• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravity and Spin Forces in Gravitational Quantum Field Theory?

    2018-08-02 07:35:40YueLiangWu吳岳良andRuiZhang張睿
    Communications in Theoretical Physics 2018年8期
    關(guān)鍵詞:張睿

    Yue-Liang Wu(吳岳良)and Rui Zhang(張睿)

    1Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3International Center for Theoretical Physics Asia-Pacific(ICTP-AP),University of Chinese Academy of Sciences,Beijing 100049,China

    AbstractIn the new framework of gravitational quantum field theory(GQFT)with spin and scaling gauge invariance developed in Phys.Rev.D 93(2016)024012-1,we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe.We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3)and SP(1,3)in biframe spacetime into SO(3)representations for deriving the propagators of the basic quantum fields and extract their interaction terms.The leading order Feynman rules are presented.A tree-level 2 to 2 scattering amplitude of the Dirac fermions,through a gravifield and a spin gauge if eld,is calculated and compared to the Born approximation of the potential.It is shown that the Newton’s gravitational law in the early universe is modified due to the background field.The spin dependence of the gravitational potential is demonstrated.

    Key words:gravifield,spin gauge field,background field,quantum gravity,tensor projection operators,scattering amplitudes,modified Newton’s law

    1 Introduction

    The gravitational quantum field theory(GQFT)with spin and scaling gauge invariance was developed in Refs.[1–2]to overcome the long term obstacle between the general theory of relativity(GR)and quantum mechanics.In fact,there has been enormous efforts on the theory beyond Einstein’s theory since the GR was established by Einstein in 1915.[3]The metric describing the geometry of the spacetime are commonly factorized linearly to explore the quantum structure of gravity and its interaction with matter fields,[4?5]and the Ricci scalar has been shown to be the key of the dynamics of gravity.The property of GR with spin and torsion was investigated in Refs.[6–8]where the totally antisymmetric coupling of the torsion to spin was presented.The general quadratic terms of the 2-rank tensor fields that satisfy the ghost-free and locality conditions were discussed in Ref.[9].With the tool named tensor projection operators developed in Ref.[10],which projects the SO(1,3)tensor representation to the components of different SO(3)representations,the general propagators and gauge freedoms were investigated and extrapolated to a more general case including propagating torsion.[11]The totally antisymmetric part and its renormalizability was anayzed in Ref.[12].

    Recently,a new framework of gravitational quantum field theory(GQFT)was proposed to treat the gravitational interaction on the same footing as electroweak and strong interactions,[1?2]where a biframe spacetime is initiated,namely,the locally flat non-coordinate spacetime and the globally flat Minkowski spacetime,a basic gravifield is defined on the biframe spacetime as a bicovariant vector field which is in general a 16-component field.The spin gauge field and scaling gauge field are introduced to keep the action invariant under a local SP(1,3)×SG(1)gauge transformation.A non-constant background solution has been obtained,which may account for the inflationary behaviour of the early universe.In a proceeding work,a more general action for a hyperunified field theory(HUFT)under the hyper-spin gauge and scaling gauge symmetries was proposed[13]to merge all elementary particles into a single hyper-spinor field and unify all basic forces into a fundamental interaction governed by a hyperspin gauge symmetry.A background solution remains to exist.In such an HUFT,it enables us to demonstrate the gravitational origin of gauge symmetry as the hypergravifield plays an essential role as a Goldstone-like field.The gauge-gravity and gravity-geometry correspondences lead to the gravitational gauge-geometry duality.It has been shown that a general conformal scaling gauge symmetry in HUFT results in a general condition of coupling constants,which eliminates the higher derivative terms due to the quadratic Riemann and Ricci tensors,so that the HUFT will get rid of the so-called unitarity problem caused by the higher order gravitational interactions.To demonstrate explicitly,in the present paper,we consider the gravitational interactions of gravifield and spin gauge field only in four dimensional case with a background field solution.Expanding the full action under such a background field,it is natural to extract the dynamics and interactions of the quantum fields.The interactions among these fields will reflect the gravitational behavior in the early universe.

