• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NaCl-KCl熔鹽體系中AlF3氟化Tb4O7電化學(xué)制備Al-Tb合金

    2016-11-22 09:49:03王珊珊楊曉光張密林顏永得
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:韓偉哈爾濱工程大學(xué)電流效率

    韓 偉 季 男 李 梅 王珊珊 楊曉光 張密林 顏永得

    (哈爾濱工程大學(xué)材料科學(xué)與化學(xué)工程學(xué)院,教育部超輕材料與表面技術(shù)重點(diǎn)實(shí)驗(yàn)室,哈爾濱150001)

    NaCl-KCl熔鹽體系中AlF3氟化Tb4O7電化學(xué)制備Al-Tb合金

    韓偉*季男李梅*王珊珊楊曉光張密林顏永得

    (哈爾濱工程大學(xué)材料科學(xué)與化學(xué)工程學(xué)院,教育部超輕材料與表面技術(shù)重點(diǎn)實(shí)驗(yàn)室,哈爾濱150001)

    在NaCl-KCl-Tb4O7-AlF3體系中為了制備Al-Tb合金,首先對(duì)熔鹽中的上清液和沉淀物進(jìn)行了分析,X射線衍射(XRD)結(jié)果確定了Tb4O7能被AlF3氟化生成TbF3。采用一系列的電化學(xué)方法對(duì)NaCl-KCl-AlF3-Tb4O7體系在Mo電極上的電化學(xué)行為進(jìn)行了研究。循環(huán)伏安、方波伏安、計(jì)時(shí)電位和開(kāi)路計(jì)時(shí)電位等電化學(xué)方法的研究結(jié)果表明Tb(III)在預(yù)先沉積的Al電極上發(fā)生欠電位沉積。在不同條件下進(jìn)行恒電流電解制備了Al-Tb合金,并對(duì)所得合金樣品進(jìn)行XRD和掃描電鏡-能量散射譜(SEM-EDS)表征。結(jié)果表明在-2.5A進(jìn)行恒電流電解得到的Al-Tb合金是由Al和Al3Tb兩相組成。采用電感耦合等離子體-原子發(fā)射光譜儀(ICP-AES)對(duì)實(shí)驗(yàn)所得沉積物的組成進(jìn)行分析,研究了電解條件對(duì)合金組成和電流效率的影響。在電流強(qiáng)度為-1.5A進(jìn)行恒電流電解2 h,電流效率可達(dá)76.5%。

    電化學(xué)行為;Tb4O7;共還原;NaCl-KCl熔鹽;Al-Tb合金;電流效率

    1 Introduction

    Rare earth(RE)metals and their alloys have attracted considerable practical interest due to their functional properties,i.g., high-temperature super-conductors,fluorescent materials,highperformance magnets,and chemical sensors1-3.Meanwhile,rare earth element can be used as additives to improve many properties of Al-based alloys,such as tensile strength,heat resistance,corrosion resistance,vibration resistance,and extrudability4-6.

    At present,the Al-RE alloys are produced only by liquid phase mixing and dissolution.However,electrochemical formation using molten salts,as a new preparation method of the rare earth intermetallic compounds,is an effective method,because composition and thickness of the alloys can be controlled by electrochemical parameters7,8.Recently,the preparation of Al-RE alloy compounds was studied by electro-reduction on a reactive Al electrode9-19and electrochemical co-deposition20-24in molten salts. Gibilaro et al.20-22investigated the electrochemical codeposition of Al(III)with RE(III)(RE=Ce,Nd,Sm,Eu)ions on inert W electrode in LiF-CaF2melts.While the electrochemical co-reduction of RE(III)(RE=Sm,Yb)with Al(III)ions was explored in LiCl-KCl melts23,24.Since rare earth chlorides are extremely sensitive to oxygen and easily form their solid oxychlorides and oxides24,25.Therefore,rare earth oxides selected as a raw material with the assistance ofAlCl3were studied to preparedAl-RE(RE= La,Ce,Pr,Sm,Eu,Gd,Tb,Dy)alloys in LiCl-KCl melts26-34. These researchers found that rare earth oxide can be chloridized by AlCl3and RECl3is produced in LiCl-KCl-RE2O3-AlCl3melts as follow reaction:

    Since the AlCl3(sublimation temperature:452 K)is easily volatile at high temperature,in order to avoid the volatilization of AlCl3,it should be replaced withAlF3to investigate the formation ofAl-RE alloy from RE2O3in NaCl-KCl melts.

