• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    2016-11-22 09:48:53張桂玲孫翠翠
    物理化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:鐵磁性基態(tài)導(dǎo)電性

    裴 蕾 張桂玲 尚 巖 孫翠翠 甘 甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

    裴蕾張桂玲*尚巖孫翠翠甘甜

    (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

    利用密度泛函理論和非平衡格林函數(shù)的方法對硅橋調(diào)控后的聚茂釩體系([V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=環(huán)戊二烯基))的電子結(jié)構(gòu)和輸運性質(zhì)進行了研究。研究結(jié)果表明:隨著硅橋的增長,V-V的鐵磁性耦合變?nèi)醵磋F磁性耦合增強。a和b證實為鐵磁性基態(tài),而c更傾向為反鐵磁性基態(tài)。a和b的鐵磁性基態(tài)中的每個釩原子的磁距為3.0μB,超過釩-苯絡(luò)合物或者純聚茂釩體系的3倍。a-c的輸運性質(zhì)同它們的電子結(jié)構(gòu)相一致,導(dǎo)電性變化規(guī)律為c>b>a。對于a和b,自旋向下狀態(tài)的導(dǎo)電性略強于自旋向上狀態(tài)。a和c都發(fā)生了明顯的負微分電阻效應(yīng)而b卻沒有,這主要是由于兩個二茂釩的排列取向不同:a和c(SiH2為奇數(shù))中二茂釩呈V-型取向排列,進而導(dǎo)致了類似于離子鍵的量子點耦合,而b(SiH2是偶數(shù))中二茂釩是平行-型取向排列,從而導(dǎo)致了類似于共價鍵的量子點耦合。此外,由于散射區(qū)和兩個電極之間的不對稱耦合,a-c的導(dǎo)電性對電壓施加方向較敏感。

    硅橋鍵;聚茂釩;電子結(jié)構(gòu);輸運性質(zhì);理論研究

    1 Introduction

    Bridge linked polymetallocenes have attracted continuous interest over the past decade due to their unusual electrical,magnetic,and optical properties1-8.Abroad variety of such polymers has been synthesized in laboratory.The bridge moiety can vary fromgroup 13(B,Al,Ga,In)9-12to group 14(Si,Ge,Sn)13-17,group 15(P,As)18-20,and group 16 elements(S,Se)21,22.The metallocene can cover almost the whole first-row transition metal series(Sc-Ni)and some second-and third-row transition metal species(Zr, Hf,Pt)23-27.Much of the interest in these polymers has been focused on the saturated silicon-bridged polymetallocenes;representative examples are the silicon-bridged polyferrocenes28-33.It is confirmed that these copolymers can be utilized as charge dissipation coatings,variable refractive index sensing materials, and magnetic ceramic precursors over a range of length scales34-39.

    The silicon linkages possess a remarkable ability to tune the physicochemistry property of the resulting bridged polymetallocenes.The frontier orbitals of a metallocene largely preserve the d character of the transition metal atom;the cyclic π-coordinated carbon ligands confine the d states,making the metal atom an intrinsic molecular quantum dot.The saturated silicon bridges block the adjacent metallocene units spatially and energetically, ensuring the quantum dot behavior of the metal atom40.Quantum dots are of great interest in many research applications such as transistors,solar cells,light emitting diodes(LEDs),and diode lasers because electron transport through quantum dots can be precisely controlled by tailoring the molecular size41,42.The length of the silicon bridge plays a significant role in the interdot coupling.For example,Dement′ev et al.43have shown that the Fe-Fe interaction decreases with increasing of the bridge length in a series of silicon-bridged biferrocenes.Experiments have demonstrated that the conducting behavior of ferrocenylsilane polymers is highly dependent on the length of silicon bridge44. Studying the silicon moiety effect on the electronic and transport properties of the silicon-bridged polymetallocenes is desirable for the generation of functioned molecular devices.

    Recently,polymers derived from sandwiched vanadium complexes are of particular hot topics owing to the high density of unpaired spins of V atoms which are expected to exhibit remarkable physical properties with regard to magnetism or conductivity19.So far,much effort has been invested in the synthesis of silicon bridged polymers of vanadium complexes.Pioneering work in this area includes that of Elschenbroich et al.44-49and Braunschweig et al.50-52,who were the first to obtain such silicon bridged polymers by using ring-opening polymerization method of[V(η6-C6H5)2SiMeiPr]and[V(η5-C5H5)(η7-C7H7)SiMeiPr].They demonstrated that these polymers show a pronounced intramolecular electronic and magnetic communication.The silicon bridged vanadium containing polymers[V(Cp)2(SiH2)n]mare expected to be excellent candidates for exploring novel functional materials with fantastic magnetism and conductivity.Similar to the case in ferrocenylsilane polymers41,the silicon bridge length n in [V(Cp)2(SiH2)n]mmay play important role in governing the electronic and transport properties.

    In this context,three polyvanadocenes,[V(Cp)2(SiH2)n]m(n= 1,2,3;Cp=cyclopentadienyl),are the major focus of our studies by using density functional method(DFT)and non-equilibrium Green′s function(NEGF)methods(Fig.1).We first investigate the electronic properties of their infinite long systems(n=∞),followed by computing the transport properties of their two-probe devices by curving out one supercell(n=2)sandwiched between two Au electrodes.For the sake of facilitating discussions,we denote infinite long systems of[V(Cp)2(SiH2)]∞,[V(Cp)2(SiH2)2]∞, and[V(Cp)2(SiH2)3]∞as a,b,and c,respectively(Fig.1(a));we also denote two-probe devices of Au/[V(Cp)2(SiH2)]2/Au,Au/ [V(Cp)2(SiH2)2]2/Au,andAu/[V(Cp)2(SiH2)3]2/Au as D-a,D-b,and D-c(Fig.1(b)).We find that the length of the silicon moiety has notable effects on the electronic and transport properties of the silicon bridged polyvanadocenes.

