• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    2016-11-22 09:48:53張桂玲孫翠翠
    物理化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:鐵磁性基態(tài)導(dǎo)電性

    裴 蕾 張桂玲 尚 巖 孫翠翠 甘 甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    裴蕾張桂玲*尚巖孫翠翠甘甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    利用密度泛函理論和非平衡格林函數(shù)的方法對硅橋調(diào)控后的聚茂釩體系([V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=環(huán)戊二烯基))的電子結(jié)構(gòu)和輸運性質(zhì)進行了研究。研究結(jié)果表明:隨著硅橋的增長,V-V的鐵磁性耦合變?nèi)醵磋F磁性耦合增強。a和b證實為鐵磁性基態(tài),而c更傾向為反鐵磁性基態(tài)。a和b的鐵磁性基態(tài)中的每個釩原子的磁距為3.0μB,超過釩-苯絡(luò)合物或者純聚茂釩體系的3倍。a-c的輸運性質(zhì)同它們的電子結(jié)構(gòu)相一致,導(dǎo)電性變化規(guī)律為c>b>a。對于a和b,自旋向下狀態(tài)的導(dǎo)電性略強于自旋向上狀態(tài)。a和c都發(fā)生了明顯的負微分電阻效應(yīng)而b卻沒有,這主要是由于兩個二茂釩的排列取向不同:a和c(SiH2為奇數(shù))中二茂釩呈V-型取向排列,進而導(dǎo)致了類似于離子鍵的量子點耦合,而b(SiH2是偶數(shù))中二茂釩是平行-型取向排列,從而導(dǎo)致了類似于共價鍵的量子點耦合。此外,由于散射區(qū)和兩個電極之間的不對稱耦合,a-c的導(dǎo)電性對電壓施加方向較敏感。

    硅橋鍵;聚茂釩;電子結(jié)構(gòu);輸運性質(zhì);理論研究

    1 Introduction

    Bridge linked polymetallocenes have attracted continuous interest over the past decade due to their unusual electrical,magnetic,and optical properties1-8.Abroad variety of such polymers has been synthesized in laboratory.The bridge moiety can vary fromgroup 13(B,Al,Ga,In)9-12to group 14(Si,Ge,Sn)13-17,group 15(P,As)18-20,and group 16 elements(S,Se)21,22.The metallocene can cover almost the whole first-row transition metal series(Sc-Ni)and some second-and third-row transition metal species(Zr, Hf,Pt)23-27.Much of the interest in these polymers has been focused on the saturated silicon-bridged polymetallocenes;representative examples are the silicon-bridged polyferrocenes28-33.It is confirmed that these copolymers can be utilized as charge dissipation coatings,variable refractive index sensing materials, and magnetic ceramic precursors over a range of length scales34-39.

    The silicon linkages possess a remarkable ability to tune the physicochemistry property of the resulting bridged polymetallocenes.The frontier orbitals of a metallocene largely preserve the d character of the transition metal atom;the cyclic π-coordinated carbon ligands confine the d states,making the metal atom an intrinsic molecular quantum dot.The saturated silicon bridges block the adjacent metallocene units spatially and energetically, ensuring the quantum dot behavior of the metal atom40.Quantum dots are of great interest in many research applications such as transistors,solar cells,light emitting diodes(LEDs),and diode lasers because electron transport through quantum dots can be precisely controlled by tailoring the molecular size41,42.The length of the silicon bridge plays a significant role in the interdot coupling.For example,Dement′ev et al.43have shown that the Fe-Fe interaction decreases with increasing of the bridge length in a series of silicon-bridged biferrocenes.Experiments have demonstrated that the conducting behavior of ferrocenylsilane polymers is highly dependent on the length of silicon bridge44. Studying the silicon moiety effect on the electronic and transport properties of the silicon-bridged polymetallocenes is desirable for the generation of functioned molecular devices.

    Recently,polymers derived from sandwiched vanadium complexes are of particular hot topics owing to the high density of unpaired spins of V atoms which are expected to exhibit remarkable physical properties with regard to magnetism or conductivity19.So far,much effort has been invested in the synthesis of silicon bridged polymers of vanadium complexes.Pioneering work in this area includes that of Elschenbroich et al.44-49and Braunschweig et al.50-52,who were the first to obtain such silicon bridged polymers by using ring-opening polymerization method of[V(η6-C6H5)2SiMeiPr]and[V(η5-C5H5)(η7-C7H7)SiMeiPr].They demonstrated that these polymers show a pronounced intramolecular electronic and magnetic communication.The silicon bridged vanadium containing polymers[V(Cp)2(SiH2)n]mare expected to be excellent candidates for exploring novel functional materials with fantastic magnetism and conductivity.Similar to the case in ferrocenylsilane polymers41,the silicon bridge length n in [V(Cp)2(SiH2)n]mmay play important role in governing the electronic and transport properties.

    In this context,three polyvanadocenes,[V(Cp)2(SiH2)n]m(n= 1,2,3;Cp=cyclopentadienyl),are the major focus of our studies by using density functional method(DFT)and non-equilibrium Green′s function(NEGF)methods(Fig.1).We first investigate the electronic properties of their infinite long systems(n=∞),followed by computing the transport properties of their two-probe devices by curving out one supercell(n=2)sandwiched between two Au electrodes.For the sake of facilitating discussions,we denote infinite long systems of[V(Cp)2(SiH2)]∞,[V(Cp)2(SiH2)2]∞, and[V(Cp)2(SiH2)3]∞as a,b,and c,respectively(Fig.1(a));we also denote two-probe devices of Au/[V(Cp)2(SiH2)]2/Au,Au/ [V(Cp)2(SiH2)2]2/Au,andAu/[V(Cp)2(SiH2)3]2/Au as D-a,D-b,and D-c(Fig.1(b)).We find that the length of the silicon moiety has notable effects on the electronic and transport properties of the silicon bridged polyvanadocenes.

    2 Models and computational methods

    For computing electronic structures,the infinite long systemsof a,b,and c are modeled via using the periodic condition in the axial direction(Fig.1(a)).Each repeated cell included two vanadocene units.Such supercell could facilitate to consider the magnetic coupling between V atoms.The polymers are separated by~2.4 nm from each other to neglect inter-chain interaction.All the periodic systems are fully optimized until the maximum absolute force is less than 0.2 eV·nm-1.