    So far a few studies concerning the electrochemical behavior of Tb(III)ions were conducted on different electrodes19,33,35-39. Castrillejo et al.35explored the electrochemical behavior of Tb(III) in LiCl-KCl melts.They determined the diffusion coefficient of Tb(III)and apparent standard potential values of the Tb(III)/Tb(0) system in the temperature range of 673-823 K.Using cyclic voltammetry and time-resolved laser-induced fluorescence spectroscopy,Kim et al.36studied electrochemical and spectroscopic properties of Tb(III).The diffusion coefficient of the Tb(III)ions was also calculated at 887 K.Rayaprolu and Chidambaram37investigated the electrochemical deposition of Tb(III)in a molten LiCl-KCl medium.Castrillejo et al.38studied the electrode reaction of Tb(III)/Tb couple on liquid Cd electrode in the eutectic LiCl-KCl.The thermochemical properties of the TbCdxintermetallic compounds were measured by electromotive forces(EMF).Shi et al.33studied the electrochemical extraction Tb from Tb4O7aided by AlCl3and formation of Al-Tb alloy in LiCl-KCl melts.Our group19,39investigated the electrochemical deposition of Tb(III)on Al and Ni electrodes,and producedAl-Tb and Ni-Tb intermetallic compounds in LiCl-KCl melts,respectively.

    In order to confirm the feasibility of the formation of Al-Tb alloy from Tb4O7assisted by AlF3in NaCl-KCl melts,the fluorination effect of AlF3on Tb4O7was explored by X-ray diffraction (XRD).The electrochemical behavior of NaCl-KCl-Tb4O7-AlF3system was studied by a series of electrochemical techniques.And then,galvanostatic electrolysis was used to prepare Al-Tb alloys at different conditions.The chemical compositions and morphologies of the Al-Tb alloys were characterized by XRD and scanning electron microscopy and energy dispersive spectrometer (SEM-EDS).The current efficiencies were also calculated by analyzing the compositions of the Al-Tb alloys using inductively coupled plasma-atomic emission spectrometer(ICP-AES).

    2 Experimental

    2.1Preparation and purification of the molten salt

    The mixture of NaCl(99.8%)-KCl(99.9%)(NaCl:KCl mass ratio,44.6:55.4)was dried for 72 h at 473 K to remove residual water and then put it in an alumina crucible placed in a quartz cell inside an electric furnace.The impurities in the molten salts were removed by pre-electrolysis at-2.0 V(vs Ag/AgCl)for 3 h.The powders of Tb4O7(99.9%)and AlF3(99.9%)were added to the mixture of NaCl-KCl contained in an alumina crucible.A nickel chromium-nickel aluminum thermocouple,sheathed by an alumina tube,was employed to measure the temperature of the molten salts.The electrochemical measurement was performed under an argon atmosphere.

    2.2Electrodes and electrochemical apparatus

    Asilver wire(d=1 mm)dipped into a solution ofAgCl 1%(w, mass fraction)in NaCl-KCl melts contained in a Pyrex tube was used as a reference electrode.In our experiments,all potentials were referred to theAg/AgCl couple.The working electrode was a molybdenum wire(d=1 mm,99.99%),which was polished thoroughly using SiC paper to remove the impurities on the electrode surface,then cleaned with ethanol prior to use.The Mo electrode surface was determined after each experiment by measuring the immersion depth of the electrode in the molten salts. Betweeneachmeasurement,Moelectrode was cleaned byapplying ananodicpolarization.Aspectral puregraphiterod(d=6mm)was employed as the counter electrode.Galvanostatic electrolysis and all electrochemical measurements were performed using an AutolabPGSTAT302N(Metrohm,Ltd.)withNova1.10 software.