    2 Models and computational methods

    For computing electronic structures,the infinite long systemsof a,b,and c are modeled via using the periodic condition in the axial direction(Fig.1(a)).Each repeated cell included two vanadocene units.Such supercell could facilitate to consider the magnetic coupling between V atoms.The polymers are separated by~2.4 nm from each other to neglect inter-chain interaction.All the periodic systems are fully optimized until the maximum absolute force is less than 0.2 eV·nm-1.

    Table 1 Calculation results of reaction energy(ΔEreaction),supercell length(L),total energy in the FM andAFM states(ETot,FMand ETot,AFM), energy difference between FM andAFM states(ΔEFM-AFM),magnetic moment(S)for a,b,c,D-a,D-b,and D-c

    For computing transport properties,the two-probe devices of D-a,D-b,and D-c are adopted(Fig.1(b)).We carved out one supercell,i.e.,[V(Cp)2(SiH2)]2,[V(Cp)2(SiH2)2]2,and[V(Cp)2(SiH2)3]2,as the central scatter region based on the optimized periodic structures to be sandwiched between two Au electrodes. The semi-infinite Au electrodes were modeled by two Au(111)-(3×3)surfaces,and five layers were used for the left and right sides.As the sulfur atom has good affinity with the gold surface, dithiolate derivatives have been used for the construction of metal/ molecule/metal junctions in general53-56.Therefore,in the present work,we also used the sulfur atom as the junction to link the Au electrode and the bivanadocene system.The sulfur atom was set to the hollow site of the electrode as most of the studies had elucidated that the hollow site was more favorable in energy than the top and bridge adsorption sites53-56.In this model,the S-Au distance was set as 0.2341 nm according to the reported literature57,58.Calculations were carried out by changing the applied bias in the step of 0.2 V in the range of-1.0-1.0 V.

    All the computations for the infinitely long and two-probe systems are performed using an ab initio code package,Atomistix ToolKit(ATK),which is based on combination of DFT and NEGF methods59-62.Ageneralized gradient approximation(GGA)within the Perdew-Burke-Ernzerhof(PBE)formalism is employed to describe the exchange correlations between electrons.Spin polarization of V atom is considered in all calculations.The on-site correlation effects among 3d electrons of the Vatom are accounted for by using the GGA+U scheme62,where the parameter U-J (Ueff)62is set to be 3.4.A double-ζ basis functional with polarization(DZP)is used for all atoms.A(1×1×100)k-point in string Brillouin zone(x,y,z directions,respectively)is employed. 150 Ry cutoff energy is applied to describe the periodic wave function.

    3 Results and discussion

    The stability of introducing silicon bridge between vanadocenes is evaluated by the reaction energy ΔE as given following:

    Fig.2 Computed projected density of states(PDOS)of polymetallocenes a,b,and c

    The calculated ΔEreactionare listed in Table 1.These values of ΔEreactionare all negative indicating exothermic reaction.Hence, inserting silicon bridge between vanadocenes is energetically reasonable.

    In this section,we first show results of magnetism and band structures of a-c,followed by transport properties computed based on the two-probe devices of D-a-D-c.

    3.1Magnetism

    Both the AFM state and FM state of a-c are considered.The calculated energy differences ΔEFM-AFMbetween the FM and AFM states are listed in Table 1.The values of ΔEFM-AFMare-5.88,-0.11,and 0.53 meV for a,b,and c,respectively.This case clearly demonstrates that the length of the silicon bridge plays important role in governing the magnetism.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.The polymers a and b favor the FM ground state while c prefers the AFM state.The same case is also found for the two-probe devices D-a,D-b,and D-c(Table 1).In fact,the short SiH2unit in a serves as a FM coupling unit for two spin V atoms to be FM coupled.However,in c,the V spin dots are separated far away by the long(SiH2)3segment,direct V-V FM coupling is destroyed.The FM state of a and b shows a magnetic moment S~6.0μBper supercell,i.e.,~3.0μBper V atom(Table 1), three times larger than that of the V-benzene or V-cyclopentadiene multidecker complex63.This value is in agreement with that in vanadocene64.The magnetic behavior of the FM and AFM states is reflected in the projected density of states(PDOS)shown in Fig.2.For the FM state of a and b,the majority spin below the Fermi level(Ef)is greater than the minority spin.The spin polarization is mainly due to the Vatoms.For theAFM state of c,the majority spin and the minority spin are nearly the same near the Efso that their net magnetic moments are nearly zero.These novel magnetic properties of a-c may have potential applications for magnetic nanodevices.

    Fig.3 Computed band structures(left panels)of(a,b)polymetallocene a,(c,d)polymetallocene b,and(e,f)polymetallocene c and the Kohn-Sham orbitals(right panels)corresponding to the energy levels(highlighted in color lines)near Efat the Γ point The iso-surface value is 5 e·nm-3.

    3.2Band structure

    Fig.3 plots the band structures of a-c.It is known that in vanadocene the five d orbitals of V atom split into adz2(a1)orbital and two sets of doubly degeneratedxy,x2-y2(e2)anddxz,yz(e1)orbitals under the Cp ligand field.Here,the a-c supercell contains two V atoms which contribute ten d orbitals to couple with the Cp π orbitals,thereby resulting in ten bands:two a1-like bands,four e2-like bands,and four e1-like bands.In the spin-up state of a and b, the a1-like bands and the e2-likebands are occupied while the e1-likebands are unoccupied.However,in the spin-down state,all the a1-,e2-,and e1-like bands are unoccupied.Therefore,each vanadocene unit in a and b possesses a magnetic moment of S~3.0μB, in line with the computed magnetism.Clearly,the spin-down state has a slightly lower band gap than the spin-up state,suggesting a slightly stronger conductivity in the spin-down state of a and b. In the AFM c,the spin-up state and the spin-down state exhibit a symmetrical band structure.The band gaps are in the order of a> b>c,indicating that the conductivity should follow the sequence of c>b>a.Another feature can be found that the valence and conduction bands in the spin-down state of b display larger dispersion owing to the good coupling between the vanadocene unit and the silicon bridge while those of c show evident flat character due to the block effect of the long silicon bridge.From the PDOS, one can see that the valence band mainly comes from the Vd state, while the conduction band stems from both V d and Si p states. Therefore,the silicon σ orbitals can also participate in conducting by accepting electrons from the V atom.

