*=±a.For instance,while adding switch tracks of u*=±a/2,six parabolas can be used as switching line,divided the phase plane to five zones,as shown in Fig.5.

    Zones III and IV are divided from dead zone in Fig.4.In zone III turn left at a half speed while in zone IV turn right at a half speed.Switching trackis employed instead of x2=0 to divide half speed zone from dead zone,for a reason measuring error of inertial measurement unit(IMU),where k denotes a designed coefficient of IMU measuring noise relevant toThe measuring error could induced by the measurement accuracy,the Earth rotation and location movement of IMU related to the airship,etc.The applied control algorithm will be shown in Fig.6.

    Fig.4 A simple Bang–Bang controller with dead-zone.

    Fig.5 A phase plane controller with five divided zones.

    3.3.Further discussion

    As motioned before,it is reasonable that if more output points are employed,the phase plane could be divided into more zones.This method may provide examples for such problems.

    While yaw trajectory is located in dead zone,the control output is set to zero.Sometime other control algorithm such as PID could be employed in dead zone,for the error is limited in a small band.The PID controller will achieve a better control accuracy while control output changes small.

    Back to the phase plane controller,a small number of parameters are needed for determination and each parameter has a clear physics meaning.It makes the method easy for usage and brings good application prospect.

    4.Verification

    4.1.Simulation

    Taking the simulation stratospheric airship in Ref.11as example,the effectiveness of the above control law is demonstrated.The specification and control parameters are shown in Table 1.A vectored tail propeller is employed for yaw control,with maximum rotor speed of 1200 r/min corresponding to the maximum thrust of about 85 N under airspeed of 12 m/s at level flight height of 18.2 km.The maximum deflection angle is 60°.The wind speed is 18 m/s,direct from west to east.Initial heading angle of airship is 0°,while initial airspeed is 0 m/s.

    Simulation focuses on the initial phase when airship climb to stratospheric height and starts to level flight.With a 1000 s for stabilizing,the yaw controller is acted with an expected yaw angle of 90°,while the actuators are activated.Control algorithm adopts the phase plane control of five divided zones in Fig.5.Fig.7 shows the curve of yaw angle and the movement of yaw actuator.It is seen that after about 120 s,the airship accesses to and stay in the error band of 5°.Yaw actuator motion is limited to only a finite value.Fig.7 shows phase trajectory change of the yaw angle tracking error.

    Fig.6 Applied control algorithm of five divided zones.

    Table 1 Specification and control parameters of simulation airship.

    Fig.7 Simulation results of yaw controller and servo output.

    For the convenience of description,only three zones are drawn in diagram.The initial yaw angle error is about 90°,thus the phase trajectory locates in the zone II in Fig.8,then the controller starts to work,guiding the phase trajectory to the dead zone.In the case of maximal yaw torque,the angular velocity in phase trajectory achieves maximal until achieving the switching track.While the trajectory moves into the dead zone,actuators are controlled to be zero,and the yaw angle error and yaw speed decrease slowly to zero because of the damping.The controller performs to achieve the anticipated goal.

    4.2.Flight test

    The performance of the controller is tested in a flight test of a verified stratospheric airship approximately the same as the simulation airship.When arriving at level flight altitude,the desired heading command is transmitted to the controller for making the airship heading aweather,and actuators are activated.The local wind direction is determined by airship floating trajectory without actuator.The main propellers are also not activated at this period.

    Fig.9 shows the airship flight trajectory and yaw angle curve in control process.Controller is activated at the''Startquot;point,while the main propellers are not activated.At the''Finishquot;point,the initial yaw controller is finished and a wind direction estimation is activated to provide variable desired aweather command.Meanwhile the main propeller starts to work for thrust.A complicated control strategy is employed here,but it is beyond the scope of this article.

    Fig.10 shows the rotor speed and deflection angle fed back by actuators.For protection of actuators,rotor acceleration and deflection angle rate are limited.Airship heading changes from initial 69.4°to steady 220°gradually as expected.The controller achieves a desired effect and the control process is relatively smooth,eventually the airship yaw angle error is limited in the range of 5°.Meanwhile deflection angle and rotational speed are successfully limited in a certain range.The controller is proved of effectiveness.

    Fig.8 Phase plane trajectory motion in control proceeding.

    Fig.9 Trajectory and attitude of yaw control in flight test.

    Fig.10 Yaw angle and servo outputs in flight test.