    2.3Molten salts electrolysis and characterization of deposits

    The Al-Tb alloys were prepared by galvanostatic electrolysis at different conditions on Mo electrode.After electrolysis,the alloy samples were washed with distilled water and hexane(99.8%)to remove salts,respectively.These samples were characterized byXRD(X′pert Pro;Philips Co.,Ltd)using Cu Kαradiation at 40 kV and 40 mA.The microstructure and micro-zone chemical analysis of these samples were measured with SEM-EDS(JSM-6480A; JEOL Co.,Ltd.).In order to determine the contents of Tb and Al in the Al-Tb alloys,each sample was dissolved in HCl solution 14%(w),and then was diluted and analyzed by inductively coupled plasma-atomic emission spectrometer(IRIS Intrepid II XSP, Thermo Elemental).

    2.4Analysis of the melts

    The mixture of AlF3and Tb4O7was added into the NaCl-KCl melt contained in an alumina crucible and stirred for 30 s to make them uniformly mix.Then the alumina crucible was placed in an electric furnace and the temperature was raised to 1073 K.The supernatant salt and the bottom salt containing precipitate were sampled after 2 h without electrolysis.These samples were scraped from the cooled and solidified melts.The bottom salts were the mixture of the precipitate and the solidified melts.In order to identify the supernatant salt and bottom salt,they were analyzed by XRD.

    3 Results and discussion

    3.1Electrochemical behavior of NaCl-KCl-Tb4O7-AlF3system

    3.1.1Cyclic voltammetry

    CyclicvoltammetrywasfirstlyperformedtostudytheelectrochemicalbehaviorofTb4O7intheNaCl-KCleutectic.Asshownin Fig.1,the dotted curve obtained in the NaCl-KCl-Tb4O73%(w) meltsisconsistentwiththecurveofblankNaCl-KCleutecticand exhibitsalargeandsharpredoxcoupleA/A′,whichcorrespondsto thedepositionanddissolutionofNametal40-42.Exceptfortheredox couple A/A′,no other obvious electro-signal is observed in the dotted curve,indicating there is no other electroactive species associated with Tb available in the melts to induce any other electrochemicalsignal.Thus,Tb4O7couldnotdissolveinthemoltensalt.

    Fig.1 Cyclic voltammograms obtained in NaCl-KCl melts before and after the addition of Tb4O7or TbCl3on Mo electrode(S=0.31 cm2)at 1073 K

    The solid curve in Fig.1 shows the cyclic voltemmogram(CV) obtained in NaCl-KCl-TbCl33%(w)on Mo electode.Except for the peaks ofA/A′,a couple of new peaks,B/B′at-1.93 V/-1.70 V(vsAg/AgCl),is observed.According to the previous works19,33,39we can infer the couple of peaks,B/B′,which are ascribed to the formation and subsequent re-oxidation of Tb metal.

    The CVs obtained in NaCl-KCl-Tb4O7system after the addition of AlF35.5%(w)were presented in Fig.2.Besides the reduction/ oxidation peaks,A/A′and B/B′,corresponding to the deposition/ subsequent dissolution of Na and Tb metals,two pairs of cathodic/ anodic peaks,C/C′and D/D′,are observed.The cathodic peak D, at-0.93 V,and its corresponding anodic peak D′,at-0.61 V,are associated with the deposition and dissolution of aluminum metal. The signals of C/C′between signals of B/B′and D/D′correspond to the formation of Al-Tb intermetallic compound.The formation mechanism ofAl-Tb alloys could be described as follows:

    The underpotential deposition of Tb occurs on the pre-deposited Al electrode because the electrodeposited Tb reacts with Al to form an intermetallic compound,AlxTb,the formation potential of the compound is shifted to the anodic direction.This phenomenon is also called“depolarization effect”.This depolarisation effect is obviously associated with the lowering of the activity of Tb in intermetallic compound,AlxTb:

    In order to investigate the effect of AlF3on the dissolution of Tb4O7,the supernatant salts and bottom salts were analyzed by XRD(Fig.3).We can observe from Fig.3(a)that NaCl,KCl and Tb2O3exist in the bottom salts before the addition of AlF3in the system.This result indicates that Tb4O7can thermally decompose under a low O2partial pressure44,and the reaction can be described as follows:

    Fig.2 Cyclic voltammograms obtained in NaCl-KCl-Tb4O7-AlF3system on a Mo electrode(S=0.31 cm2)