    Fig.4 (a)Total I-V curves of D-a,D-b,and D-c two-probe devices;(b,c,d)Spin polarized I-V curves of D-a,D-b,and D-c two-probe devices,respectively

    3.3Transport properties

    To confirm the predication of the transport property based on the electronic structures,we have also computed transport properties of two-probe devices D-a,D-b,and D-c by sandwiched finite-sized a,b,and c between two Au electrodes(c.f.Fig.1(b)). The computed current-voltage(I-V)curves based on the twoprobe devices are shown in Fig.4,from which several characteristics attributable to silicon bridge can be found at the bias voltage of-1.0-1.0 V.

    First,the silicon bridge could remarkably tune the magnitude of total current(Fig.4(a)).Overall,the two-probe system D-c shows the highest conductivity,followed by D-b,while D-a is the lowest.This is in good agreement with the band structure analysis. Fig.5(a)gives the transmission spectra(TS)at 0.0 V bias voltage. Clearly,near the Ef,D-c shows the largest TS peak,while D-a has the smallest.

    Second,D-a and D-b systems show spin polarized transport property,i.e.,the spin-down state gives a higher conductivity than the spin-up state(Fig.4(b,c)).In contrast,for D-c,the spin-up state and the spin-down state exhibit close magnitude of current under a certain bias voltage,suggesting an unpolarized transport property.These results are consistent with electronic structures of their infinitely long systems.Fig.5(a)also indicates that the spindown states of D-a and D-b offer larger TS peaks than the spin-up state near Ef,while the spin-up state and spin-down state in D-c devote similar TS contributions.

    Third,D-a and D-c give rise to evident negative differentialresistance(NDR)peaks at the considered bias voltage-1.0-1.0 V,while D-b cannot.In fact,in metallocene polymers,the Cp ligands confine the d states of metal atom,making the metal atom an intrinsic molecular dot.Experiments have demonstrated that the metal-to-metal communication plays an important role in the conducting behavior65-67.Fig.6 plots the calculated electrostatic potential for D-a,D-b,and D-c two-probe devices.Evidently,in D-a and D-c,the saturated silicon bridge blocks the two vanadocene units effectively,leading to an ionic-like interdot coupling. Electronic transport through ionic-like coupled quantum dots are covered by Coulomb blockade theory68,69,which usually results in NDR behavior.In contrast,electron delocalization through silicon bridge becomes easier for the parallel orientation compared to the V-shape.The covalent-like interdot coupling occurs in D-b owing to the high electron delocalization through the silicon bridge.The strong covalent-like interdot coupling in D-b induces a coherent tunneling,and thus cannot give a significant NDR behavior.The above differences may be originated from the orientation of the two V(Cp)2,which is V-shape for a and c(odd-numbered SiH2unit)and parallel for b(even-numbered SiH2unit).The NDR phenomenon of D-a and D-c is of important application in multiple-valued logic devices.For D-a,NDR peaks appear at 0.2 and-0.8 V;and for D-c,NDR peaks locate at 0.6 and-0.8 V.This NDR feature can be further interpreted from the TS distribution exemplified by D-a in Fig.5(b).Clearly,at 0.2 V and near the Ef, the magnitude of the TS of D-a is much larger than that of 0.4 V, resulting in the sharp dropping of the current from 0.2 to 0.4 V.

    Fig.5 (a)Transmission spectra(TS)of D-a,D-b,and D-c twoprobe devices at 0.0 V bias voltage;(b)TS of D-a two-probe device at 0.0,0.2,and 0.4 V bias voltages;(c)TS of D-b two-probe device at 1.0 and-1.0 V bias voltages

    Last,the conductivity is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.The magnitude of the current under a negative bias voltage is evidently larger than that under a corresponding positive bias voltage.This phenomenon can be reflected from the TS in Fig.5(c).Take D-b as an example,clearly,TS peaks near Efat V=-1.0 V are larger than those at V=1.0 V.

    Fig.6 Computed contour plot of potential distribution for D-a,D-b,and D-c

    4 Conclusions

    Silicon bridge tuned electronic and transport properties of polymetallocenes,[V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c); m=∞;Cp=cyclopentadienyl),are studied using DFT and NEGF methods.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.a and b favor the ferromagnetic(FM)state ground state,while c prefers the antiferromagnetic(AFM)ground state.Each V atom in the FMstate of a and b shows a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with the electronic structures.The conductivity follows the sequence of c>b>a.For a and b,the spin-down state has a slightly stronger conductivity than the spin-up state.a and c can both give rise to evident negative differential resistance behavior while b cannot.This differences may be originated from the orientation of the two V(Cp)2:V-shape for a and c(odd-numbered SiH2unit) leading to ionic-like interdot coupling while parallel for b(evennumbered SiH2unit)leading to covalent-like interdot coupling.In addition,the conductivity of a-c is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.

    References

    (1) Kim,K.T.;Han,J.;Ryu,C.Y.;Sun,F.C.;Sheiko,S.S.; Winnik,M.A.;Manners,I.Macromolecules 2006,39,7922. doi:10.1021/ma060607l

    (2)Hatanaka,Y.;Okada,S.;Minami,T.;Goto,M.;Shimada,K. Organometallics 2005,24,1053.doi:10.1021/om040132r

    (3) Liu,K.;Clendenning,S.B.;Friebe,L.;Chan,W.Y.;Zhu,X.B.; Freeman,M.R.;Yang,G.C.;Yip,C.M.;Grozea,D.;Lu,Z.H.; Manners,I.Chem.Mater.2006,18,2591.doi:10.1021/ cm052339w

    (4) Friebe,L.;Liu,K.;Obermeier,B.;Petrov,S.;Dube,P.; Manners,I.Chem.Mater.2007,19,2630.doi:10.1021/ cm062470j

    (5) Kumar,M.;Metta-Magana,A.J.;Pannell,K.H. Organometallics 2008,27,6457.doi:10.1021/om800537b

    (6) Huo,J.;Wang,L.;Yu,H.J.;Deng,L.B.;Ding,J.H.;Tan,Q.H.; Liu,Q.Q.;Xiao,A.;Ren,G.Q.J.Phys.Chem.B 2008,112, 11490.doi:10.1021/jp7121888.