    2 Action Expansion in a Non-Constant Background Field

    Let us start from a basic action by simply taking four dimentional spacetime,i.e.,D=4,from the hyperunified field theory(HUFT)[13]in hyper-spacetime,

    The tensors are taken the general forms presented in Ref.[13]

    The quantized field are expressed as:

    We can expand the action(1)and collect the leading order interactions and quadratic terms.As the quadratic term of the quantum gravifield includes a non-constant coefficientit is useful to absorb it into the field via a field-rede finition

    The final quadratic terms are given by:

    There are other terms,which involves two quantum fields,but with higher orders of the background field,we present them in the Appendix A.In the early universe,the background field ?(x)is sufficiently small,so that we can ignore the effect of those terms and only consider the quadratic terms in Eq.(2).

    Though the propagators can hardly be read from the action,we can utilize the tensor projection operators to decompose the spin components of the tensor fields,and then derive their propagators.The scaling gauge field decouples from the Dirac spinors,so we would not include it in our present considerations.We shall discuss the details in Sec.3.We can also get the leading-order interaction terms,which are given in the appendix B.Notice that we have absorbed the gauge coupling constant gh,which depends on the normalization of coefficients g1,g2and g4.We shall do a field rede finition after some normalization of the propagator in Sec.5 and turn the interactions to a usual form of gauge interactions.

    3 Tensor Projection Operators and Propagators of Gravifield and Spin Gauge Field as Well as Scalar Field

    The SO(1,3)tensor-like fields hμaand ?μabcan be decomposed into different SO(3)spin-parity components:Following Ref.[9],we shall de fine the tensor projection operatorswhere the subscripts f1and f2denoting the field type,the superscripts J and P label the spin and parity.The tensor projection operators satisfy the following relations:

    with the de finition

    To be specific,we write down the explicit forms for the tensor projection operator of the 2+component of the gravifield

    with the de finition

    and the tensor projection operator of the totally antisymmetric part of the spin gauge field ?μab,

    The explicit forms of other tensor projection operators are presented in the appendix C.

    In general,the tensor projection operators have the following properties,

    Thus we can write the quadratic terms of the action in terms of the tensor projection operators as follows,

    The field equations of the field typecan be expressed by tensor projection operators as:

    The explicit forms of the coefficient matrices are given by

    It is obvious that most of the matrices are degenerate,and these degeneracies indicate certain symmetries of the quadratic terms[11]relevant to unphysical degrees of freedom.When considering only the tree-level calculations,we do not need to know the exact gauge- fixing terms and gauge transformations by introducing the Faddeev-Popov ghosts.Instead,we can just apply the specific gauge- fixing conditions by setting the constraints

    without breaking the field equations,and neglect the corresponding lines in the coefficient matrices.Thus we only need to invert the“reduced” matrices and get the propagators.

    The resulting propagators are given as follows in the specific gauge:

    In general,when treating the fields χμaand ?μabas Yang-Mills gauge fields in GQFT,we can simply add the usual gauge- fixing terms for the gauge-type gravifield χμaand the spin gauge field ?μab.For simplicity,we take the following explicit forms for their gauge fixing conditions

    In such a case,the coefficient matrices of the field equations are given by

    Except for the 1+component of the gravifield,all other coefficient matrices are non-degenerate.Thus we are able to inverse the matrices by requiring

    and get the propagators:

    It is seen that in this case the propagator of the gravifield recovers the same one as the case without adding gauge fixing condition,while the propagator of the spin gauge field is modified for the spin 1 component with even parity,which is relevant to the total antisymmetric part of spin gauge field.

    It is noticed that there is an intersection term ??h,which is caused as the choice of h and ? is not orthogonal.To avoid such a complication,it is useful to rede fine the quantum field

    so that the propagator of the field Hμabecomes

    which is compatible with the propagator in the usual linear gravity approach[5]up to a gauge term pμpν/p2.If we take the gauge coefficients λ,to be 3/2,the explicit form of the H-H propagator is

    When taking the gauge fixing parameters as follows

    the explicit form of the ?-? propagator is

    so that the highest order pole in the propagator isterm,which behaves like a Yang-Mills gauge field propagator.In the following section,we will use the rede fined symmetric quantum gravifield to calculate the physical observable.

    4 Gravitational Scattering Amplitude of Dirac Spinor and Modified Newton’s Law with Background Field

    Let us now focus on the gravitational interaction between the Dirac spinor field Ψ in the early universe.The leading order vertex of the fermion involves the background field.