    Table 1 Calculation results of reaction energy(ΔEreaction),supercell length(L),total energy in the FM andAFM states(ETot,FMand ETot,AFM), energy difference between FM andAFM states(ΔEFM-AFM),magnetic moment(S)for a,b,c,D-a,D-b,and D-c

    For computing transport properties,the two-probe devices of D-a,D-b,and D-c are adopted(Fig.1(b)).We carved out one supercell,i.e.,[V(Cp)2(SiH2)]2,[V(Cp)2(SiH2)2]2,and[V(Cp)2(SiH2)3]2,as the central scatter region based on the optimized periodic structures to be sandwiched between two Au electrodes. The semi-infinite Au electrodes were modeled by two Au(111)-(3×3)surfaces,and five layers were used for the left and right sides.As the sulfur atom has good affinity with the gold surface, dithiolate derivatives have been used for the construction of metal/ molecule/metal junctions in general53-56.Therefore,in the present work,we also used the sulfur atom as the junction to link the Au electrode and the bivanadocene system.The sulfur atom was set to the hollow site of the electrode as most of the studies had elucidated that the hollow site was more favorable in energy than the top and bridge adsorption sites53-56.In this model,the S-Au distance was set as 0.2341 nm according to the reported literature57,58.Calculations were carried out by changing the applied bias in the step of 0.2 V in the range of-1.0-1.0 V.

    All the computations for the infinitely long and two-probe systems are performed using an ab initio code package,Atomistix ToolKit(ATK),which is based on combination of DFT and NEGF methods59-62.Ageneralized gradient approximation(GGA)within the Perdew-Burke-Ernzerhof(PBE)formalism is employed to describe the exchange correlations between electrons.Spin polarization of V atom is considered in all calculations.The on-site correlation effects among 3d electrons of the Vatom are accounted for by using the GGA+U scheme62,where the parameter U-J (Ueff)62is set to be 3.4.A double-ζ basis functional with polarization(DZP)is used for all atoms.A(1×1×100)k-point in string Brillouin zone(x,y,z directions,respectively)is employed. 150 Ry cutoff energy is applied to describe the periodic wave function.

    3 Results and discussion

    The stability of introducing silicon bridge between vanadocenes is evaluated by the reaction energy ΔE as given following:

    Fig.2 Computed projected density of states(PDOS)of polymetallocenes a,b,and c

    The calculated ΔEreactionare listed in Table 1.These values of ΔEreactionare all negative indicating exothermic reaction.Hence, inserting silicon bridge between vanadocenes is energetically reasonable.

    In this section,we first show results of magnetism and band structures of a-c,followed by transport properties computed based on the two-probe devices of D-a-D-c.

    3.1Magnetism

    Both the AFM state and FM state of a-c are considered.The calculated energy differences ΔEFM-AFMbetween the FM and AFM states are listed in Table 1.The values of ΔEFM-AFMare-5.88,-0.11,and 0.53 meV for a,b,and c,respectively.This case clearly demonstrates that the length of the silicon bridge plays important role in governing the magnetism.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.The polymers a and b favor the FM ground state while c prefers the AFM state.The same case is also found for the two-probe devices D-a,D-b,and D-c(Table 1).In fact,the short SiH2unit in a serves as a FM coupling unit for two spin V atoms to be FM coupled.However,in c,the V spin dots are separated far away by the long(SiH2)3segment,direct V-V FM coupling is destroyed.The FM state of a and b shows a magnetic moment S~6.0μBper supercell,i.e.,~3.0μBper V atom(Table 1), three times larger than that of the V-benzene or V-cyclopentadiene multidecker complex63.This value is in agreement with that in vanadocene64.The magnetic behavior of the FM and AFM states is reflected in the projected density of states(PDOS)shown in Fig.2.For the FM state of a and b,the majority spin below the Fermi level(Ef)is greater than the minority spin.The spin polarization is mainly due to the Vatoms.For theAFM state of c,the majority spin and the minority spin are nearly the same near the Efso that their net magnetic moments are nearly zero.These novel magnetic properties of a-c may have potential applications for magnetic nanodevices.

    Fig.3 Computed band structures(left panels)of(a,b)polymetallocene a,(c,d)polymetallocene b,and(e,f)polymetallocene c and the Kohn-Sham orbitals(right panels)corresponding to the energy levels(highlighted in color lines)near Efat the Γ point The iso-surface value is 5 e·nm-3.

    3.2Band structure

    Fig.3 plots the band structures of a-c.It is known that in vanadocene the five d orbitals of V atom split into adz2(a1)orbital and two sets of doubly degeneratedxy,x2-y2(e2)anddxz,yz(e1)orbitals under the Cp ligand field.Here,the a-c supercell contains two V atoms which contribute ten d orbitals to couple with the Cp π orbitals,thereby resulting in ten bands:two a1-like bands,four e2-like bands,and four e1-like bands.In the spin-up state of a and b, the a1-like bands and the e2-likebands are occupied while the e1-likebands are unoccupied.However,in the spin-down state,all the a1-,e2-,and e1-like bands are unoccupied.Therefore,each vanadocene unit in a and b possesses a magnetic moment of S~3.0μB, in line with the computed magnetism.Clearly,the spin-down state has a slightly lower band gap than the spin-up state,suggesting a slightly stronger conductivity in the spin-down state of a and b. In the AFM c,the spin-up state and the spin-down state exhibit a symmetrical band structure.The band gaps are in the order of a> b>c,indicating that the conductivity should follow the sequence of c>b>a.Another feature can be found that the valence and conduction bands in the spin-down state of b display larger dispersion owing to the good coupling between the vanadocene unit and the silicon bridge while those of c show evident flat character due to the block effect of the long silicon bridge.From the PDOS, one can see that the valence band mainly comes from the Vd state, while the conduction band stems from both V d and Si p states. Therefore,the silicon σ orbitals can also participate in conducting by accepting electrons from the V atom.

    Fig.4 (a)Total I-V curves of D-a,D-b,and D-c two-probe devices;(b,c,d)Spin polarized I-V curves of D-a,D-b,and D-c two-probe devices,respectively

    3.3Transport properties

    To confirm the predication of the transport property based on the electronic structures,we have also computed transport properties of two-probe devices D-a,D-b,and D-c by sandwiched finite-sized a,b,and c between two Au electrodes(c.f.Fig.1(b)). The computed current-voltage(I-V)curves based on the twoprobe devices are shown in Fig.4,from which several characteristics attributable to silicon bridge can be found at the bias voltage of-1.0-1.0 V.