    (7) Michinobu,T.;Kumazawa,H.;Noguchi,K.;Shigehara,K. Macromolecules 2009,42,5903.doi:10.1021/ma9013324

    (8) Miles,D.;Ward,J.;Foucher,D.A.Macromolecules 2009,42, 9199.doi:10.1021/ma9018608

    (9) Berenbaum,A.;Braunschweig,H.;Dirk,R.;Englert,U.;Green, J.C.;Jakle,F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 2000,122,5765.doi:10.1021/ja000311

    (10) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,785.doi:10.1021/om049004t

    (11) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,4483.doi:10.1021/om0503951

    (12) Bagh,B.;Sadeh,S.;Green,J.C.;Muller,J.Chem.Eur.J.2014, 20,2318.doi:10.1002/chem.201303925

    (13) Stoeckli-Evans,H.;Osborne,A.G.;Whiteley,R.H. J.Organomet.Chem.1980,194,91.doi:10.1016/S0022-328X (00)90341-3

    (14) Foucher,D.A.;Edwards,M.;Burrow,R.A.;Lough,A.J.; Manners,I.Organometallics 1994,13,4959.doi:10.1021/ om00024a044

    (15) Rulkens,R.;Lough,A.J.;Manners,I.Angew.Chem.1996,108, 1929.doi:10.1002/ange.19961081609

    (16) Jakle,F.;Rulkens,R.;Zech,G.;Foucher,D.A.;Lough,A.J.; Manners,I.Chem.Eur.J.1998,4,2117.doi:10.1002/(SICI) 1521-3765

    (17) Braunschweig,H.;Damme,A.;Demeshko,S.;Duck,K.; Kramer,T.;Krummenacher,I.;Meyer,F.;Radacki,K.;Stellwag-Konertz,S.;Whittell,G.R.J.Am.Chem.Soc.2015,137,1492. doi:10.1021/ja510884h

    (18) Withers,H.P.;Seyferth,D.Organometallics 1982,1,1283. doi:10.1021/om00070a005

    (19) Seyferth,D.;Withers,H.P.Organometallics 1982,1,1275. doi:10.1021/om00070a004

    (20) Butler,I.R.;Cullen,W.R.;Einstein,F.W.B.;Rettig,S.J.; Willis,A.J.Organometallics 1983,2,128.doi:10.1021/ om00073a024

    (21) Pudelski,J.K.;Gates,D.P.;Rulkens,R.;Lough,A.J.; Manners,I.Angew.Chem.1995,107,1633.doi:10.1002/ ange.19951071335

    (22) Rulkens,R.;Gates,D.P.;Balaishis,D.;Pudelski,J.K.; Mcintosh,D.F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 1997,119,10976.doi:10.1021/ja972043u

    (23) Broussier,R.;Da Rold,A.;Gautheron,B.;Dromzee,Y.; Jeannin,Y.Inorg.Chem.1990,29,1817.doi:10.1021/ ic00335a011

    (24) Whittell,G.R.;Partridge,B.M.;Presley,O.C.;Adams,C.J.; Manners,I.Angew.Chem.2008,120,4426.doi:10.1002/ ange.200705672

    (25) Matas,I.;Whittell,G.R.;Partridge,B.M.;Holland,J.P.; Haddow,M.F.;Green,J.C.;Manners,I.J.Am.Chem.Soc. 2010,132,13279.doi:10.1021/ja103367e

    (26) Hu,Y.Q.;Zhu,N.;Han,L.M.Acta Phys.-Chim.Sin.2015,31, 227.[胡宇強,竺寧,韓利民.物理化學(xué)學(xué)報,2015,31,227.] doi:10.3866/PKU.WHXB201411061

    (27) Cao,Q.Y.;Lu,X.;Kuang,R.Y.;Li,Z.H.;Yang,Z.Y.Acta Phys.-Chim.Sin.2010,26,2158.[曹遷永,盧鑫,匡仁云,李志華,楊震宇.物理化學(xué)學(xué)報,2010,26,2158.]doi:10.3866/ PKU.WHXB20100822

    (28) Temple,K.;Dziadek,S.;Manners,I.Organometallics 2002,21, 4377.doi:10.1021/om020492j

    (29) Pannell,K.H.;Dementiev,V.V.;Li,H.;Cervantes-Lee,F.; Nguyen,M.T.;Diaz,A.F.Organometallics 1994,13,3644. doi:10.1021/om00021a043

    (30) Foucher,D.;Ziembinski,R.;Petersen,R.;Pudelski,J.; Edwards,M.;Ni,Y.Z.;Massey,J.;Jaeger,C.R.;Vansco,G.J.; Manners,I.Macromolecules 1994,27,3992.doi:10.1021/ ma00092a046

    (31) Rulkens,R.;Lough,A.J.;Manners,I.J.Am.Chem.Soc.1994, 116,797.doi:10.1021/ja00081a062

    (32) Du,H.;Park,K.C.;Wang,F.;Wang,S.;Liu,Q.;Zhang,S.W.;Huang,Y.L.;Shi,S.J.Organometallics 2007,26,6219. doi:10.1021/om7004468

    (33) Altmann,R.;Gausset,O.;Horn,D.;Jurkschat,K.;Schürmann, M.Organometallics 2000,19,430.doi:10.1021/om9905660

    (34) Resendes,R.;Berenbaum,A.;Stojevic,G.;J?kle,F.;Bartole, A.;Zamanian,F.;Dubois,G.;Hersom,C.;Balmain,K.; Manners,I.Adv.Mater.2000,12,327.doi:10.1002/(SICI)1521-4095(200003)

    (35) Massey,J.A.;Winnik,M.A.;Manners,I.J.Am.Chem.Soc. 2001,123,3147.doi:10.1021/ja003174p

    (36)MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Coyle,T.W.; Raju,N.P.;Greedan,J.E.;Ozin,G.A.;Manners,I.Science 2000,287,1460.doi:10.1126/science.287.5457.1460