    In the momentum space,the background scaling factor is given by

    where ?kμ≡ ?/?kμ.Corresponding to Feynman rules shown in Figs.1 and 2.

    Fig.1 3-vertex for f-f-h.The dashed line connected to the cross is the background.

    Fig.2 3-vertex for ?-?-h.The dashed line connected to the cross is the background.

    Note that in calculating the fermion-fermion scatter-ing,the gamma matrix in the vertex is contracted with the two external spinors,which satisfies the equationSo that the couplings to ? do not contribute to the tree-level diagrams.For the same reason,the third term from the H propagator does not contribute to the result,either.

    The tree level amplitude of the two-fermion scattering,with in-state momenta p1and p2,and out-state momenta p3and p4,is shown in Fig.3

    Fig.3 Tree diagram for 2-fermion scattering via gravifield.

    The main purpose is to check the newtonian potential in the early universe with the existence of background field.For the case that all fields are massless,we cannot take a non-relativistic limit to simplify the amplitude.Let us first check the cross section of this scattering process to contract all the spinors.After integrating the momenta of the propagator,the amplitude in Eq.(34)becomes:

    The derivatives of δ(p)can be expressed as some functions multiplied by δ(p),thus we can write the second line in Eq.(35)to the following general form

    Then our result of the scattering amplitude,except for the overall coefficient and F(p1?p3)term that are related to the background field,is consistent with the leading order result shown in Ref.[14].If we were working in another gauge if xing condition,the difference would be terms proportional to qμqν/q2,contracted with the vertex will gives the termboth of which are vanishing because of the on-shell condition of the external fermions.So our result is indeed gauge independent.

    The squared matrix element,after throwing all the spin information,is:

    we can simplify Eq.(36)into the follow form

    As long as the two massless fermions are not in the same direction,we can always make a Lorentz boost to a centerof-energy frame,so thatWhen taking the weak interaction limit that θ→ 0,we have

    In comparison with the Born approximation of the cross section[16]

    To compare our result with those from the usual Newtonian potential,we identify the factorwith the coefficient of the Einstein equation 8πG.So the relation between αEand Newtonian gravitational constant GNis

    Then we obtain the potential in the momentum space as:

    The leading term will contribute to a 1/r potential in the coordinate space.Such a term coincides with the Newton’s law,but it is modified by a factorwhich depends on the size of the inverse of scaling factorIn the early universe,the scaling factor is much smaller,thus the gravitational potential can become much stronger.The modified termcontains the structure of the derivatives of delta functions,we shall investigate its effect elsewhere.

    Note that the coefficient 16πGNis four times than the gravitational potential for the massive Dirac fermions.This is because we are working on the massless Dirac fermions.When considering the Dirac fermion getting a mass from spontaneous symmetry breaking,a mass term will be generated.In a unitary scaling gauge condition detχ=1,we need to consider the change of the spinor structure,and an additional

    from the third term(30)of the graviton propagator.The massive Dirac fermion allows us to take a non-relativistic approximation

    The leading order and next-to-leading-order contributions fromis found to be

    The leading term for μ =0 requires r=r′,which together with Eq.(42)enables us to get a factor 1/4 for the potential(50).The next-to-leading-order term forμ=0 comes from the expansion of E

    The next-to-leading order fromμ=i can be simplified to

    the spinor formalism can be re-expressed as a four-vector

    Substituting it into the expression of the amplitude Eq.(34)

    we can obtain the total contribution up to next-to-leading order,

    So the potential for massive fermions is

    Ignoring the kinematic energies,the next-to-leading order effect is proportional to the inner product of two particles,

    If we consider the anti-fermion,its spinor structure is

    and the vertex would have a minus sign from ?(p2+p4)μ.The vertex spinor contraction is

    So the there was only an overall minus sign from the momentum,and will be compensated by the commutation of the fermion operator in the Wick contraction,thus the amplitude does not flip sign.The only possible difference lies in spin of the anti-fermion η?σiη.Thus we may use a separate spin notation to distinguish particle and antiparticle

    So the next-to-leading order effect between fermion and anti-fermion is

    Let us now consider the special case that the two massless ingoing particles are in the same direction.Suppose that their momenta are chosen as follows

    As the overall δ4(p1?p3+p2?p4)guarantees the momentum conservation,the outgoing momenta must be in the same direction.In this case,all the momenta are in the same direction,they are null vectors.So that their product gives zero,namely s=t=u=0.As a consequence,the cross-section becomes vanishing.