    5.Conclusions

    (1)Based on the movement characteristics of the stratospheric airship yaw attitude,the yaw channel dynamics is simplified into a second-order system.Items of yaw channel are all attributed to damping and disturbances.The dynamics of the yaw channel is analyzed and the results show that yaw motion tends to a maximum-angular-rate trajectory,but if not considering the damping,the trajectory becomes a simple parabola curve.

    (2)The optimal time controller is designed using the minimum principle,with a typical form of Bang–Bang controller.Furthermore,a phase plane dead zone is set on the Bang–Bang controller's phase plane and a more complicated division is induced for the phase plane controller.

    (3)Numerical simulation and flight tests are made to prove that the controller is reasonable and effective.Although this method will lose the control accuracy to a certain extent,it still provides a control algorithm with engineering practice and effectively eases the airship yaw actuator constraint in the current circumstances.

    Acknowledgements

    This article was sponsored by the National Defense Science and Technology Innovation Fund Projects of Chinese Academy of Science(No.CXJJ-14-M06).

    1.Lee M,Smith S,Androulakakis S.The high altitude lighter than air airship efforts at the US army space and missile defense command/army forces strategic command.2009 May 4–7.Report No.:AIAA-2009-2852.

    2.Androulakakis S,Judy R.Status and plans of high altitude airship(HAATM)program.2013 Mar 25–28.Report No.:AIAA-2013-1362.

    3.Smith S,Fortenberry M,Lee M,Judy R.HiSentinel80:flight of a high altitude airship.2011 Sep 20–22.Report No.:AIAA-2011-6973.

    4.Li ZB,Wu L,Zhang J,Li Y.Review of dynamic and control of stratospheric airships.Adv Mechan 2012;42(4):482–93 Chinese.

    5.Kohno T,Sasa S.Control and guidance of low altitude stationary flight test vehicle.2005 Sep 26–28.Report No.:AIAA-2005-7406.

    6.Fang CG,Wang W.Pitching attitude dynamics modeling and its control of unmanned dirigible airship.Control Theory Appl 2004;21(2):231–8 Chinese.

    7.Lee SJ,Kim DM,Bang HC.Feedback linearization controller for semi station keeping of the unmanned airship.2005 Sep 26–28.Report No.:AIAA-2005-7343.

    8.Yang YN,Wu J.Attitude control for a station-keeping airship using feedback linearization and fuzzy sliding mode control.IEEE Int J Innov Comput Inf Control 2012;8(12):8299–310.

    9.Qu WD,Luo C,Ouyang J.Robust directional control of an unmanned airship.Acta Simulata Syst Sin 2004;16(11):2575–9 Chinese.

    10.Azinheira J,Paiva E,Ramos J.Mission path following for an autonomous unmanned airship.Proceedings of IEEE international conference on robotics and automation;2000 Apr 24–28;San Francisco(CA).Piscataway(NJ):IEEE Press;2000.p.1269–75.

    11.Miao JG,Wang F,Yang YC,Zhang XQ.Analyses and comparisons for several flight control configuration of stratospheric airship.Proceedings of 2014 IEEE aerospace conference;2014 Mar 6–13;Big Sky,Montana.Piscataway(NJ):IEEE Press;2014.

    12.Han D,Wang XL,Chen L,Duan DP.Command-filtered backstepping control for a multi-vectored thrust stratospheric airship.Trans Inst Meas Control 2016;38(1):93–104.

    13.Chen L,Zhou G,Yan XJ,Duan DP.Composite control strategy of stratospheric airships with moving masses.J Aircr 2012;49(3):794–801.

    14.Yang YN,Wu J,Zheng W.Design,modeling and control for a stratospheric telecommunication platform.Acta Astronaut 2012;80(6):181–9.

    15.Li YW,Nahon M.Modeling and simulation of airship dynamics.J Guid Control Dyn 2007;30(6):1691–701.

    16.Jones SP,DeLaurier JD.Aerodynamic estimation techniques for aerostats and airships.J Aircr 1983;20(2):120–6.

    Miao Jinggangis an engineer at the Academy of Opto-Electronics,Chinese Academy of Science(CAS)and a Ph.D.candidate from University of Chinese Academy of Science.His main research interests are dynamics modeling and flight control of light-than-air vehicle.

    Zhou Jianghuais a researcher and Ph.D.supervisor at the Academy of Opto-Electronics,CAS.He received the Ph.D.degree form Xi'an Jiaotong University.His current research interest is dynamics and flight control of lighter-than-air vehicle.

    Nie Yingis an engineer at the Academy of Opto-Electronics,CAS.His main research interest is airship propulsion technology.