    (37) MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Raju,N.P.; Greedan,J.E.;Ozin,G.A.;Manners,I.J.Am.Chem.Soc.2000, 122,3878.doi:10.1021/ja992006y

    (38) Kulbaba,K.;Resendes,R.;Cheng,A.;Bartole,A.;Safa-Sefat, A.;Coombs,N.;Stover,H.D.H.;Greedan,J.E.;Ozin,G.A.; Manners,I.Adv.Mater.2001,13,732.doi:10.1002/1521-4095 (200105)13

    (39) Espada,L.I.;Shadaram,M.;Robillard,J.;Pannell,K.H. J.Inorg.Organomet.Polym.2000,10(4),169.doi:10.1023/A: 1016634505173

    (40) Liu,R.;Ke,S.H.;Baranger,H.U.;Yang,W.T.J.Am.Chem. Soc.2006,128,6274.doi:10.1021/ja057054z

    (41) Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Annu.Rev.Mater. Sci.2000,30,545.doi:10.1146/annurev.matsci.30.1.545

    (42) VanderWiel,W.G.;De Franceschi,S.;Elzerman,J.M.; Fujisawa,T.;Tarucha,S.;Kouwenhoven,L.P.Rev.Mod.Phys. 2003,75,1.doi:10.1103/RevModPhys.75.1

    (43) Dement′ev,V.V.;Cervantes-Lee,F.;Parkanyi,L.;Sharma,H.; Pannell,K.H.Organometallics 1993,12,1983.doi:10.1021/ om00029a067

    (44) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.;Massa, W.;Wocadlo,S.;Pebler,J.Inorg.Chem.1993,32,5421. doi:10.1021/ic00075a080

    (45) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.; Behrendt,A.;Massa,W.;Wocadlo,S.;Reijerse,E.Inorg.Chem. 1995,34,743.doi:10.1021/ic00107a028

    (46) Elschenbroich,C.;Lu,F.;Nowotny,M.;Burghaus,O.; Pietzonka,C.;Harms,K.Organometallics 2007,26,4025. doi:10.1021/om700300j

    (47) Elschenbroich,C.;Lu,F.;Burghaus,O.;Pietzonka,C.;Harms, K.Chem.Commun.2007,30,3201.doi:10.1039/b703349d

    (48) Pannell,K.H.;Imshennik,V.I.;Maksimov,Y.V.;Il′ina,M.N.; Sharma,H.K.;Papkov,V.S.;Suzdalev,I.P.Chem.Mater.2005, 17,1844.doi:10.1021/cm0403558

    (49) Zhang,G.L.;Pei,L.;Yu,J.;Shang,Y.;Zhang,H.;Liu,B.Theor. Chem.Acc.2013,132,1386.doi:10.1007/s00214-013-1386-0

    (50) Adams,C.J.;Braunschweig,H.;Fu?,M.;Kraft,K.;Kupfer,T. Manners,I.Radacki,K.;Whittell,G.R.Chem.Eur.J.2011,17, 10379.doi:10.1002/chem.201100919

    (51) Braunschweig,H.;Kaupp,M.;Adams,C.J.;Kupfer,T.; Radacki,K.;Schinzel,S.J.Am.Chem.Soc.2008,130,11376. doi:10.1021/ja802034p

    (52) Braunschweig,H.;Adams,C.J.;Kupfer,T.;Manners,I.; Richardson,R.M.Whittell,G.R.Angew.Chem.Int.Ed.2008, 47,3826.doi:10.1002/anie.200800081

    (53) Gr?nbeck,H.;Curioni,A.;Andreoni,W.J.Am.Chem.Soc. 2000,122,3839.doi:10.1021/ja993622x

    (54) Johansson,?.;Stafstr?m,S.Chem.Phys.Lett.2000,322,301. doi:10.1016/S0009-2614(00)00468-1

    (55) Kaun,C.C.;Larade,B.;Guo,H.Phys.Rev.B.2003,67,121411 (R).doi:10.1103/PhysRevB.67.121411

    (56)Yin,X.;Liu,H.M;Zhao,J.W.J.Chem.Phys.2006,125, 094711.doi:org/10.1063/1.2345061

    (57)Yin,X.;Li,Y.W.;Zhang,Y.;Li,P.;Zhao,J.W.Chem.Phys. Lett.2006,422,111.doi:10.1016/j.cplett.2006.02.020

    (58) Staykov,A.;Nozaki,D.;Yoshizawa,K.J.Phys.Chem.C 2007, 111,3517.doi:10.1021/jp067612b

    (59) Taylor,J.;Guo,H.;Wang,J.Phys.Rev.B 2001,63,245407. doi:10.1103/PhysRevB.63.245407

    (60) Brandbyge,M.;Mozos,J.L.;Ordejón,P.;Taylor,J.;Stokbro,K. Phys.Rev.B.2002,65,165401.doi:10.1103/ PhysRevB.65.165401

    (61) Soler,J.M.;Artacho,E.;Gale,J.D.;Garcia,A.;Junquera,J.; Ordejon,P.;Sanchez-Portal,D.J.Phys.Condens.Matter 2002, 14,2745.doi:10.1088/0953-8984/14/11/302

    (62)ATK,Version 13.8,atomistix a/s,www.quantumwise.com (accessed Oct 27,2015).