    5 Scattering Amplitude of the Dirac Spinor via the Spin Gauge Field

    It is interesting to consider the scattering amplitude of Dirac spinor via the spin gauge field.The leading order spin gauge interaction of Dirac spinor is given by the totally antisymmetric coupling of the spin gauge field.The vertex Feynman rule in Fig.4 can be derived from the last term in Eq.(33).

    Fig.4 3-vertex for f-f-?.

    The propagator of the totally antisymmetric part of the spin gauge field is taken the following form

    We may rede fine the coupling constants[13]

    and rede fine the spin gauge field and replace the vertex

    The Dirac spinor scattering amplitude via the spin gauge field is shown in Fig.5.

    Fig.5 Tree diagram for 2-fermion scattering via spin gauge field.

    If the Dirac spinor acquires a mass from some symmetry breaking,we may take the non-relativistic limit of this amplitude.Different from the Coulomb potential where the leading contribution comes fromthe γ5in Eq.(57)will lead to

    It is shown that the potential for 2-fermion scattering without spin change can be attractive(repulsive)for aligned spins and repulsive(attractive)for opposed spins,which relies on the sign of the coefficient(1?αW+βW)whether it is positive 1 ? αW+ βW> 0(negative 1?αW+βW<0).The potential of the totally antisymmetric field was studied in a different way in Ref.[6],which arrived at the case of negative coefficient 1?αW+βW<0.Such an interaction is independent of the background field.In the early universe,the scaling factor is so small that the gravitational effect becomes dominant to the cross sections.The spin gauge coupling is no longer significant,its cross section is found to be:

    When taking the weak interaction limit that θ → 0,we have

    which leads to a 1/r potential in the coordinate space.

    6 Conclusion

    We have investigated the gravitational interactions with the background field in the framework of GQFT.The full action of the GQFT with spin gauge and scaling gauge transformations has been expanded in a nonconstant background field.To the leading order gravitational interactions in GQFT,we have derived the Feynman rules for the propagators and interacting vertices of the quantum fields by using the tensor projection operators.The quantum gravifield has been rede fined to be normalized and diagonal,which leads to an interaction between the Dirac spinor and scalar fields.In the leading order,the scalar interaction with the Dirac spinor vanishes when the massless Dirac spinor are on-mass shell as the external fields.We have calculated the tree-level two Dirac spinors scattering through the gravitational interaction and analyzed its amplitude and cross section.Besides the modified term from the derivative of delta function,the overall amplitude is proportional to the inverse of the scaling factors,which implies that the gravitational potential is much stronger in the early universe.The spin dependence of the gravitational potential in the nonrelativistic case has been analyzed.We have also calculated the interaction between the Dirac spinor and the totally antisymmetric part of the spin gauge field at the leading order,which is similar to the result of the scattering through a vector field,but with a flip sign in the amplitude due to the property of axial vector,resulting in a spin gauge force,which depends on the sign of the coefficient in its quadratic terms.

    Appendix A Next-to-Leading Order Quadratic Terms

    We have presented the leading order quadratic terms in the context,the following are the higher order terms of the background field.We de fine

    The next-to-leading order quadratic terms for hμa-? are:

    The terms for hμa-wνare:

    The terms for ?-wμare:

    The terms for wμ-wνare:

    The terms for ?-? are:

    The terms for hμa-hνbare:

    Appendix B Leading Order Vertices

    We have presented the leading order vertices of the fermions in the context,the following are the 3-vertices for the spin gauge field ?μabwith the rede fined field ? by a coupling constant:

    For the gravifield hμainteractions,we have

    For the scalar field ?,except the pure scalar interaction term 4λs?3?,and the scalar and gravifield interactions are found to be,

    for h-?-h,and

    for h-?-?,as well as

    or h-w-?,and

    for h-h-w.With coupling to the spin gauge field,we obtain

    for h-?-?.More interactions include

    Appendix C Tensor Projection Operators

    Here we show the exact expression of projection operatorsfor the spin gauge field,gravifield and scalar,in which we have used the de finitionsfor short.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    小主人報(2022年7期)2022-08-16 06:59:28
    小主人報(2022年5期)2022-04-01 01:12:02
    The dilemma and development of industrial design in contemporary life
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    我的開心事
    91久久精品电影网| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 久久鲁丝午夜福利片| 亚洲国产成人一精品久久久| 亚洲五月天丁香| 国产午夜精品久久久久久一区二区三区| 老司机影院毛片| 韩国高清视频一区二区三区| 国产免费视频播放在线视频 | 国产精品综合久久久久久久免费| av在线亚洲专区| 麻豆乱淫一区二区| 天天躁日日操中文字幕| 天堂√8在线中文| 亚洲真实伦在线观看| 午夜视频国产福利| 中文字幕久久专区| 能在线免费看毛片的网站| 亚洲av福利一区| 精品一区二区免费观看| 日韩人妻高清精品专区| 少妇熟女aⅴ在线视频| 国产精品99久久久久久久久| 午夜福利成人在线免费观看| 在线免费观看不下载黄p国产| 国产免费视频播放在线视频 | 日韩欧美精品v在线| 国产一区二区三区av在线| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av涩爱| av线在线观看网站| 免费看av在线观看网站| 亚洲成人久久爱视频| 一级二级三级毛片免费看| 免费不卡的大黄色大毛片视频在线观看 | 国产黄片视频在线免费观看| 变态另类丝袜制服| 哪个播放器可以免费观看大片| 国产精品不卡视频一区二区| 亚洲人成网站在线播| 在线免费十八禁| 亚洲av熟女| 九九热线精品视视频播放| 长腿黑丝高跟| 中文精品一卡2卡3卡4更新| 身体一侧抽搐| 欧美激情久久久久久爽电影| 国内精品美女久久久久久| 边亲边吃奶的免费视频| 我的女老师完整版在线观看| 亚洲欧洲国产日韩| 91久久精品电影网| 国产午夜福利久久久久久| 在线观看66精品国产| av天堂中文字幕网| 全区人妻精品视频| 人体艺术视频欧美日本| 我的老师免费观看完整版| 色网站视频免费| 精品国产露脸久久av麻豆 | 毛片一级片免费看久久久久| 一级毛片电影观看 | 国产成人a∨麻豆精品| 国产精品女同一区二区软件| 视频中文字幕在线观看| 一级毛片久久久久久久久女| a级毛片免费高清观看在线播放| 日韩欧美三级三区| 最近最新中文字幕免费大全7| 国产精品久久久久久精品电影| 国产亚洲5aaaaa淫片| 中文天堂在线官网| 在线a可以看的网站| 日韩欧美在线乱码| 国产成人精品一,二区| 精品久久久久久久久久久久久| 又爽又黄无遮挡网站| 在现免费观看毛片| 国产精品日韩av在线免费观看| 欧美日韩在线观看h| 免费av不卡在线播放| 18+在线观看网站| 精品国产三级普通话版| 人人妻人人澡人人爽人人夜夜 | 男女视频在线观看网站免费| 日韩强制内射视频| 日韩av在线大香蕉| 一级毛片我不卡| 免费搜索国产男女视频| 久久久久性生活片| 亚洲精品乱码久久久v下载方式| 麻豆精品久久久久久蜜桃| 欧美成人精品欧美一级黄| 美女高潮的动态| 日本三级黄在线观看| 女的被弄到高潮叫床怎么办| 久久精品国产鲁丝片午夜精品| 精品国内亚洲2022精品成人| 夜夜爽夜夜爽视频| 国产一级毛片在线| av黄色大香蕉| 真实男女啪啪啪动态图| 午夜免费男女啪啪视频观看| 久久久久国产网址| 全区人妻精品视频| 久久精品国产自在天天线| 国产成人福利小说| 久久韩国三级中文字幕| 亚洲国产色片| 18禁动态无遮挡网站| 国产淫语在线视频| 亚洲性久久影院| 亚洲最大成人中文| 黄色日韩在线| 欧美一区二区精品小视频在线| 少妇人妻一区二区三区视频| 精品一区二区免费观看| 免费观看人在逋| 日本一二三区视频观看| 久久精品久久久久久久性| av线在线观看网站| 国产成人一区二区在线| 夫妻性生交免费视频一级片| 