    First,the silicon bridge could remarkably tune the magnitude of total current(Fig.4(a)).Overall,the two-probe system D-c shows the highest conductivity,followed by D-b,while D-a is the lowest.This is in good agreement with the band structure analysis. Fig.5(a)gives the transmission spectra(TS)at 0.0 V bias voltage. Clearly,near the Ef,D-c shows the largest TS peak,while D-a has the smallest.

    Second,D-a and D-b systems show spin polarized transport property,i.e.,the spin-down state gives a higher conductivity than the spin-up state(Fig.4(b,c)).In contrast,for D-c,the spin-up state and the spin-down state exhibit close magnitude of current under a certain bias voltage,suggesting an unpolarized transport property.These results are consistent with electronic structures of their infinitely long systems.Fig.5(a)also indicates that the spindown states of D-a and D-b offer larger TS peaks than the spin-up state near Ef,while the spin-up state and spin-down state in D-c devote similar TS contributions.

    Third,D-a and D-c give rise to evident negative differentialresistance(NDR)peaks at the considered bias voltage-1.0-1.0 V,while D-b cannot.In fact,in metallocene polymers,the Cp ligands confine the d states of metal atom,making the metal atom an intrinsic molecular dot.Experiments have demonstrated that the metal-to-metal communication plays an important role in the conducting behavior65-67.Fig.6 plots the calculated electrostatic potential for D-a,D-b,and D-c two-probe devices.Evidently,in D-a and D-c,the saturated silicon bridge blocks the two vanadocene units effectively,leading to an ionic-like interdot coupling. Electronic transport through ionic-like coupled quantum dots are covered by Coulomb blockade theory68,69,which usually results in NDR behavior.In contrast,electron delocalization through silicon bridge becomes easier for the parallel orientation compared to the V-shape.The covalent-like interdot coupling occurs in D-b owing to the high electron delocalization through the silicon bridge.The strong covalent-like interdot coupling in D-b induces a coherent tunneling,and thus cannot give a significant NDR behavior.The above differences may be originated from the orientation of the two V(Cp)2,which is V-shape for a and c(odd-numbered SiH2unit)and parallel for b(even-numbered SiH2unit).The NDR phenomenon of D-a and D-c is of important application in multiple-valued logic devices.For D-a,NDR peaks appear at 0.2 and-0.8 V;and for D-c,NDR peaks locate at 0.6 and-0.8 V.This NDR feature can be further interpreted from the TS distribution exemplified by D-a in Fig.5(b).Clearly,at 0.2 V and near the Ef, the magnitude of the TS of D-a is much larger than that of 0.4 V, resulting in the sharp dropping of the current from 0.2 to 0.4 V.

    Fig.5 (a)Transmission spectra(TS)of D-a,D-b,and D-c twoprobe devices at 0.0 V bias voltage;(b)TS of D-a two-probe device at 0.0,0.2,and 0.4 V bias voltages;(c)TS of D-b two-probe device at 1.0 and-1.0 V bias voltages

    Last,the conductivity is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.The magnitude of the current under a negative bias voltage is evidently larger than that under a corresponding positive bias voltage.This phenomenon can be reflected from the TS in Fig.5(c).Take D-b as an example,clearly,TS peaks near Efat V=-1.0 V are larger than those at V=1.0 V.

    Fig.6 Computed contour plot of potential distribution for D-a,D-b,and D-c

    4 Conclusions

    Silicon bridge tuned electronic and transport properties of polymetallocenes,[V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c); m=∞;Cp=cyclopentadienyl),are studied using DFT and NEGF methods.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.a and b favor the ferromagnetic(FM)state ground state,while c prefers the antiferromagnetic(AFM)ground state.Each V atom in the FMstate of a and b shows a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with the electronic structures.The conductivity follows the sequence of c>b>a.For a and b,the spin-down state has a slightly stronger conductivity than the spin-up state.a and c can both give rise to evident negative differential resistance behavior while b cannot.This differences may be originated from the orientation of the two V(Cp)2:V-shape for a and c(odd-numbered SiH2unit) leading to ionic-like interdot coupling while parallel for b(evennumbered SiH2unit)leading to covalent-like interdot coupling.In addition,the conductivity of a-c is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.

    References

    (1) Kim,K.T.;Han,J.;Ryu,C.Y.;Sun,F.C.;Sheiko,S.S.; Winnik,M.A.;Manners,I.Macromolecules 2006,39,7922. doi:10.1021/ma060607l

    (2)Hatanaka,Y.;Okada,S.;Minami,T.;Goto,M.;Shimada,K. Organometallics 2005,24,1053.doi:10.1021/om040132r

    (3) Liu,K.;Clendenning,S.B.;Friebe,L.;Chan,W.Y.;Zhu,X.B.; Freeman,M.R.;Yang,G.C.;Yip,C.M.;Grozea,D.;Lu,Z.H.; Manners,I.Chem.Mater.2006,18,2591.doi:10.1021/ cm052339w

    (4) Friebe,L.;Liu,K.;Obermeier,B.;Petrov,S.;Dube,P.; Manners,I.Chem.Mater.2007,19,2630.doi:10.1021/ cm062470j

    (5) Kumar,M.;Metta-Magana,A.J.;Pannell,K.H. Organometallics 2008,27,6457.doi:10.1021/om800537b

    (6) Huo,J.;Wang,L.;Yu,H.J.;Deng,L.B.;Ding,J.H.;Tan,Q.H.; Liu,Q.Q.;Xiao,A.;Ren,G.Q.J.Phys.Chem.B 2008,112, 11490.doi:10.1021/jp7121888.