    (63) Miyajima,K.;Nakajima,A.;Yabushita,S.;Knickelbein,M.B.; Kaya,K.J.Am.Chem.Soc.2004,126,13202.doi:10.1021/ ja046151+

    (65) Park,P.;Lough,A.J.;Foucher,D.A.Macromolecules 2002,35, 3810.doi:10.1021/ma0120052

    (66) Rulkens,R.;Lough,A.J.;Manners,I.;Lovelace,S.R.;Grant, C.;Geiger,W.E.J.Am.Chem.Soc.1996,118,12683. doi:10.1021/ja962470s

    (67) Foucher,D.A.;Honeyman,C.H.;Nelson,J.M.;Tang,B.Z.; Manners,I.Angew.Chem.Int.Ed.Engl.1993,32,1709. doi:10.1002/anie.199317091

    (68)Averin,D.V.;Likharev,K.K.J.Low Temp.Phys.1986,62, 345.doi:10.1007/BF00683469

    (69) Van der Vaart,N.C.;Kouwenhoven,L.P.;De Ruyter van Steveninck,M.P.;Nazarov,Y.V.;Harmans,C.J.P.M.Phys. Rev.B 1997,55,9746.doi:10.1103/PhysRevB.55.9746

    Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes

    PEI LeiZHANG Gui-Ling*SHANG YanSUN Cui-CuiGAN Tian
    (College of Chemical and Environmental Engineering,Harbin University of Science and Technology,Harbin 150080,P.R.China)

    Silicon bridge-tuned electronic structures and transport properties of polymetallocenes, [V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=cyclopentadienyl),are studied using the density functional theory(DFT)and non-equilibrium Green′s function(NEGF)methods.As the silicon bridge is lengthened,the V-V ferromagnetic(FM)coupling is weakened,while the antiferromagnetic(AFM)coupling is strengthened.Polymetallocenes a and b favor the FM ground state,while c prefers the AFM ground state.Each V atom in the FM state of a and b has a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with their electronic structures.Their conductivities follow the sequence c>b>a.For a and b,the spin-down state has slightly higher conductivity than the spin-up state.Polymetallocenes a and c can both display evident negative differential resistance(NDR)behavior,while b cannot.This difference may originate from the orientation of the two V(Cp)2units,which is V-shaped for a and c(odd number of SiH2units),leading to ioniclike inter-quantum dot coupling,and parallel for b(even number of SiH2units),leading to covalent-like interquantum dot coupling.In addition,the conductivity of a-c is sensitive to the current direction because of the asymmetric coupling between the scattering region and two electrodes.

    Silicon bridge;Polymetallocene;Electronic structure;Transport property;Theoretical study

    April 5,2016;Revised:June 28,2016;Published online:June 29,2016.

    .Email:guiling-002@163.com;Tel:+86-451-86392705.

    O641

    10.3866/PKU.WHXB201606295

    The project was supported by the National Natural Science Foundation of China(51473042).國家自然科學(xué)基金(51473042)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (64) Barlow,S.;O′Hare,D.Chem.Rev.1997,97,637.10.1021/ cr960083v