    Yang Xinis an expert enjoying the Special Government Allowances of the State Council and Ph.D.supervisor at the Academy of Opto-Electronics,CAS.His current research interests are spacecraft control and safety design for space systems.

    1 September 2015;revised 3 December 2015;accepted 6 February 2016

    Available online 9 May 2016

    Attitude control;

    Dynamics modeling;

    Optimal control;

    Phase plane method;

    Stratospheric airship

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 10 82178835.

    E-mail address:miaojg@aoe.ac.cn(J.Miao).

    Peer review under responsibility of Editorial Committee of CJA.

    日韩一本色道免费dvd| 国产在线免费精品| 成人影院久久| 天天躁夜夜躁狠狠久久av| 熟女电影av网| 黄色配什么色好看| 久久精品熟女亚洲av麻豆精品| 国产亚洲一区二区精品| 日韩欧美精品免费久久| 校园人妻丝袜中文字幕| 久久久久人妻精品一区果冻| 各种免费的搞黄视频| 爱豆传媒免费全集在线观看| www.色视频.com| 天天躁夜夜躁狠狠久久av| 国产成人精品无人区| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 国产精品国产av在线观看| 精品亚洲乱码少妇综合久久| 18禁观看日本| 久久久久久久大尺度免费视频| 中文乱码字字幕精品一区二区三区| 丝袜美足系列| 毛片一级片免费看久久久久| 亚洲婷婷狠狠爱综合网| 久久综合国产亚洲精品| 黑人猛操日本美女一级片| 免费av中文字幕在线| 搡女人真爽免费视频火全软件| av播播在线观看一区| 亚洲精品乱码久久久久久按摩| 伊人亚洲综合成人网| 肉色欧美久久久久久久蜜桃| 久久国产精品大桥未久av| 久久久国产精品麻豆| 精品人妻熟女毛片av久久网站| 欧美激情 高清一区二区三区| 国产色婷婷99| 国产成人精品一,二区| 久久久a久久爽久久v久久| 亚洲av在线观看美女高潮| 三上悠亚av全集在线观看| 香蕉精品网在线| 精品99又大又爽又粗少妇毛片| 久久精品夜色国产| 性色avwww在线观看| 精品少妇内射三级| 一二三四中文在线观看免费高清| 久久国产亚洲av麻豆专区| √禁漫天堂资源中文www| 一级片'在线观看视频| 久久久久视频综合| 成人国语在线视频| 视频区图区小说| 精品国产一区二区久久| 国产国语露脸激情在线看| 亚洲av成人精品一二三区| 草草在线视频免费看| 亚洲成国产人片在线观看| 成人国产av品久久久| 日本免费在线观看一区| 国产男女超爽视频在线观看| 亚洲精品美女久久久久99蜜臀 | 大香蕉久久网| 亚洲成人国产一区在线观看| 一进一出好大好爽视频| 欧美午夜高清在线| 精品国产美女av久久久久小说| 精品人妻1区二区| 免费黄频网站在线观看国产| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av成人不卡在线观看播放网| 自线自在国产av| 99久久人妻综合| 动漫黄色视频在线观看| 飞空精品影院首页| 久久人人97超碰香蕉20202| 最新美女视频免费是黄的| 免费不卡黄色视频| 久久久精品国产亚洲av高清涩受| 午夜精品久久久久久毛片777| 久久99一区二区三区| 亚洲九九香蕉| 国产精品av久久久久免费| 国产精品一区二区在线观看99| 91成年电影在线观看| 一夜夜www| 久久99一区二区三区| 十八禁人妻一区二区| 国产欧美日韩综合在线一区二区| 日韩有码中文字幕| 国产亚洲欧美98| 高清在线国产一区| 亚洲精品久久午夜乱码| 一级毛片高清免费大全| 国产三级黄色录像| 国产xxxxx性猛交| 日韩成人在线观看一区二区三区| 精品国产一区二区三区四区第35| 久久精品国产亚洲av香蕉五月 | 欧美丝袜亚洲另类 | 91精品三级在线观看| 天堂√8在线中文| 久久久国产精品麻豆| 精品免费久久久久久久清纯 | 9191精品国产免费久久| 欧美乱码精品一区二区三区| 热99国产精品久久久久久7| 久久精品亚洲精品国产色婷小说| 亚洲专区国产一区二区| 国产亚洲一区二区精品| 亚洲 国产 在线| 国产不卡一卡二| 国产不卡av网站在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品二区激情视频| 久久久水蜜桃国产精品网| 大香蕉久久网| 天天添夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 俄罗斯特黄特色一大片| 