成人毛片60女人毛片免费| 黄片wwwwww| 国国产精品蜜臀av免费| 卡戴珊不雅视频在线播放| 能在线免费观看的黄片| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看 | 高清毛片免费看| 老司机影院毛片| 日韩欧美三级三区| 久久久国产成人精品二区| 国产精品国产高清国产av| 成人国产麻豆网| 亚洲国产最新在线播放| 国产激情偷乱视频一区二区| 少妇被粗大猛烈的视频| 毛片女人毛片| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| 精华霜和精华液先用哪个| 亚洲欧洲日产国产| 美女内射精品一级片tv| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 国产乱人偷精品视频| 国产午夜精品论理片| 免费播放大片免费观看视频在线观看 | 久久久久网色| 成人欧美大片| 最新中文字幕久久久久| 国产精品一区www在线观看| 日韩在线高清观看一区二区三区| 国产精品av视频在线免费观看| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 秋霞在线观看毛片| 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 三级经典国产精品| www.色视频.com| 在现免费观看毛片| 精品少妇黑人巨大在线播放 | 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 国产高清国产精品国产三级 | 日韩精品有码人妻一区| 日本爱情动作片www.在线观看| 18禁裸乳无遮挡免费网站照片| 成年免费大片在线观看| 看片在线看免费视频| 亚洲精品自拍成人| 只有这里有精品99| 久久精品影院6| 好男人视频免费观看在线| 久久久国产成人精品二区| 欧美激情国产日韩精品一区| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 午夜亚洲福利在线播放| 大香蕉97超碰在线| 成人鲁丝片一二三区免费| 亚洲av不卡在线观看| 国产色婷婷99| 欧美日本视频| 黄色日韩在线| ponron亚洲| 久久久久久伊人网av| 欧美性猛交黑人性爽| 国国产精品蜜臀av免费| 99热网站在线观看| 丰满人妻一区二区三区视频av| 精品久久久久久电影网 | 岛国在线免费视频观看| 嫩草影院新地址| 久久午夜福利片| 18禁裸乳无遮挡免费网站照片| 麻豆乱淫一区二区| 精品国内亚洲2022精品成人| 午夜福利网站1000一区二区三区| 床上黄色一级片| 免费观看的影片在线观看| 亚洲精品456在线播放app| 久久精品熟女亚洲av麻豆精品 | 国产免费福利视频在线观看| 亚洲av日韩在线播放| 午夜a级毛片| 亚洲精品色激情综合| 26uuu在线亚洲综合色| 日日撸夜夜添| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 亚洲人与动物交配视频| 久热久热在线精品观看| 国产成人午夜福利电影在线观看| 成年版毛片免费区| 久久久久国产网址| 在线天堂最新版资源| 91午夜精品亚洲一区二区三区| 99在线人妻在线中文字幕| 国产精品三级大全| 午夜福利视频1000在线观看| 99热6这里只有精品| 女的被弄到高潮叫床怎么办| 免费黄网站久久成人精品| 久久久a久久爽久久v久久| 大香蕉久久网| 22中文网久久字幕| 久久99热这里只有精品18| 18禁在线播放成人免费| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 国产精品一二三区在线看| 91狼人影院| 精品人妻视频免费看| 69人妻影院| 亚洲欧美精品综合久久99| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 嫩草影院新地址| 成人亚洲精品av一区二区| 国内精品美女久久久久久| 久久6这里有精品| 久久久精品大字幕| 99久久精品热视频| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 成年女人看的毛片在线观看| 99国产精品一区二区蜜桃av| 亚洲欧美成人精品一区二区| 久久精品影院6| 老司机福利观看| 亚洲精品自拍成人| 午夜亚洲福利在线播放| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱| 人妻夜夜爽99麻豆av| 在线免费观看的www视频| 熟女人妻精品中文字幕| 最近中文字幕2019免费版| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频 | 22中文网久久字幕| 久久国内精品自在自线图片| 老司机影院毛片| 国产精品久久久久久精品电影| 69av精品久久久久久| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 在线免费观看不下载黄p国产| 一级黄色大片毛片| 日本av手机在线免费观看| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 免费在线观看成人毛片| 久久精品人妻少妇| 毛片女人毛片| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 一级毛片电影观看 | 免费看av在线观看网站| 18+在线观看网站| av.