    猜你喜歡
    鐵磁性基態(tài)導(dǎo)電性
    鐵磁性物質(zhì)對地磁觀測影響的野外測試
    一類非線性Choquard方程基態(tài)解的存在性
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    一類反應(yīng)擴散方程的Nehari-Pankov型基態(tài)解
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    非線性臨界Kirchhoff型問題的正基態(tài)解
    大提離下脈沖渦流對鐵磁性材料測厚研究
    中國測試(2021年4期)2021-07-16 07:48:54
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    中國塑料(2016年3期)2016-06-15 20:30:00
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    核電站鐵磁性高加管漏磁檢測技術(shù)淺析
    科技視界(2015年30期)2015-10-22 11:26:44
    中文字幕制服av| 亚洲怡红院男人天堂| 精品午夜福利在线看| 久久97久久精品| 热99国产精品久久久久久7| 纯流量卡能插随身wifi吗| 考比视频在线观看| 国产在线免费精品| 亚洲在久久综合| 久久久久国产网址| 亚洲精品久久久久久婷婷小说| 欧美日韩成人在线一区二区| 99久久中文字幕三级久久日本| 久久ye,这里只有精品| 午夜福利影视在线免费观看| 亚洲图色成人| a级片在线免费高清观看视频| 日韩熟女老妇一区二区性免费视频| 我的老师免费观看完整版| 免费观看a级毛片全部| 国产片内射在线| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 免费人成在线观看视频色| 国产精品一区二区在线观看99| 欧美精品一区二区大全| 久久久久精品久久久久真实原创| 精品一区在线观看国产| 免费日韩欧美在线观看| videos熟女内射| 女性生殖器流出的白浆| 制服诱惑二区| 日韩成人av中文字幕在线观看| 一本久久精品| 国国产精品蜜臀av免费| 一级毛片 在线播放| av.在线天堂| 午夜福利在线观看免费完整高清在| 色网站视频免费| 国产av码专区亚洲av| 99精国产麻豆久久婷婷| 99精国产麻豆久久婷婷| 国产女主播在线喷水免费视频网站| 免费观看av网站的网址| 亚洲欧美一区二区三区黑人 | 亚洲av免费高清在线观看| 久久久久国产精品人妻一区二区| videos熟女内射| 少妇高潮的动态图| 国产熟女午夜一区二区三区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久国产电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产色爽女视频免费观看| 看免费成人av毛片| 婷婷色综合大香蕉| 免费大片18禁| 成人二区视频| 亚洲国产日韩一区二区| 亚洲国产av新网站| av电影中文网址| 老熟女久久久| 国产高清不卡午夜福利| 各种免费的搞黄视频| 一区二区三区免费毛片| av黄色大香蕉| 免费观看av网站的网址| 亚洲综合色网址| 99九九在线精品视频| 亚洲人成网站在线播| 国产探花极品一区二区| 26uuu在线亚洲综合色| av国产精品久久久久影院| 美女视频免费永久观看网站| 国产免费现黄频在线看| 少妇人妻久久综合中文| 亚洲欧洲精品一区二区精品久久久 | 极品人妻少妇av视频| av卡一久久| 三上悠亚av全集在线观看| 免费大片黄手机在线观看| 欧美日韩精品成人综合77777| 男女高潮啪啪啪动态图| 狂野欧美白嫩少妇大欣赏| av视频免费观看在线观看| 男女边摸边吃奶| √禁漫天堂资源中文www| 国产精品久久久久久精品电影小说| 高清在线视频一区二区三区| 色网站视频免费| 日日撸夜夜添| 能在线免费看毛片的网站| 97在线人人人人妻| 成人毛片60女人毛片免费| 精品久久蜜臀av无| 国产精品99久久99久久久不卡 | 久久综合国产亚洲精品| 国产一级毛片在线| 大香蕉久久网| 久久久久精品久久久久真实原创| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 久久婷婷青草| 中文天堂在线官网| 黑人猛操日本美女一级片| 国产成人aa在线观看| 精品一品国产午夜福利视频| 伊人亚洲综合成人网| 成人国产av品久久久| 少妇高潮的动态图| 久久久久视频综合| 亚洲五月色婷婷综合| h视频一区二区三区| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 三级国产精品片| 在线精品无人区一区二区三| 少妇人妻久久综合中文| 水蜜桃什么品种好| 夜夜骑夜夜射夜夜干| 99久久中文字幕三级久久日本| 乱码一卡2卡4卡精品| 久久久久久久亚洲中文字幕| h视频一区二区三区| 精品亚洲成国产av| 亚洲丝袜综合中文字幕| 国产av码专区亚洲av| 亚洲精品亚洲一区二区| 又大又黄又爽视频免费| 日韩中文字幕视频在线看片| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 建设人人有责人人尽责人人享有的| 欧美丝袜亚洲另类| 午夜福利视频在线观看免费| 少妇的逼水好多| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 日韩精品有码人妻一区| 丰满饥渴人妻一区二区三| 精品99又大又爽又粗少妇毛片| 美女主播在线视频| 国产精品国产三级国产专区5o| 亚洲综合精品二区| 久久久久网色| 老熟女久久久| 在线播放无遮挡| av.在线天堂| 免费播放大片免费观看视频在线观看| 欧美精品国产亚洲| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 精品亚洲乱码少妇综合久久| 午夜免费男女啪啪视频观看| 全区人妻精品视频| 欧美另类一区| 女的被弄到高潮叫床怎么办| 免费观看在线日韩| 在线观看国产h片| 纯流量卡能插随身wifi吗| av.在线天堂| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 熟女电影av网| 青春草亚洲视频在线观看| 欧美成人午夜免费资源| 久久热精品热| 丝袜美足系列| kizo精华| 99久久中文字幕三级久久日本| av电影中文网址| 少妇的逼水好多| 日韩伦理黄色片| 亚洲欧美清纯卡通| 免费看不卡的av| 国产一区二区三区av在线| 亚洲成人手机| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 日韩大片免费观看网站| a级毛色黄片| 色94色欧美一区二区| 一级a做视频免费观看| 亚洲精品456在线播放app| .国产精品久久| 高清av免费在线| 久热久热在线精品观看| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡 | 一个人看视频在线观看www免费| 欧美日韩视频精品一区| 国产精品嫩草影院av在线观看| 一区二区日韩欧美中文字幕 | 一区二区av电影网| 狂野欧美激情性bbbbbb| 在线播放无遮挡| 精品一区二区免费观看| 国产精品99久久99久久久不卡 | 久久 成人 亚洲| 亚洲图色成人| 亚洲av国产av综合av卡| 91在线精品国自产拍蜜月| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| a级毛片黄视频| 国产一区二区三区综合在线观看 | 日本av手机在线免费观看| 老女人水多毛片| 国产精品成人在线| 一本一本综合久久| 国产成人精品福利久久| 国产精品欧美亚洲77777| 亚洲精品456在线播放app| 我的老师免费观看完整版| 啦啦啦中文免费视频观看日本| 香蕉精品网在线| 日本黄大片高清| av国产精品久久久久影院| 精品视频人人做人人爽| 少妇丰满av| 国产精品99久久99久久久不卡 | 亚洲欧美清纯卡通| 高清视频免费观看一区二区| 国产男人的电影天堂91| 久久久久久人妻| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 成人国语在线视频| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 久久热精品热| 欧美日韩视频高清一区二区三区二| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 日本av免费视频播放| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 亚洲天堂av无毛| 老司机亚洲免费影院| 国产精品一区二区三区四区免费观看| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 国产欧美亚洲国产| 多毛熟女@视频| 久久精品国产a三级三级三级| 男女免费视频国产| 亚洲成人手机| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频 | 日韩三级伦理在线观看| 午夜精品国产一区二区电影| 蜜臀久久99精品久久宅男| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 综合色丁香网| 国产深夜福利视频在线观看| 久久久欧美国产精品| 久久久欧美国产精品| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 久久久午夜欧美精品| 菩萨蛮人人尽说江南好唐韦庄| 26uuu在线亚洲综合色| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 免费观看av网站的网址| 18+在线观看网站| 99热全是精品| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人 | 韩国高清视频一区二区三区| 看免费成人av毛片| 国产欧美另类精品又又久久亚洲欧美| av卡一久久| 久久精品久久久久久噜噜老黄| 一区二区av电影网| 国产在视频线精品| 91成人精品电影| 人妻夜夜爽99麻豆av| 国产av国产精品国产| 国产高清三级在线| 