亚洲国产精品一区二区三区在线| av网站免费在线观看视频| 国产黄色免费在线视频| 十八禁人妻一区二区| 亚洲人成电影免费在线| 操美女的视频在线观看| 首页视频小说图片口味搜索| 中文字幕最新亚洲高清| 我的亚洲天堂| 又黄又粗又硬又大视频| 麻豆成人av在线观看| 一边摸一边做爽爽视频免费| 热re99久久精品国产66热6| 好男人电影高清在线观看| 午夜福利欧美成人| 99re6热这里在线精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久国产精品影院| 久久久久久久国产电影| 日韩成人在线观看一区二区三区| 国产高清激情床上av| 国产欧美亚洲国产| 国产精品自产拍在线观看55亚洲 | 国产在线精品亚洲第一网站| 亚洲欧洲精品一区二区精品久久久| xxx96com| 天天躁日日躁夜夜躁夜夜| 国产精品99久久99久久久不卡| 国产亚洲一区二区精品| 亚洲伊人色综图| 两个人免费观看高清视频| 亚洲中文av在线| 亚洲av第一区精品v没综合| 亚洲av欧美aⅴ国产| 一级作爱视频免费观看| 国产精品久久电影中文字幕 | 好看av亚洲va欧美ⅴa在| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽 | 日韩有码中文字幕| 欧美精品av麻豆av| 水蜜桃什么品种好| 搡老岳熟女国产| 精品免费久久久久久久清纯 | 久久精品国产99精品国产亚洲性色 | 国产成人影院久久av| 亚洲成a人片在线一区二区| 伦理电影免费视频| 午夜日韩欧美国产| 久热爱精品视频在线9| 十八禁高潮呻吟视频| 欧美午夜高清在线| 欧美激情 高清一区二区三区| 99在线人妻在线中文字幕 | 丝袜美足系列| 国产乱人伦免费视频| av线在线观看网站| 日韩欧美一区二区三区在线观看 | 亚洲人成电影免费在线| 精品欧美一区二区三区在线| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 身体一侧抽搐| 午夜福利乱码中文字幕| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 一进一出抽搐动态| √禁漫天堂资源中文www| 最新美女视频免费是黄的| 一本综合久久免费| 动漫黄色视频在线观看| 午夜福利乱码中文字幕| 久久中文字幕人妻熟女| 欧美精品一区二区免费开放| 在线av久久热| 怎么达到女性高潮| 久久精品亚洲熟妇少妇任你| 悠悠久久av| 热99久久久久精品小说推荐| 国产精品av久久久久免费| 黄片大片在线免费观看| 国产精品久久电影中文字幕 | 精品国产超薄肉色丝袜足j| 搡老岳熟女国产| 亚洲人成77777在线视频| 国产色视频综合| av网站在线播放免费| 中文字幕最新亚洲高清| 一本综合久久免费| 欧美亚洲日本最大视频资源| 美女午夜性视频免费| 视频区欧美日本亚洲| 最新的欧美精品一区二区| 精品久久蜜臀av无| 男男h啪啪无遮挡| 亚洲中文字幕日韩| 成年动漫av网址| 老司机影院毛片| 波多野结衣一区麻豆| 高清av免费在线| 好看av亚洲va欧美ⅴa在| 成人国产一区最新在线观看| 99热只有精品国产| 1024视频免费在线观看| 亚洲成国产人片在线观看| 9色porny在线观看| 色老头精品视频在线观看| 亚洲精品在线美女| 日本欧美视频一区| 午夜福利免费观看在线| 欧美色视频一区免费| 精品第一国产精品| 成年人午夜在线观看视频| 日韩欧美国产一区二区入口| 亚洲精品一二三| av网站免费在线观看视频| 老司机午夜福利在线观看视频| 高潮久久久久久久久久久不卡| 久热爱精品视频在线9| 丁香欧美五月| 久久国产精品大桥未久av| 欧美日韩一级在线毛片| 亚洲情色 制服丝袜| 国产乱人伦免费视频| tube8黄色片| 国产精品九九99| 1024视频免费在线观看| 亚洲avbb在线观看| 欧美人与性动交α欧美软件| 中文字幕制服av| 日本黄色日本黄色录像| 99riav亚洲国产免费| 老司机福利观看| 欧美 亚洲 国产 日韩一| 免费看a级黄色片| 岛国毛片在线播放| 国产欧美日韩一区二区精品| 国产精品永久免费网站| 国产成+人综合+亚洲专区| 99久久人妻综合| 大香蕉久久网| 亚洲人成电影观看| 欧洲精品卡2卡3卡4卡5卡区| 王馨瑶露胸无遮挡在线观看| 国产高清视频在线播放一区| 午夜福利乱码中文字幕| 51午夜福利影视在线观看| 国产色视频综合| 国产精品 欧美亚洲| 亚洲va日本ⅴa欧美va伊人久久| 三上悠亚av全集在线观看| 久久狼人影院| 午夜福利免费观看在线| 在线观看免费午夜福利视频| av国产精品久久久久影院| 亚洲熟女毛片儿| 另类亚洲欧美激情| 天堂中文最新版在线下载| 精品国产乱子伦一区二区三区| 美国免费a级毛片| 久久精品国产a三级三级三级| 国产精品.