    (7) Michinobu,T.;Kumazawa,H.;Noguchi,K.;Shigehara,K. Macromolecules 2009,42,5903.doi:10.1021/ma9013324

    (8) Miles,D.;Ward,J.;Foucher,D.A.Macromolecules 2009,42, 9199.doi:10.1021/ma9018608

    (9) Berenbaum,A.;Braunschweig,H.;Dirk,R.;Englert,U.;Green, J.C.;Jakle,F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 2000,122,5765.doi:10.1021/ja000311

    (10) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,785.doi:10.1021/om049004t

    (11) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,4483.doi:10.1021/om0503951

    (12) Bagh,B.;Sadeh,S.;Green,J.C.;Muller,J.Chem.Eur.J.2014, 20,2318.doi:10.1002/chem.201303925

    (13) Stoeckli-Evans,H.;Osborne,A.G.;Whiteley,R.H. J.Organomet.Chem.1980,194,91.doi:10.1016/S0022-328X (00)90341-3

    (14) Foucher,D.A.;Edwards,M.;Burrow,R.A.;Lough,A.J.; Manners,I.Organometallics 1994,13,4959.doi:10.1021/ om00024a044

    (15) Rulkens,R.;Lough,A.J.;Manners,I.Angew.Chem.1996,108, 1929.doi:10.1002/ange.19961081609

    (16) Jakle,F.;Rulkens,R.;Zech,G.;Foucher,D.A.;Lough,A.J.; Manners,I.Chem.Eur.J.1998,4,2117.doi:10.1002/(SICI) 1521-3765

    (17) Braunschweig,H.;Damme,A.;Demeshko,S.;Duck,K.; Kramer,T.;Krummenacher,I.;Meyer,F.;Radacki,K.;Stellwag-Konertz,S.;Whittell,G.R.J.Am.Chem.Soc.2015,137,1492. doi:10.1021/ja510884h

    (18) Withers,H.P.;Seyferth,D.Organometallics 1982,1,1283. doi:10.1021/om00070a005

    (19) Seyferth,D.;Withers,H.P.Organometallics 1982,1,1275. doi:10.1021/om00070a004

    (20) Butler,I.R.;Cullen,W.R.;Einstein,F.W.B.;Rettig,S.J.; Willis,A.J.Organometallics 1983,2,128.doi:10.1021/ om00073a024

    (21) Pudelski,J.K.;Gates,D.P.;Rulkens,R.;Lough,A.J.; Manners,I.Angew.Chem.1995,107,1633.doi:10.1002/ ange.19951071335

    (22) Rulkens,R.;Gates,D.P.;Balaishis,D.;Pudelski,J.K.; Mcintosh,D.F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 1997,119,10976.doi:10.1021/ja972043u

    (23) Broussier,R.;Da Rold,A.;Gautheron,B.;Dromzee,Y.; Jeannin,Y.Inorg.Chem.1990,29,1817.doi:10.1021/ ic00335a011

    (24) Whittell,G.R.;Partridge,B.M.;Presley,O.C.;Adams,C.J.; Manners,I.Angew.Chem.2008,120,4426.doi:10.1002/ ange.200705672

    (25) Matas,I.;Whittell,G.R.;Partridge,B.M.;Holland,J.P.; Haddow,M.F.;Green,J.C.;Manners,I.J.Am.Chem.Soc. 2010,132,13279.doi:10.1021/ja103367e

    (26) Hu,Y.Q.;Zhu,N.;Han,L.M.Acta Phys.-Chim.Sin.2015,31, 227.[胡宇強,竺寧,韓利民.物理化學(xué)學(xué)報,2015,31,227.] doi:10.3866/PKU.WHXB201411061

    (27) Cao,Q.Y.;Lu,X.;Kuang,R.Y.;Li,Z.H.;Yang,Z.Y.Acta Phys.-Chim.Sin.2010,26,2158.[曹遷永,盧鑫,匡仁云,李志華,楊震宇.物理化學(xué)學(xué)報,2010,26,2158.]doi:10.3866/ PKU.WHXB20100822

    (28) Temple,K.;Dziadek,S.;Manners,I.Organometallics 2002,21, 4377.doi:10.1021/om020492j

    (29) Pannell,K.H.;Dementiev,V.V.;Li,H.;Cervantes-Lee,F.; Nguyen,M.T.;Diaz,A.F.Organometallics 1994,13,3644. doi:10.1021/om00021a043

    (30) Foucher,D.;Ziembinski,R.;Petersen,R.;Pudelski,J.; Edwards,M.;Ni,Y.Z.;Massey,J.;Jaeger,C.R.;Vansco,G.J.; Manners,I.Macromolecules 1994,27,3992.doi:10.1021/ ma00092a046

    (31) Rulkens,R.;Lough,A.J.;Manners,I.J.Am.Chem.Soc.1994, 116,797.doi:10.1021/ja00081a062

    (32) Du,H.;Park,K.C.;Wang,F.;Wang,S.;Liu,Q.;Zhang,S.W.;Huang,Y.L.;Shi,S.J.Organometallics 2007,26,6219. doi:10.1021/om7004468

    (33) Altmann,R.;Gausset,O.;Horn,D.;Jurkschat,K.;Schürmann, M.Organometallics 2000,19,430.doi:10.1021/om9905660

    (34) Resendes,R.;Berenbaum,A.;Stojevic,G.;J?kle,F.;Bartole, A.;Zamanian,F.;Dubois,G.;Hersom,C.;Balmain,K.; Manners,I.Adv.Mater.2000,12,327.doi:10.1002/(SICI)1521-4095(200003)

    (35) Massey,J.A.;Winnik,M.A.;Manners,I.J.Am.Chem.Soc. 2001,123,3147.doi:10.1021/ja003174p

    (36)MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Coyle,T.W.; Raju,N.P.;Greedan,J.E.;Ozin,G.A.;Manners,I.Science 2000,287,1460.doi:10.1126/science.287.5457.1460

    (37) MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Raju,N.P.; Greedan,J.E.;Ozin,G.A.;Manners,I.J.Am.Chem.Soc.2000, 122,3878.doi:10.1021/ja992006y

    (38) Kulbaba,K.;Resendes,R.;Cheng,A.;Bartole,A.;Safa-Sefat, A.;Coombs,N.;Stover,H.D.H.;Greedan,J.E.;Ozin,G.A.; Manners,I.Adv.Mater.2001,13,732.doi:10.1002/1521-4095 (200105)13

    (39) Espada,L.I.;Shadaram,M.;Robillard,J.;Pannell,K.H. J.Inorg.Organomet.Polym.2000,10(4),169.doi:10.1023/A: 1016634505173

    (40) Liu,R.;Ke,S.H.;Baranger,H.U.;Yang,W.T.J.Am.Chem. Soc.2006,128,6274.doi:10.1021/ja057054z

    (41) Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Annu.Rev.Mater. Sci.2000,30,545.doi:10.1146/annurev.matsci.30.1.545