午夜日本视频在线| 国产av国产精品国产| 国产精品久久久久久久久免| 免费观看在线日韩| 久久午夜综合久久蜜桃| 久久人人爽人人片av| 另类亚洲欧美激情| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频| 99九九在线精品视频| 狠狠精品人妻久久久久久综合| 在线播放无遮挡| 成人手机av| 美女xxoo啪啪120秒动态图| 晚上一个人看的免费电影| 亚洲精品美女久久av网站| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图 | 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| tube8黄色片| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| 亚洲国产最新在线播放| 一个人免费看片子| 大话2 男鬼变身卡| 精品一区在线观看国产| 久久人人爽人人片av| 97超碰精品成人国产| 亚洲精品,欧美精品| av天堂久久9| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 国产成人av激情在线播放 | 男女边摸边吃奶| 亚洲综合精品二区| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 一级片'在线观看视频| 国产深夜福利视频在线观看| 看十八女毛片水多多多| 狂野欧美激情性bbbbbb| 亚洲欧美色中文字幕在线| 久久99一区二区三区| 久久午夜综合久久蜜桃| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 国产成人精品婷婷| 中文乱码字字幕精品一区二区三区| 久久精品夜色国产| 精品亚洲成国产av| 黄色一级大片看看| 亚洲av国产av综合av卡| 日本猛色少妇xxxxx猛交久久| 精品少妇久久久久久888优播| 嫩草影院入口| 99热这里只有是精品在线观看| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 男女边摸边吃奶| 一级毛片 在线播放| 国精品久久久久久国模美| 国产精品一二三区在线看| 在线观看免费视频网站a站| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 亚洲av电影在线观看一区二区三区| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 日韩电影二区| 你懂的网址亚洲精品在线观看| 美女大奶头黄色视频| 日日撸夜夜添| 91在线精品国自产拍蜜月| 国产精品99久久99久久久不卡 | 久久综合国产亚洲精品| 简卡轻食公司| 国产精品蜜桃在线观看| 考比视频在线观看| 日本黄大片高清| 亚洲国产av影院在线观看| 久久精品久久精品一区二区三区| 一本久久精品| 国产深夜福利视频在线观看| 黄色配什么色好看| 精品国产乱码久久久久久小说| 男女边摸边吃奶| 18禁裸乳无遮挡动漫免费视频| 青青草视频在线视频观看| a 毛片基地| 少妇精品久久久久久久| 最近中文字幕2019免费版| 亚洲欧美成人综合另类久久久| 国产高清国产精品国产三级| 青春草国产在线视频| 国产精品不卡视频一区二区| 日韩av在线免费看完整版不卡| 最近最新中文字幕免费大全7| 亚洲av电影在线观看一区二区三区| 麻豆精品久久久久久蜜桃| h视频一区二区三区| 黄片无遮挡物在线观看| 国模一区二区三区四区视频| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 97超碰精品成人国产| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 看免费成人av毛片| 精品午夜福利在线看| 亚洲人成网站在线播| 国产极品天堂在线| 午夜福利影视在线免费观看| 91精品三级在线观看| 亚洲综合色网址| 91精品国产九色| 永久网站在线| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 九九在线视频观看精品| 国产男人的电影天堂91| 91精品国产九色| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 欧美激情 高清一区二区三区| 成人手机av| xxxhd国产人妻xxx| 精品久久久噜噜| 亚洲精品,欧美精品| 最后的刺客免费高清国语| 日韩在线高清观看一区二区三区| 午夜av观看不卡| 丝袜美足系列| 91成人精品电影| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 精品熟女少妇av免费看| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁夜夜躁狠狠久久av| 久久久国产一区二区| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 男男h啪啪无遮挡| 久久av网站| 夫妻午夜视频| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 黑人高潮一二区| 99久久精品国产国产毛片| 黄色一级大片看看| 中文字幕最新亚洲高清| 国产精品一区www在线观看| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 日韩亚洲欧美综合| 午夜视频国产福利| 久久久久久久久久久免费av| 多毛熟女@视频| 国产成人精品一,二区| 亚洲美女视频黄频| 久久精品夜色国产| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| xxx大片免费视频| 国产乱人偷精品视频| 99热网站在线观看| 三上悠亚av全集在线观看| 3wmmmm亚洲av在线观看| 另类精品久久| 在线观看免费日韩欧美大片 | 国产成人freesex在线| 成人漫画全彩无遮挡| 18+在线观看网站| 精品一区在线观看国产| 秋霞伦理黄片| 制服人妻中文乱码| 热99久久久久精品小说推荐| 国产日韩一区二区三区精品不卡 | 人人妻人人澡人人爽人人夜夜| 青青草视频在线视频观看| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| 日韩强制内射视频| 高清毛片免费看| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| av.在线天堂| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 国产成人免费无遮挡视频| 亚洲精品一二三| 观看av在线不卡| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 最黄视频免费看| 日韩一区二区三区影片| 午夜日本视频在线| 国产亚洲精品久久久com| 熟女av电影| 97在线视频观看| 久热这里只有精品99| 国产一区二区在线观看日韩| 国产日韩欧美视频二区| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩亚洲高清精品| 成人手机av| 国产精品久久久久久精品古装| 看十八女毛片水多多多| 色视频在线一区二区三区| 老熟女久久久| 少妇被粗大猛烈的视频| 91精品国产九色| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| 国产成人av激情在线播放 | 午夜影院在线不卡| 日本午夜av视频| av黄色大香蕉| 九九久久精品国产亚洲av麻豆| 国产免费一区二区三区四区乱码| 国产在线一区二区三区精| 亚洲精品久久久久久婷婷小说| 高清欧美精品videossex| 欧美xxⅹ黑人| 久久韩国三级中文字幕| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 尾随美女入室| 久久97久久精品| 国产成人freesex在线| 18禁在线播放成人免费| 国产一区有黄有色的免费视频| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 99精国产麻豆久久婷婷| 91久久精品国产一区二区成人| 久久久久久久久久成人| 搡老乐熟女国产| 亚洲久久久国产精品| 日日爽夜夜爽网站| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 国产成人freesex在线| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱| 美女福利国产在线| 国产白丝娇喘喷水9色精品| 99久久综合免费| 国产精品一区二区在线观看99| 黄片播放在线免费| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| 日韩成人伦理影院| av在线播放精品| 亚洲av二区三区四区| 最近的中文字幕免费完整| 国产伦精品一区二区三区视频9| 夜夜爽夜夜爽视频| 天美传媒精品一区二区| 人成视频在线观看免费观看| 亚洲人成网站在线播| 日韩强制内射视频| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 亚洲怡红院男人天堂| 日韩一区二区视频免费看| xxxhd国产人妻xxx| 久久99一区二区三区| 久久久久久人妻| 免费av中文字幕在线| 久久精品人人爽人人爽视色| 51国产日韩欧美| 一区二区av电影网| 18+在线观看网站| 美女cb高潮喷水在线观看| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 天美传媒精品一区二区| 中文天堂在线官网| 自线自在国产av| av天堂久久9| 在线天堂最新版资源| 久热久热在线精品观看| 国产国拍精品亚洲av在线观看| 亚洲,欧美,日韩| 国产av国产精品国产| 国产有黄有色有爽视频| 老司机影院成人| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 成人黄色视频免费在线看| 18禁动态无遮挡网站| 一级毛片 在线播放| 亚洲精品一二三| 国产片特级美女逼逼视频| 欧美bdsm另类| 久热这里只有精品99| 高清欧美精品videossex| 男人操女人黄网站|