    After the addition of AlF3in the system,we can observe fromFig.3(b,c)that the supernatant salts consist of NaCl,KCl,AlF3and TbF3phases,and Al2O3exists in the bottom insoluble salts. Thus,it is considered that the Tb2O3can react with AlF3and form TbF3.The reaction could be described as follow:

    Fig.3 XRD patterns of the bottom salts from NaCl-KCl-Tb4O7melts after heating 2 h at 1073 K(a);the supernatant salts(b)and bottom salts(c)from NaCl-KCl-AlF3-Tb4O7system after heating 2 h at 1073 K

    According to the experimental result,the overall process is as follows:

    3.1.2Square wave voltammetry

    Square wave voltammetry(SWV),as a more sensitive method than cyclic voltammetry,was conducted to further investigate the electrochemical co-reduction of Tb(III)andAl(III)ions in NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system on a Mo electrode.Fig.4 presents the comparison of the SWVs of the NaCl-KCl-TbCl3melts(curve a),NaCl-KCl-AlF3melts(curve b)and NaCl-KCl-AlF3-Tb4O7system(curve c)at potential step of 1 mV and frequency of 20 Hz.The red curve a shows a large cathodic signal B,at around-1.93 V,corresponding to the formation of Tb metal.A cathodic peak D at-0.93 V,shown in curve b is ascribed to the formation ofAl metal.After the addition of Tb4O7in NaCl-KCl-AlF3melts(curve c),except for the peaks B and D,a new peak C at-1.53 V is observed,which corresponds to the formation of Al-Tb alloy.The result is consistent with the one obtained from cyclic voltammogram(Fig.2).

    3.1.3Chronopotentimetry

    Fig.5 shows chronopotentiogram obtained at different cathodic current intensities on Mo electrode in the NaCl-KCl-Tb4O73%(w)-AlF35.5%(w)system at 1073 K.Four plateaus can be obviously observed.When the applied cathodic current is more positive than-20 mA,only one plateau(plateau D)is detected,which is related to the deposition of Al in the melts.While the current intensity increases from-70 to-125 mA,the curves show a new plateau C,corresponding to the underpotential deposition of terbium on pre-deposited Al to form Al-Tb intermetallic compound.If the cathodic current from-150 to-155 mA,the third plateau B,belongs to the formation of Tb.In addition,the fourth plateau A at current intensity of-170 mA,belongs to the formation of Na. It should be mentioned that the potential ranges for the deposition of Na,Tb,Al,and Al-Tb alloy are the same as those observed in the CV and SWV.When the cathodic current is more positive than-70 mA,theAl-Tb alloy can be prepared.

    Fig.4 Comparison of square wave voltammograms obtained in the NaCl-KCl-TbCl33%(w)melts(a),NaCl-KCl-AlF35.5%(w) melts(b),and NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system(c)

    Fig.5 Chronopotentiograms obtained at different current intensities on Mo electrode(S=0.31 cm2)in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system at 1073 K

    3.1.4Open circuit chronopotentiometry

    The electrochemical formation of Al-Tb intermetallic compounds was investigated by open circuit chronopotentiometry.The measurements were conducted as follows:Tb element is deposited on pre-deposited Al electrode at-2.3 V(vs Ag/AgCl)for 35 s at 1073 K.Then the polarization was stopped and the electrode was kept in the molten salt.Meanwhile,current is almost zero,which is considered a“zero current”.During this currentless step,the deposited Tb metal was dissolved fromAl film to the molten salts, cathodic potential was shifted toward the positive direction.When a two-phase equilibrium occurs at the surface of the electrode,the activity of Tb is the same in each phase,a potential plateau could be observed.Fig.6 presents the open circuit chronopotentiogram after potentiostatic electrolysis at-2.3 V(vs Ag/AgCl)for 35 s in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system on a Mo electrode.Four plateaus can be seen in Fig.6.In the beginning,the potential stays at around-2.15 V(plateau A),corresponding to the equilibrium of deposition and dissolution of the Na metal. After that,the plateau B(in inset of Fig.6)is ascribed to the equilibrium of Tb/Tb(III).The plateau C at-1.37 V is related to the two-phase coexisting states of Al-Tb intermetallic compound. The rest plateau D is correlated with theAl/Al(III)system.