久久久| 欧美亚洲 丝袜 人妻 在线| av网站在线播放免费| 不卡av一区二区三区| av线在线观看网站| 老汉色av国产亚洲站长工具| 国产色视频综合| 久久ye,这里只有精品| 久热爱精品视频在线9| 午夜福利乱码中文字幕| 亚洲一码二码三码区别大吗| 婷婷丁香在线五月| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 高清av免费在线| 老司机在亚洲福利影院| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| 老司机福利观看| 亚洲一区二区三区不卡视频| 亚洲美女黄片视频| 一夜夜www| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 1024香蕉在线观看| 欧美精品一区二区免费开放| 9色porny在线观看| 免费日韩欧美在线观看| videos熟女内射| 91成年电影在线观看| 精品无人区乱码1区二区| 一本综合久久免费| 丁香欧美五月| 亚洲av日韩在线播放| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 在线视频色国产色| 天堂中文最新版在线下载| 大码成人一级视频| 水蜜桃什么品种好| 亚洲成人国产一区在线观看| 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人 | av视频免费观看在线观看| 视频在线观看一区二区三区| 9色porny在线观看| 久久久久久人人人人人| 深夜精品福利| 国产色视频综合| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费 | 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 日本黄色日本黄色录像| 如日韩欧美国产精品一区二区三区| 91老司机精品| 成人av一区二区三区在线看| 国产精品九九99| e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| 久久热在线av| 一区二区三区激情视频| 国产欧美日韩一区二区三| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 岛国毛片在线播放| 一进一出抽搐动态| 中文字幕高清在线视频| 国产在线一区二区三区精| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 美国免费a级毛片| 国产一区有黄有色的免费视频| 51午夜福利影视在线观看| 亚洲综合色网址| 国产精品1区2区在线观看. | 亚洲av日韩在线播放| 最新美女视频免费是黄的| 国产一区二区三区视频了| 久久国产精品大桥未久av| 在线观看免费午夜福利视频| 国产1区2区3区精品| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 两个人看的免费小视频| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 少妇 在线观看| 一二三四社区在线视频社区8| 久久这里只有精品19| 欧美性长视频在线观看| 在线观看免费视频网站a站| 男人的好看免费观看在线视频 | 国内毛片毛片毛片毛片毛片| 免费久久久久久久精品成人欧美视频| 在线观看66精品国产| 国产欧美日韩一区二区三| 欧美色视频一区免费| 欧美最黄视频在线播放免费 | 日日夜夜操网爽| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| av一本久久久久| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 国产成人啪精品午夜网站| 久久久精品区二区三区| 日韩视频一区二区在线观看| 国产男女内射视频| 久久久精品区二区三区| 在线天堂中文资源库| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 国产欧美亚洲国产| 首页视频小说图片口味搜索| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 国产精品免费视频内射| 男女床上黄色一级片免费看| 国产国语露脸激情在线看| 老司机深夜福利视频在线观看| av视频免费观看在线观看| 99riav亚洲国产免费| 久久 成人 亚洲| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩高清在线视频| 国产在线观看jvid| 国产色视频综合| 欧美国产精品va在线观看不卡| 丰满的人妻完整版| av片东京热男人的天堂| 国产精品一区二区精品视频观看| 久久精品国产清高在天天线| 老司机午夜十八禁免费视频| 九色亚洲精品在线播放| 久久久水蜜桃国产精品网| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| а√天堂www在线а√下载 | 亚洲片人在线观看| 一区在线观看完整版| 黄色毛片三级朝国网站| 国产精品久久久人人做人人爽| 久99久视频精品免费| 欧美人与性动交α欧美软件| 久久久精品免费免费高清| 久久九九热精品免费| 王馨瑶露胸无遮挡在线观看| 一区二区日韩欧美中文字幕| 成人黄色视频免费在线看| 搡老熟女国产l中国老女人| 久久人妻av系列| 欧美日韩黄片免| 午夜福利,免费看| 一进一出抽搐动态| 欧美不卡视频在线免费观看 | 欧美最黄视频在线播放免费 | 精品国内亚洲2022精品成人 | 日韩三级视频一区二区三区| 久久久国产成人精品二区 | 