在线天堂| 日本wwww免费看| 日韩av在线大香蕉| 日韩一区二区三区影片| av在线老鸭窝| 99久久九九国产精品国产免费| 自拍偷自拍亚洲精品老妇| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 少妇丰满av| 日日摸夜夜添夜夜爱| 免费黄色在线免费观看| 久久这里有精品视频免费| 亚洲精品自拍成人| 免费大片18禁| 亚洲人成网站在线播| 亚洲国产精品合色在线| 中文欧美无线码| or卡值多少钱| 日韩 亚洲 欧美在线| 亚洲图色成人| 国产精品.久久久| 亚洲欧洲国产日韩| 91久久精品国产一区二区成人| 婷婷色av中文字幕| 欧美变态另类bdsm刘玥| 亚洲国产精品sss在线观看| 岛国在线免费视频观看| 国产 一区 欧美 日韩| 女人十人毛片免费观看3o分钟| 午夜精品在线福利| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在| 亚洲国产精品专区欧美| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影 | 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 日产精品乱码卡一卡2卡三| 色哟哟·www| 国产黄色视频一区二区在线观看 | 九九久久精品国产亚洲av麻豆| 日日干狠狠操夜夜爽| 亚洲av电影不卡..在线观看| 国产精品一区二区在线观看99 | 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 最近视频中文字幕2019在线8| 国产黄色视频一区二区在线观看 | 热99在线观看视频| av卡一久久| 欧美成人午夜免费资源| 亚洲最大成人中文| 国产亚洲5aaaaa淫片| 日日干狠狠操夜夜爽| 国产69精品久久久久777片| 97超碰精品成人国产| 久久久午夜欧美精品| 久久久久久久午夜电影| 乱系列少妇在线播放| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕 | 小说图片视频综合网站| 久久婷婷人人爽人人干人人爱| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 黄色日韩在线| 亚州av有码| 日韩亚洲欧美综合| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 亚洲18禁久久av| 国产黄色视频一区二区在线观看 | 热99在线观看视频| 国产亚洲精品久久久com| 十八禁国产超污无遮挡网站| 亚洲激情五月婷婷啪啪| 狂野欧美激情性xxxx在线观看| 中文字幕精品亚洲无线码一区| 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 乱码一卡2卡4卡精品| 日本黄色视频三级网站网址| 欧美精品国产亚洲| 超碰97精品在线观看| 网址你懂的国产日韩在线| 免费不卡的大黄色大毛片视频在线观看 | 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 亚洲最大成人av| 亚洲精品456在线播放app| 欧美最新免费一区二区三区| 亚洲av福利一区| 成人二区视频| 国产老妇女一区| 国产精品三级大全| 99久国产av精品| 亚洲电影在线观看av| 成人漫画全彩无遮挡| 超碰97精品在线观看| 久久久久久久久久久免费av| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 久久久a久久爽久久v久久| 欧美精品一区二区大全| 免费观看人在逋| 99热这里只有精品一区| 亚洲中文字幕一区二区三区有码在线看| 国国产精品蜜臀av免费| 如何舔出高潮| 波野结衣二区三区在线| АⅤ资源中文在线天堂| 国产91av在线免费观看| 寂寞人妻少妇视频99o| 综合色丁香网| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 听说在线观看完整版免费高清| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 久久99热这里只频精品6学生 | 欧美+日韩+精品| 日韩大片免费观看网站 | 直男gayav资源| 一区二区三区高清视频在线| 岛国在线免费视频观看| av在线老鸭窝| 又粗又爽又猛毛片免费看| 99久久无色码亚洲精品果冻| 国产精品麻豆人妻色哟哟久久 | 成人毛片60女人毛片免费| av在线播放精品| 亚洲三级黄色毛片| 91aial.com中文字幕在线观看| 一区二区三区免费毛片| 国产精品野战在线观看| 高清日韩中文字幕在线| 亚洲av不卡在线观看| 午夜福利网站1000一区二区三区| 美女内射精品一级片tv| 可以在线观看毛片的网站| 日韩欧美精品v在线| 一本久久精品| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 建设人人有责人人尽责人人享有的 | 汤姆久久久久久久影院中文字幕 | 国内精品美女久久久久久| 久久久久久伊人网av| 午夜激情福利司机影院| 美女脱内裤让男人舔精品视频| 一边亲一边摸免费视频| 亚洲一区高清亚洲精品| 人妻制服诱惑在线中文字幕| 日本一本二区三区精品| 成年女人看的毛片在线观看| 