    Fig.6 Open circuit chronopotentiogram obtained on Mo electrode(S=0.31 cm2)after potentiostatic electrolysis at-2.3 V (vsAg/AgCl)for 35 s in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w) system at 1073 K

    3.2Electrochemical formation and characterization of Al-Tb alloys

    According to the results of cyclic voltammetry,square wave voltammetry,chronopotentiometry and open circuit chronopotentiometry,the Al-Tb alloys were prepared by galvanostatic electrolysis at different current intensities on a Mo electrode in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system at 1073 K.Fig.7 shows the XRDpatterns ofAl-Tb alloys obtained in the NaCl-KCl-AlF3-Tb4O7system by galvanostatic electrolysis at-2.5Afor 2 h. As seen from the pattern,the sample was identified to be Al3Tb phase.Fig.8 shows SEM-EDS analysis images of the Al-Tb alloy obtained by galvanostatic electrolysis at-2.5 A for 2 h.It is noticeable that sample is composed of dark and bright zones.From the mapping analysis of elements,we can find that the element Tb mainly distributes within the bright zones,the element Al in dark matrix.

    Fig.7 XRD patterns ofAl-Tb alloy obtained in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system by galvanostatic electrolysis at-2.5Afor 2 h at 1073 K on a Mo electrode(S=0.31 cm2)

    Fig.8 SEM-EDS analysis of theAl-Tb alloy obtained by galvanostatic electrolysis at-2.5Afor 2 h in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system at 1073 K on a Mo electrode(S=0.31 cm2)

    To examine the distribution of Tb element in the Al-Tb alloy, a mapping analysis is employed.Fig.9 shows the EDS results of the points labeled 001,002,and 003 taken from three represented zones in Fig.8a,which indicate that the deposit is composed of theelements of Tb and Al.The EDS results of the points labeled 002 represented zones in Fig.8a shows few element of Tb in dark phases.The Tb element mainly exists in bright phases.The atom ratio of Tb to Al closes to 1:3,which can further confirm this phase as the formation of theAl3Tb intermetallic compound.

    Al samples obtained by galvanostatic electrolysis under different conditions were analyzed by ICP-AES,because of the inaccuracy of the EDS quantification.The alloy composition obtained by ICP,experimental conditions,and current efficiency are presented in Table 1.It can be seen from Table 1,when other conditions are the same,the content of Tb in Al-Tb alloy and current efficiency increase with the increase of temperature. However,the current efficiency decreases when the temperature is higher than 1123 K.The content of Tb in Al-Tb alloy and current efficiency gradually increase with the increase of current intensity,while current intensity reaches to-1.5 A,the current efficiency reaches the maximum value,76.5%,then,the current efficiency decreased with current intensity increase gradually.The reason may be related to the formation of dendritic or powder deposit of Al-Tb which is easy to fall into the electrolyte.The extension of exelectrolysis time is beneficial to increase current efficiency.However,when electrolysis time is more than 2.5 h, current efficiency reduces from 68.1 to 55.8.

    Table 1 ICP-AES analyses of all samples obtained by galvanostatic electrolysis under different conditions on a Mo electrode(S=0.31cm2)in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w)system

    4 Conclusions

    Electrochemical formation of Al-Tb intermetallic compound in NaCl-KCl-Tb4O7melts assisted by AlF3was investigated by electrochemical techniques.XRD patterns indicated that Tb4O7could react with AlF3in NaCl-KCl melts.Cyclic voltammetry, square wave voltammetry and open-circuit chronopotentiometry results show that the reduction potential of Tb(III)/Tb on predeposited Al electrode was observed at more positive potential values than those on Mo electrode,because of the formation of Al3Tb intermetallic compound.Then according to the co-reduction conditions studied by different electrochemical methods,theAl-Tb alloys can be directly prepared by galvanostatic electrolysis on a Mo electrode in the NaCl-KCl-AlF35.5%(w)-Tb4O73%(w) system at different conditions.The Al-Tb alloys with different Tb contents were obtained.SEM-EDS analysis and the XRD pattern of the deposits show the Al3Tb intermetallic compound was formed under the condition of-2.5 A for 2 h at 1073 K.The current efficiency could reach 76.5%at-1.5Afor 2 h.