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 交换朋友夫妻互换小说| 久久影院123| 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久5区| 欧美国产精品一级二级三级| 黄色 视频免费看| 十八禁网站免费在线| aaaaa片日本免费| 手机成人av网站| 国产精品二区激情视频| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片 | 欧美中文综合在线视频| 欧美 日韩 精品 国产| 日本a在线网址| 国产在线精品亚洲第一网站| 亚洲第一av免费看| 视频区图区小说| 久热爱精品视频在线9| 日韩视频一区二区在线观看| 国产高清国产精品国产三级| 亚洲美女黄片视频| 欧美精品一区二区免费开放| 国产乱人伦免费视频| 99国产综合亚洲精品| 久久午夜综合久久蜜桃| 午夜影院日韩av| 丝袜人妻中文字幕| 欧美性长视频在线观看| 国产精品.久久久| 国产极品粉嫩免费观看在线| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 中出人妻视频一区二区| av中文乱码字幕在线| 久久久国产成人免费| 在线观看免费视频日本深夜| 色94色欧美一区二区| 法律面前人人平等表现在哪些方面| 日本五十路高清| 日韩有码中文字幕| 亚洲欧美激情在线| 午夜亚洲福利在线播放| 看片在线看免费视频| 亚洲精品一二三| 少妇的丰满在线观看| 18禁观看日本| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 看免费av毛片| 1024香蕉在线观看| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 久久精品成人免费网站| 热re99久久国产66热| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 国产精品久久久av美女十八| 三级毛片av免费| 丝袜在线中文字幕| 男人的好看免费观看在线视频 | 久久精品成人免费网站| 国产精品乱码一区二三区的特点 | 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 久久热在线av| av欧美777| 久久久久久亚洲精品国产蜜桃av| 999久久久国产精品视频| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 久久中文字幕人妻熟女| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 在线av久久热| 三上悠亚av全集在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲五月天丁香| 国产精品国产高清国产av | 国产在视频线精品| 久久久国产精品麻豆| 窝窝影院91人妻| 一二三四社区在线视频社区8| 丰满迷人的少妇在线观看| 黄色女人牲交| 国产精品免费大片| 国产精品久久久av美女十八| 国产成人免费观看mmmm| 国产精品影院久久| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费 | xxx96com| 另类亚洲欧美激情| 多毛熟女@视频| 精品视频人人做人人爽| 一级片'在线观看视频| 免费黄频网站在线观看国产| 久久这里只有精品19| 91字幕亚洲| 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 99热国产这里只有精品6| 好男人电影高清在线观看| 国产成人av教育| 大型黄色视频在线免费观看| 日本一区二区免费在线视频| 久久久久久久国产电影| 一级作爱视频免费观看| 国产99白浆流出| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 身体一侧抽搐| 国产熟女午夜一区二区三区| ponron亚洲| bbb黄色大片| 国产深夜福利视频在线观看| 18禁黄网站禁片午夜丰满| 男人舔女人的私密视频| 精品国产一区二区久久| 不卡一级毛片| tocl精华| 999精品在线视频| av福利片在线| 纯流量卡能插随身wifi吗| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| bbb黄色大片| 丝瓜视频免费看黄片| 精品国产一区二区久久| 老熟女久久久| 国产精品美女特级片免费视频播放器 | 一本综合久久免费| 欧美激情高清一区二区三区| 久久精品亚洲精品国产色婷小说| 免费女性裸体啪啪无遮挡网站| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| а√天堂www在线а√下载 | 国产伦人伦偷精品视频| 免费日韩欧美在线观看| 久久久久久久精品吃奶| www日本在线高清视频| 亚洲性夜色夜夜综合| 黑人操中国人逼视频| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区久久| 国产男女超爽视频在线观看| 色综合婷婷激情| 大陆偷拍与自拍| 香蕉久久夜色| 日韩视频一区二区在线观看| 欧美乱码精品一区二区三区|