    (42) VanderWiel,W.G.;De Franceschi,S.;Elzerman,J.M.; Fujisawa,T.;Tarucha,S.;Kouwenhoven,L.P.Rev.Mod.Phys. 2003,75,1.doi:10.1103/RevModPhys.75.1

    (43) Dement′ev,V.V.;Cervantes-Lee,F.;Parkanyi,L.;Sharma,H.; Pannell,K.H.Organometallics 1993,12,1983.doi:10.1021/ om00029a067

    (44) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.;Massa, W.;Wocadlo,S.;Pebler,J.Inorg.Chem.1993,32,5421. doi:10.1021/ic00075a080

    (45) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.; Behrendt,A.;Massa,W.;Wocadlo,S.;Reijerse,E.Inorg.Chem. 1995,34,743.doi:10.1021/ic00107a028

    (46) Elschenbroich,C.;Lu,F.;Nowotny,M.;Burghaus,O.; Pietzonka,C.;Harms,K.Organometallics 2007,26,4025. doi:10.1021/om700300j

    (47) Elschenbroich,C.;Lu,F.;Burghaus,O.;Pietzonka,C.;Harms, K.Chem.Commun.2007,30,3201.doi:10.1039/b703349d

    (48) Pannell,K.H.;Imshennik,V.I.;Maksimov,Y.V.;Il′ina,M.N.; Sharma,H.K.;Papkov,V.S.;Suzdalev,I.P.Chem.Mater.2005, 17,1844.doi:10.1021/cm0403558

    (49) Zhang,G.L.;Pei,L.;Yu,J.;Shang,Y.;Zhang,H.;Liu,B.Theor. Chem.Acc.2013,132,1386.doi:10.1007/s00214-013-1386-0

    (50) Adams,C.J.;Braunschweig,H.;Fu?,M.;Kraft,K.;Kupfer,T. Manners,I.Radacki,K.;Whittell,G.R.Chem.Eur.J.2011,17, 10379.doi:10.1002/chem.201100919

    (51) Braunschweig,H.;Kaupp,M.;Adams,C.J.;Kupfer,T.; Radacki,K.;Schinzel,S.J.Am.Chem.Soc.2008,130,11376. doi:10.1021/ja802034p

    (52) Braunschweig,H.;Adams,C.J.;Kupfer,T.;Manners,I.; Richardson,R.M.Whittell,G.R.Angew.Chem.Int.Ed.2008, 47,3826.doi:10.1002/anie.200800081

    (53) Gr?nbeck,H.;Curioni,A.;Andreoni,W.J.Am.Chem.Soc. 2000,122,3839.doi:10.1021/ja993622x

    (54) Johansson,?.;Stafstr?m,S.Chem.Phys.Lett.2000,322,301. doi:10.1016/S0009-2614(00)00468-1

    (55) Kaun,C.C.;Larade,B.;Guo,H.Phys.Rev.B.2003,67,121411 (R).doi:10.1103/PhysRevB.67.121411

    (56)Yin,X.;Liu,H.M;Zhao,J.W.J.Chem.Phys.2006,125, 094711.doi:org/10.1063/1.2345061

    (57)Yin,X.;Li,Y.W.;Zhang,Y.;Li,P.;Zhao,J.W.Chem.Phys. Lett.2006,422,111.doi:10.1016/j.cplett.2006.02.020

    (58) Staykov,A.;Nozaki,D.;Yoshizawa,K.J.Phys.Chem.C 2007, 111,3517.doi:10.1021/jp067612b

    (59) Taylor,J.;Guo,H.;Wang,J.Phys.Rev.B 2001,63,245407. doi:10.1103/PhysRevB.63.245407

    (60) Brandbyge,M.;Mozos,J.L.;Ordejón,P.;Taylor,J.;Stokbro,K. Phys.Rev.B.2002,65,165401.doi:10.1103/ PhysRevB.65.165401

    (61) Soler,J.M.;Artacho,E.;Gale,J.D.;Garcia,A.;Junquera,J.; Ordejon,P.;Sanchez-Portal,D.J.Phys.Condens.Matter 2002, 14,2745.doi:10.1088/0953-8984/14/11/302

    (62)ATK,Version 13.8,atomistix a/s,www.quantumwise.com (accessed Oct 27,2015).

    (63) Miyajima,K.;Nakajima,A.;Yabushita,S.;Knickelbein,M.B.; Kaya,K.J.Am.Chem.Soc.2004,126,13202.doi:10.1021/ ja046151+

    (65) Park,P.;Lough,A.J.;Foucher,D.A.Macromolecules 2002,35, 3810.doi:10.1021/ma0120052

    (66) Rulkens,R.;Lough,A.J.;Manners,I.;Lovelace,S.R.;Grant, C.;Geiger,W.E.J.Am.Chem.Soc.1996,118,12683. doi:10.1021/ja962470s

    (67) Foucher,D.A.;Honeyman,C.H.;Nelson,J.M.;Tang,B.Z.; Manners,I.Angew.Chem.Int.Ed.Engl.1993,32,1709. doi:10.1002/anie.199317091

    (68)Averin,D.V.;Likharev,K.K.J.Low Temp.Phys.1986,62, 345.doi:10.1007/BF00683469

    (69) Van der Vaart,N.C.;Kouwenhoven,L.P.;De Ruyter van Steveninck,M.P.;Nazarov,Y.V.;Harmans,C.J.P.M.Phys. Rev.B 1997,55,9746.doi:10.1103/PhysRevB.55.9746

    Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes

    PEI LeiZHANG Gui-Ling*SHANG YanSUN Cui-CuiGAN Tian
    (College of Chemical and Environmental Engineering,Harbin University of Science and Technology,Harbin 150080,P.R.China)

    Silicon bridge-tuned electronic structures and transport properties of polymetallocenes, [V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=cyclopentadienyl),are studied using the density functional theory(DFT)and non-equilibrium Green′s function(NEGF)methods.As the silicon bridge is lengthened,the V-V ferromagnetic(FM)coupling is weakened,while the antiferromagnetic(AFM)coupling is strengthened.Polymetallocenes a and b favor the FM ground state,while c prefers the AFM ground state.Each V atom in the FM state of a and b has a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with their electronic structures.Their conductivities follow the sequence c>b>a.For a and b,the spin-down state has slightly higher conductivity than the spin-up state.Polymetallocenes a and c can both display evident negative differential resistance(NDR)behavior,while b cannot.This difference may originate from the orientation of the two V(Cp)2units,which is V-shaped for a and c(odd number of SiH2units),leading to ioniclike inter-quantum dot coupling,and parallel for b(even number of SiH2units),leading to covalent-like interquantum dot coupling.In addition,the conductivity of a-c is sensitive to the current direction because of the asymmetric coupling between the scattering region and two electrodes.