    References

    (1)Li,Y.M.;Wang,F.L.;Zhang,M.L.;Han,W.;Tian Y.J.Rare Earths 2011,29,378.doi:10.1016/S1002-0721(10)60464-4

    (2) Uda,T.;Jacob,K.T.;Hirasawa,M.Science 2000,289,2326. doi:10.1126/science.289.5488.2326

    (3) Maestro,P.;Huguenin,D.J.Alloy.Compd.1995,225,520. doi:10.1016/0925-8388(94)07095-4

    (4) Lundin,R.;Wilson,J.R.Adv.Mater.Proce.2000,158(1),52.

    (5) Ping,D.;Hono,K.;Inoue,A.Metall.Mater.Trans.A 2000,31, 607.doi:10.1007/s11661-000-0004-7

    (6) Gschneidner,K.A.;Eyring,L.Handbook on the Physics and Chemistry of Rare Earths;Elsevier:North Holland,1998;Vol. 25,pp 83-99.

    (7) Konishi,H.;Nohira,T.;Ito,Y.Electrochim.Acta 2003,48,563. doi:10.1016/S0013-4686(02)00723-5

    (8) Iida,T.;Nohira,T.;Ito,Y.Electrochim.Acta 2003,48,1531. doi:10.1016/S0013-4686(03)00031-8

    (9) Castrillejo,Y.;Bermejo,R.;Martínez,A.M.;Barrado,E.; DíazArocas,P.J.Nucl.Mater.2007,360,32.doi:10.1016/j. jnucmat.2006.08.011

    (10)Yang,X.N.;Yan,Y.D.;Zhang,M.L.;Li,X.;Xue,Y.;Han, W.Acta Phys.-Chim.Sin.2015,31(5),920.[楊曉南,顏永得,張密林,李星,薛云,韓偉.物理化學(xué)學(xué)報(bào),2015,31(5), 920.]doi:10.3866/PKU.WHXB201503251

    (11) Serp,J.;Allibert,M.;Leterrier,A.;Malmbeck,R.;Ougier,M.; Rebizant,J.;Glatz,J.P.J.Electrochem.Soc.2005,152,167. doi:10.1149/1.1859812

    (12) Castrillejo,Y.;Fernández,P.;Medina,J.;Hernández,P.; Barrado,E.Electrochim.Acta 2011,56,8638.doi:10.1016/j. electacta.2011.07.059

    (13) Bermejo,M.R.;Gómez,J.;Medina,J.;Martínez,A.M.; Castrillejo,Y.J.Electroanal.Chem.2006,588,253. doi:10.1016/j.jelechem.2005.12.031

    (14) Castrillejo,Y.;Bermejo,M.R.;Barrado,E.;Martínez,A.M. Electrochim.Acta 2006,51,1941.doi:10.1016/j. jelechem.2005.12.031

    (15) Cassayre,L.;Malmbeck,R.;Masset,P.;Rebizant,J.;Serp,J.; Soucek,P.;Glatz,J.P.J.Nucl.Mater.2007,360,49. doi:10.1016/j.jnucmat.2006.08.013

    (16) Castrillejo,Y.;Vega,A.;Vega,M.;Hernández,P.;Rodriguez,J. A.;Barrado,E.Electrochim.Acta 2014,118,58.doi:10.1016/j. electacta.2013.11.163

    (17) Castrillejo,Y.;Fernndez,P.;Medina,J.;Vega,M.;Barrado,E. Electroanalysis 2011,23,222.doi:10.1002/elan.201000421

    (18) Bermejo,M.R.;Barrado,E.;Martínez,A.M.;Castrillejo,Y. J.Electroanal.Chem.2008,617,85.doi:10.1016/j. jelechem.2008.01.017

    (19)Li,M.;Gu,Q.Q.;Han,W.;Yan,Y.D.;Zhang,M.L.;Sun,Y.; Shi,W.Q.Electrochim.Acta 2015,167,139.doi:10.1016/j. electacta.2015.03.145

    (20) Gibilaro,M.;Massot,L.;Chamelot,P.;Taxil,P.Electrochim. Acta 2009,54,5300.doi:10.1016/j.electacta.2009.01.074