国产一区二区在线av高清观看| 国产精品蜜桃在线观看| 亚洲中文字幕日韩| 我要搜黄色片| videos熟女内射| 久久欧美精品欧美久久欧美| 国产精品久久视频播放| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 最近手机中文字幕大全| 日韩欧美在线乱码| 美女黄网站色视频| 免费黄色在线免费观看| 亚洲色图av天堂| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 只有这里有精品99| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 日本熟妇午夜| 国产成年人精品一区二区| 啦啦啦啦在线视频资源| 三级男女做爰猛烈吃奶摸视频| 一边亲一边摸免费视频| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 午夜免费激情av| 日本熟妇午夜| 久久久久久国产a免费观看| 久久久国产成人精品二区| 国产熟女欧美一区二区| 欧美性感艳星| 国产色婷婷99| 99久久精品热视频| 国产单亲对白刺激| 1000部很黄的大片| 岛国在线免费视频观看| 日韩成人伦理影院| 国产男人的电影天堂91| 又爽又黄无遮挡网站| 欧美一区二区精品小视频在线| 久久精品久久精品一区二区三区| 国产色婷婷99| 国产成人91sexporn| 久久精品久久久久久久性| 国产精品久久久久久久电影| 高清av免费在线| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 性插视频无遮挡在线免费观看| 丝袜喷水一区| 精品久久久久久久久亚洲| 非洲黑人性xxxx精品又粗又长| 亚洲av日韩在线播放| 大香蕉97超碰在线| 色综合色国产| 国产黄色小视频在线观看| 亚洲在久久综合| 少妇裸体淫交视频免费看高清| 尾随美女入室| or卡值多少钱| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产在线男女| 淫秽高清视频在线观看| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 亚洲成av人片在线播放无| 亚洲av电影在线观看一区二区三区 | 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 日本黄色视频三级网站网址| 大香蕉97超碰在线| 国产免费一级a男人的天堂| 午夜精品在线福利| 1000部很黄的大片| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看 | 国产精品人妻久久久久久| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 国产av不卡久久| 欧美97在线视频| 国产一区二区在线av高清观看| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 亚洲av不卡在线观看| 男人舔女人下体高潮全视频| 91精品国产九色| 哪个播放器可以免费观看大片| 国产美女午夜福利| 亚洲在久久综合| 久久久久久久午夜电影| 最近最新中文字幕大全电影3| 草草在线视频免费看| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 国产精品精品国产色婷婷| 精品久久久噜噜| 亚洲欧美成人综合另类久久久 | 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合 | 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 九草在线视频观看| 观看美女的网站| 免费一级毛片在线播放高清视频| 免费播放大片免费观看视频在线观看 | 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 身体一侧抽搐| 国语对白做爰xxxⅹ性视频网站| 一级黄色大片毛片| 美女内射精品一级片tv| h日本视频在线播放| 欧美性猛交黑人性爽| 国产在线一区二区三区精 | 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| 91狼人影院| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| av在线观看视频网站免费| av女优亚洲男人天堂| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频| 欧美成人精品欧美一级黄| 国内少妇人妻偷人精品xxx网站| 一本一本综合久久| 亚洲第一区二区三区不卡| 亚洲精品影视一区二区三区av| 麻豆成人av视频| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 欧美bdsm另类| 99久国产av精品| 少妇人妻一区二区三区视频| a级毛色黄片| 神马国产精品三级电影在线观看| 好男人在线观看高清免费视频| 国产精品久久久久久久电影| 久久韩国三级中文字幕| 日本熟妇午夜| 天美传媒精品一区二区| 天堂av国产一区二区熟女人妻| 亚洲熟妇中文字幕五十中出| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 国产亚洲一区二区精品|