    Silicon bridge;Polymetallocene;Electronic structure;Transport property;Theoretical study

    April 5,2016;Revised:June 28,2016;Published online:June 29,2016.

    .Email:guiling-002@163.com;Tel:+86-451-86392705.

    O641

    10.3866/PKU.WHXB201606295

    The project was supported by the National Natural Science Foundation of China(51473042).國家自然科學(xué)基金(51473042)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (64) Barlow,S.;O′Hare,D.Chem.Rev.1997,97,637.10.1021/ cr960083v

    猜你喜歡
    鐵磁性基態(tài)導(dǎo)電性
    鐵磁性物質(zhì)對地磁觀測影響的野外測試
    一類非線性Choquard方程基態(tài)解的存在性
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    一類反應(yīng)擴散方程的Nehari-Pankov型基態(tài)解
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    非線性臨界Kirchhoff型問題的正基態(tài)解
    大提離下脈沖渦流對鐵磁性材料測厚研究
    中國測試(2021年4期)2021-07-16 07:48:54
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    核電站鐵磁性高加管漏磁檢測技術(shù)淺析
    科技視界(2015年30期)2015-10-22 11:26:44
    99久久久亚洲精品蜜臀av| 丁香欧美五月| 97人妻精品一区二区三区麻豆| 欧美黄色片欧美黄色片| 国产高清有码在线观看视频| 两人在一起打扑克的视频| 久久人妻av系列| 国产伦在线观看视频一区| 女同久久另类99精品国产91| 一区福利在线观看| 亚洲国产欧美人成| 午夜免费激情av| 夜夜夜夜夜久久久久| 99久久综合精品五月天人人| 午夜福利在线观看免费完整高清在 | 色综合亚洲欧美另类图片| 日本五十路高清| 少妇人妻一区二区三区视频| 亚洲中文字幕一区二区三区有码在线看 | 五月伊人婷婷丁香| 免费在线观看影片大全网站| 成人精品一区二区免费| 午夜福利成人在线免费观看| 中出人妻视频一区二区| 午夜福利视频1000在线观看| 真人一进一出gif抽搐免费| www.www免费av| 免费看美女性在线毛片视频| 久99久视频精品免费| 男插女下体视频免费在线播放| 91在线精品国自产拍蜜月 | 18禁裸乳无遮挡免费网站照片| 亚洲成人免费电影在线观看| 欧美日韩国产亚洲二区| 久久性视频一级片| 九九久久精品国产亚洲av麻豆 | 天天躁狠狠躁夜夜躁狠狠躁| 久久精品人妻少妇| 午夜福利在线在线| 欧美日本亚洲视频在线播放| 12—13女人毛片做爰片一| 日韩人妻高清精品专区| 日本免费一区二区三区高清不卡| 巨乳人妻的诱惑在线观看| 啦啦啦免费观看视频1| 一a级毛片在线观看| 国产三级中文精品| 一二三四在线观看免费中文在| 美女被艹到高潮喷水动态| 欧美日韩亚洲国产一区二区在线观看| 99精品在免费线老司机午夜| 波多野结衣巨乳人妻| 日韩大尺度精品在线看网址| 午夜精品一区二区三区免费看| 黄色丝袜av网址大全| 欧美3d第一页| 亚洲精品乱码久久久v下载方式 | 99久久精品国产亚洲精品| 狂野欧美白嫩少妇大欣赏| 国产激情久久老熟女| 精品久久久久久成人av| 无限看片的www在线观看| 亚洲熟女毛片儿| 此物有八面人人有两片| 色综合婷婷激情| 久久久久亚洲av毛片大全| 国产亚洲av高清不卡| 日韩欧美 国产精品| 欧美乱妇无乱码| 国产成人影院久久av| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 美女 人体艺术 gogo| 午夜a级毛片| 人妻丰满熟妇av一区二区三区| 视频区欧美日本亚洲| 日本熟妇午夜| 午夜a级毛片| 国产午夜福利久久久久久| 精品国产乱子伦一区二区三区| 欧美黄色淫秽网站| 亚洲黑人精品在线| 99久久无色码亚洲精品果冻| 中文字幕人成人乱码亚洲影| 一进一出抽搐gif免费好疼| 不卡av一区二区三区| 麻豆一二三区av精品| 久久人妻av系列| 久久午夜综合久久蜜桃| 免费看光身美女| 免费在线观看日本一区| 99久国产av精品| 观看美女的网站| 久久久久久大精品| 亚洲中文字幕日韩| 啦啦啦韩国在线观看视频| 国产成人aa在线观看| 免费大片18禁| 久久精品影院6| 俺也久久电影网| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 琪琪午夜伦伦电影理论片6080| 桃红色精品国产亚洲av| 国产成人av激情在线播放| 国产精品久久久久久久电影 | 老熟妇乱子伦视频在线观看| 久久人人精品亚洲av| 天堂√8在线中文| 久久天躁狠狠躁夜夜2o2o| 99热这里只有精品一区 | 丰满人妻一区二区三区视频av | 狠狠狠狠99中文字幕| 成人性生交大片免费视频hd| 日日摸夜夜添夜夜添小说| 国产乱人视频| 男女床上黄色一级片免费看| 亚洲狠狠婷婷综合久久图片| 日本 av在线| 欧美三级亚洲精品| 亚洲精品456在线播放app | 一二三四社区在线视频社区8| 日本 av在线| 99国产极品粉嫩在线观看| 精华霜和精华液先用哪个| 中文字幕最新亚洲高清| 日韩欧美免费精品| 亚洲国产欧美人成| 久久久久久久午夜电影| 久久婷婷人人爽人人干人人爱| 国产主播在线观看一区二区| 热99在线观看视频| 久久中文看片网| 免费高清视频大片| 日本黄色片子视频| 一级黄色大片毛片| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 看片在线看免费视频| 成人国产一区最新在线观看| 日本a在线网址| 成熟少妇高潮喷水视频| 午夜福利在线观看免费完整高清在 | 成人无遮挡网站| 国产成人av教育| 90打野战视频偷拍视频| 国产精品一区二区精品视频观看| av福利片在线观看| 一区二区三区激情视频| 人人妻,人人澡人人爽秒播| 嫩草影视91久久| 黄色女人牲交| 国产一区二区激情短视频| 男女视频在线观看网站免费| 国产亚洲av嫩草精品影院| 一本一本综合久久| 精品一区二区三区视频在线 | 少妇丰满av| 亚洲专区中文字幕在线| 人人妻人人澡欧美一区二区| 91av网一区二区| 天堂√8在线中文| 麻豆av在线久日| 怎么达到女性高潮| 国产成人系列免费观看| 黄片大片在线免费观看| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 香蕉国产在线看| 韩国av一区二区三区四区| 国产又色又爽无遮挡免费看| 香蕉国产在线看| 国产亚洲精品av在线| 一级a爱片免费观看的视频| 中文在线观看免费www的网站| 