    (21) Gibilaro,M.;Massot,L.;Chamelot,P.;Taxil,P.J.Nucl.Mater. 2008,382,39.doi:10.1016/j.jnucmat.2008.09.004

    (22) Gibilaro,M.;Massot,L.;Chamelot,P.;Cassayre,L.;Taxil,P. Electrochim.Acta 2009,55,281.doi:10.1016/j. electacta.2009.08.052

    (23) Castrillejo,Y.;Fernández,P.;Medina,J.;Hernández,P.; Barrado,E.Electrochim.Acta 2011,56,8638.doi:10.1016/j. electacta.2011.07.059

    (24) Castrillejo,Y.;Fernández,P.;Medina,J.;Vega,M.;Barrado,E. Electroanalysis 2011,23,222.doi:10.1002/elan.201000421

    (25) Kuznetsova,S.A.;Gaune-Escard,M.J.Nucl.Mater.2009,389, 108.doi:10.1016/j.jnucmat.2009.01.015

    (26) Liu,Y.L.;Yuan,L.Y.;Ye,G.A.;Liu,K.;Zhu,L.;Zhang,M. L.;Chai,Z.F.;Shi,W.Q.Electrochim.Acta 2014,147,104. doi:10.1016/j.electacta.2014.08.114

    (27)Zhang,M.;Wang,H.Y.;Han,W.;Zhang,M.L.;Li,Y.N.; Wang,Y.L.;Xue,Y.;Ma,F.Q.;Zhang,X.M.Sci.China Chem. 2014,57(11),1477.doi:10.1007/s11426-014-5214-8

    (28)Tang,H.;Yan,Y.D.;Zhang,M.L.;Li,X.;Huang,Y.;Xu,Y.L.; Xue,Y.;Han,W.;Zhang,Z.J.Electrochim.Acta 2013,88,457. doi:10.1016/j.electacta.2012.10.045

    (29) Liu,K.;Liu,Y.L.;Yuan,L.Y.;He,H.;Yang,Z.Y.;Zhao,X.L.; Chai,Z.F.;Shi,W.Q.Electrochim.Acta 2014,129,401. doi:10.1016/j.electacta.2014.02.136

    (30)Yan,Y.D.;Tang,H.;Zhang,M.L.;Xue,Y.;Han,W.;Cao,D. X.;Zhang,Z.J.Electrochim.Acta 2012,59,531.doi:10.1016/j. electacta.2011.11.007

    (31)Yan,Y.D.;Li,X.;Zhang,M.L.;Tang,H.;Han,W.;Xue,Y.; Zhang,Z.J.Energy Procedia 2013,39,408.doi:10.1016/j. egypro.2013.07.230

    (32) Liu,K.;Liu,Y.L.;Yuan,L.Y.;Zhao,X.L.;Chai,Z.F.;Shi,W. Q.Electrochim.Acta 2013,109,732.doi:10.1016/j. electacta.2013.07.084

    (33) Luo,L.X.;Liu,Y.L.;Liu,N.;Liu,K.;Yuan,L.Y.;Chai,Z.F.; Shi,W.Q.RSC Adv.2015,5,69134.doi:10.1039/c5ra11708a

    (34) Su,L.L.;Liu,K.;Liu,Y.L.;Wang,L.;Yuan,L.Y.;Wang,L.; Li,Z.J.;Zhao,X.L.;Chai,Z.F.;Shi,W.Q.Electrochim.Acta 2014,147,87.doi:10.1016/j.electacta.2014.09.095

    (35) Bermejo,M.R.;Gomez,J.;Martinez,A.M.;Barrado,E.; Castrillejo,Y.Electrochim.Acta 2008,53,5106.doi:10.1016/j. electacta.2008.02.058

    (36) Kim,B.Y.;Lee,D.H.;Lee,J.Y.;Yun,J.Electrochem. Commun.2010,12,1005.doi:10.1016/j.elecom.2010.05.009

    (37) Rayaprolu,D.;Chidambaram,S.ECS Trans.2014,58,51. doi:10.1149/05845.0051ecst

    (38) Castrillejo,Y.;Hernández,P.;Fernández,R.;Barrado,E. Electrochim.Acta 2014,147,743.doi:10.1016/j. electacta.2014.10.005