老司机深夜福利视频在线观看| 他把我摸到了高潮在线观看| aaaaa片日本免费| 手机成人av网站| 国产精品,欧美在线| 黄频高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费| a级毛片a级免费在线| 欧美日韩中文字幕国产精品一区二区三区| 一个人看的www免费观看视频| 人人妻,人人澡人人爽秒播| 国产一区二区在线av高清观看| 亚洲国产色片| 丰满的人妻完整版| 免费看日本二区| or卡值多少钱| 国产精品爽爽va在线观看网站| 亚洲av电影在线进入| 噜噜噜噜噜久久久久久91| www.999成人在线观看| 亚洲中文字幕日韩| 亚洲国产欧美网| 成人欧美大片| 国产精品野战在线观看| 熟妇人妻久久中文字幕3abv| 国产一区二区三区视频了| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 全区人妻精品视频| 久久这里只有精品中国| 久久久精品欧美日韩精品| 成人18禁在线播放| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 亚洲精品乱码久久久v下载方式 | 一区福利在线观看| 不卡一级毛片| a在线观看视频网站| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 可以在线观看的亚洲视频| 毛片女人毛片| 日本 欧美在线| av欧美777| 俄罗斯特黄特色一大片| 女生性感内裤真人,穿戴方法视频| 亚洲av日韩精品久久久久久密| 久久久精品欧美日韩精品| 又爽又黄无遮挡网站| 99精品久久久久人妻精品| 性欧美人与动物交配| 成人三级做爰电影| 免费一级毛片在线播放高清视频| 国产午夜福利久久久久久| 97人妻精品一区二区三区麻豆| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放| 18美女黄网站色大片免费观看| 亚洲成a人片在线一区二区| 色视频www国产| 狂野欧美激情性xxxx| 老司机福利观看| 成年免费大片在线观看| 久久午夜综合久久蜜桃| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 麻豆成人av在线观看| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 88av欧美| 99久久无色码亚洲精品果冻| 又爽又黄无遮挡网站| 我的老师免费观看完整版| 黄片小视频在线播放| 亚洲av熟女| 天堂网av新在线| 小说图片视频综合网站| 久久精品夜夜夜夜夜久久蜜豆| 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 人人妻人人澡欧美一区二区| 午夜精品久久久久久毛片777| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| 中亚洲国语对白在线视频| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区 | 午夜福利18| 搡老妇女老女人老熟妇| 看免费av毛片| 女同久久另类99精品国产91| 国产亚洲av高清不卡| 欧美性猛交╳xxx乱大交人| 观看美女的网站| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 精品久久久久久成人av| 淫妇啪啪啪对白视频| 国产亚洲精品一区二区www| 九九在线视频观看精品| 国产乱人伦免费视频| 1000部很黄的大片| 蜜桃久久精品国产亚洲av| 久久精品91蜜桃| 成人国产综合亚洲| 久99久视频精品免费| 国产69精品久久久久777片 | 五月玫瑰六月丁香| 热99在线观看视频| 欧美黑人欧美精品刺激| 日韩三级视频一区二区三区| 国产一区二区三区在线臀色熟女| 热99re8久久精品国产| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 欧美在线黄色| 99re在线观看精品视频| 欧美黄色片欧美黄色片| 嫩草影院入口| 国产精品电影一区二区三区| 国产高清视频在线播放一区| 一个人免费在线观看电影 | 免费看日本二区| 精品久久久久久久久久久久久| 欧美一级a爱片免费观看看| 9191精品国产免费久久| 亚洲国产高清在线一区二区三| 亚洲国产精品999在线| 日本精品一区二区三区蜜桃| 成人三级做爰电影| 此物有八面人人有两片| 1024手机看黄色片| 香蕉久久夜色| 久久香蕉国产精品| 亚洲精品456在线播放app | 亚洲av免费在线观看| 少妇的丰满在线观看| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 国产亚洲欧美98| 成人一区二区视频在线观看| 老熟妇仑乱视频hdxx| 日本三级黄在线观看| 国产成人啪精品午夜网站| 99国产精品99久久久久| 日韩人妻高清精品专区| 中文字幕人妻丝袜一区二区| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 午夜两性在线视频| 一区福利在线观看| 国产成人福利小说| 一夜夜www| 在线免费观看不下载黄p国产 | 18禁国产床啪视频网站| 在线免费观看的www视频| 天天躁日日操中文字幕| 日本黄色片子视频| 国产精品99久久久久久久久| 又黄又粗又硬又大视频| 国产精品国产高清国产av| 好男人电影高清在线观看| 日韩三级视频一区二区三区| 午夜亚洲福利在线播放| 中文字幕人妻丝袜一区二区| 日本 欧美在线| 91麻豆av在线| 欧美乱色亚洲激情| 一进一出好大好爽视频| 亚洲精品中文字幕一二三四区| 熟女人妻精品中文字幕| 99热精品在线国产| 啦啦啦免费观看视频1| 成人午夜高清在线视频| 夜夜夜夜夜久久久久| 亚洲午夜精品一区,二区,三区| 日本与韩国留学比较| 亚洲精品美女久久久久99蜜臀| 亚洲五月婷婷丁香| 中文资源天堂在线| 国产高清videossex| 亚洲九九香蕉| bbb黄色大片| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 麻豆久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 欧美成人性av电影在线观看| 青草久久国产| 熟女少妇亚洲综合色aaa.| 日日夜夜操网爽| av国产免费在线观看| 亚洲精品美女久久av网站| x7x7x7水蜜桃| av中文乱码字幕在线| 久久久久九九精品影院| 精品国产亚洲在线| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 亚洲av电影不卡..在线观看| av在线蜜桃| 亚洲av熟女| 午夜福利成人在线免费观看| av国产免费在线观看| 真人一进一出gif抽搐免费| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 国产成人系列免费观看| 久久久色成人| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影 | 又粗又爽又猛毛片免费看| 性色av乱码一区二区三区2| 亚洲专区字幕在线| 久久久水蜜桃国产精品网| 99久久精品一区二区三区| 美女午夜性视频免费| 中出人妻视频一区二区| 大型黄色视频在线免费观看| 麻豆成人午夜福利视频| 禁无遮挡网站| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 免费无遮挡裸体视频| 少妇人妻一区二区三区视频| 亚洲男人的天堂狠狠| 国产蜜桃级精品一区二区三区| 一本精品99久久精品77| 亚洲av成人不卡在线观看播放网| 国产真实乱freesex| 国内久久婷婷六月综合欲色啪| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 99热精品在线国产| 国产不卡一卡二| www国产在线视频色| 男人舔奶头视频| 国产欧美日韩一区二区精品| 99视频精品全部免费 在线 | 日韩国内少妇激情av| 香蕉av资源在线| 欧美丝袜亚洲另类 | 一二三四社区在线视频社区8| 欧美黑人巨大hd| 久久性视频一级片| 国产1区2区3区精品| 免费在线观看日本一区| 午夜视频精品福利| 久久久久久大精品| 女人被狂操c到高潮| 国产一区二区三区视频了| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 国产精品影院久久| 视频区欧美日本亚洲| 亚洲成人久久爱视频| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 亚洲成av人片免费观看| 亚洲av中文字字幕乱码综合| 一二三四在线观看免费中文在| 宅男免费午夜| 好男人在线观看高清免费视频| 日本一本二区三区精品| 亚洲精品美女久久av网站| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 国产精品女同一区二区软件 | 真人一进一出gif抽搐免费| 国产单亲对白刺激| 久久久久久久久中文| 小说图片视频综合网站| 一区福利在线观看| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站 | 亚洲人成电影免费在线| 亚洲av成人av| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添小说| 久久久国产欧美日韩av| a级毛片在线看网站| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 国产人伦9x9x在线观看| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看 | 一级毛片高清免费大全| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 好男人电影高清在线观看| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区| 天堂√8在线中文| xxxwww97欧美| 国产精品综合久久久久久久免费| 日韩高清综合在线| 悠悠久久av| 免费观看的影片在线观看| h日本视频在线播放| 叶爱在线成人免费视频播放| 白带黄色成豆腐渣| 极品教师在线免费播放| 亚洲国产日韩欧美精品在线观看 | 亚洲熟妇中文字幕五十中出| 综合色av麻豆| e午夜精品久久久久久久| 欧美日韩瑟瑟在线播放| 免费电影在线观看免费观看| 免费在线观看成人毛片| 亚洲专区字幕在线| 宅男免费午夜| 男女视频在线观看网站免费| 亚洲精品在线美女| 18禁裸乳无遮挡免费网站照片| 亚洲色图av天堂| 国产精品女同一区二区软件 | 级片在线观看| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产 | 国产黄片美女视频| 日韩欧美免费精品| 国产伦精品一区二区三区视频9 | 最近在线观看免费完整版| 波多野结衣高清无吗| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 午夜福利在线观看吧| av天堂中文字幕网| a级毛片在线看网站| 999久久久国产精品视频| 在线观看免费午夜福利视频| 悠悠久久av| 欧美激情在线99| 亚洲电影在线观看av| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 免费在线观看成人毛片| 欧美又色又爽又黄视频| 日本一二三区视频观看| 村上凉子中文字幕在线| 97超级碰碰碰精品色视频在线观看| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 日本一二三区视频观看| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 全区人妻精品视频| 国内毛片毛片毛片毛片毛片| 老鸭窝网址在线观看| 免费观看精品视频网站| 波多野结衣高清无吗| 中文字幕熟女人妻在线| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 禁无遮挡网站| 精品久久久久久久久久久久久| 一进一出好大好爽视频| 在线免费观看不下载黄p国产 | 在线观看午夜福利视频| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| tocl精华| 精品不卡国产一区二区三区| 综合色av麻豆| 亚洲第一电影网av| 99国产极品粉嫩在线观看| 麻豆av在线久日| 国产亚洲精品综合一区在线观看| 99re在线观看精品视频| 亚洲欧美日韩卡通动漫| 岛国在线观看网站| 九色成人免费人妻av| 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 性欧美人与动物交配| 日韩免费av在线播放| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| 巨乳人妻的诱惑在线观看| 成人一区二区视频在线观看| 99久久无色码亚洲精品果冻| 亚洲国产高清在线一区二区三| 亚洲精品456在线播放app | 黄色成人免费大全| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| 欧美黄色片欧美黄色片| 亚洲av片天天在线观看| 免费观看人在逋| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 中文字幕精品亚洲无线码一区| 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 久久香蕉国产精品| 成人永久免费在线观看视频| tocl精华| 日韩欧美国产一区二区入口| 两个人看的免费小视频| 欧美黑人欧美精品刺激| 老熟妇乱子伦视频在线观看| 最近最新免费中文字幕在线| 亚洲乱码一区二区免费版| www.熟女人妻精品国产| 国产欧美日韩精品亚洲av| 欧美精品啪啪一区二区三区| 俺也久久电影网| 999精品在线视频| 亚洲国产精品久久男人天堂| 久久精品国产清高在天天线| 免费在线观看日本一区| 欧美xxxx黑人xx丫x性爽| 亚洲一区二区三区色噜噜| 精品久久蜜臀av无| 香蕉av资源在线| 一卡2卡三卡四卡精品乱码亚洲| or卡值多少钱| 日韩精品中文字幕看吧| 日本撒尿小便嘘嘘汇集6| 天天躁狠狠躁夜夜躁狠狠躁| xxxwww97欧美| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 欧美xxxx黑人xx丫x性爽|