    (39) Han,W.;Sheng,Q.N.;Zhang,M.L.;Li,M.;Sun,T.T.;Liu,Y. C.;Ye,K.;Yan,Y.D.;Wang,Y.C.Metall.Mater.Trans.B 2014, 45,929.doi:10.1007/s11663-013-9984-8

    (40) Jia,Y.H.;He,H.;Lin,R.H.;Tang,H.B.;Wang,Y.Q.J.Rad. Nucl.Chem.2015,303,1763.doi:10.1007/s10967-014-3723-8

    (41) Kuznetsov,S.A.;Gaune-Escard,M.Electrochim.Acta 2001, 46,1101.doi:10.1016/S0013-4686(00)00708-8

    (42) Sahoo,D.K.;Satpati,A.K.;Krishnamurthy,N.RSC Adv.2015, 5,3163.doi:10.1039/c4ra15334k

    (43) Kang,Z.C.;Eyring,L.J.Alloy.Compd.1997,249,206. doi:10.1016/S0925-8388(96)02633-3

    Electrochemical Formation of Al-Tb Alloys from Tb4O7Fluorinated by AlF3in NaCl-KCl Melts

    HAN Wei*JI NanLI Mei*WANG Shan-ShanYANG Xiao-Guang ZHANG Mi-LinYAN Yong-De
    (Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education,College of Material Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,P.R.China)

    To prepareAl-Tb alloys from Tb4O7assisted byAlF3in NaCl-KCl melts,we initially studied the effect ofAlF3on the dissolution of Tb4O7by analyzing the supernatant and bottom salts.X-ray diffraction(XRD)results revealed that Tb4O7was fluorinated byAlF3to form TbF3.The electrochemical behavior of the NaCl-KCl-AlF3-Tb4O7system was investigated using a Mo electrode at 1073 K.Cyclic voltammetry(CV),square wave voltammetry(SWV),chronopotentiometry(CP)and open circuit chronopotentiometry(OCP)analyses indicated that the under-potential deposition of Tb(III)occurred on pre-depositedAl.The co-deposition ofAl-Tb alloys was investigated by galvanostatic electrolysis under different conditions.These samples were characterized by XRD and scanning electron microscopy and energy dispersive spectrometry(SEM-EDS).The Al-Tb alloy obtained by galvanostatic electrolysis at-2.5Aconsisted ofAl andAl3Tb phases.The effects of the electrolysis conditions on the composition of the alloy and current efficiency were studied by analyzing the compositions of theAl-Tb alloys by inductively coupled plasma-atomic emission spectrometer(ICP-AES).The current efficiency could reach 76.5%under the conditions of galvanostatic electrolysis at-1.5Afor 2 h.

    May 19,2016;Revised:July 20,2016;Published online:July 20,2016.

    s.HAN Wei,Email:weihan@hrbeu.edu.cn.LI Mei,Email:meili@hrbeu.edu.cn;Tel:+86-451-82569890.

    Electrochemical behavior;Tb4O7;Co-reduction;NaCl-KCl melt;Al-Tb alloy; Current efficiency

    O646

    10.3866/PKU.WHXB201607202

    The project was supported by the National Natural Science Foundation of China(21271054,11575047,21173060),Major Research Plan of the National Natural Science Foundation of China(91326113,91226201),and Fundamental Research Funds for the Central Universities,China

    (HEUCF2016012).

    國(guó)家自然科學(xué)基金(21271054,11575047,21173060),國(guó)家自然科學(xué)基金重大研究計(jì)劃(91326113,91226201)和中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(HEUCF2016012)資助項(xiàng)目?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    韓偉哈爾濱工程大學(xué)電流效率
    Research on Real Meaning of American Dream in Great Gatsby
    速讀·中旬(2021年2期)2021-07-23 22:33:04
    有機(jī)物對(duì)電解錳電流效率的影響
    濕法冶金(2020年1期)2020-02-24 06:22:04
    Research on Uranium Mining
    淺析210KA電解槽電流效率的影響因素
    影響離子膜電解槽電流效率的因素
    工藝參數(shù)對(duì)高速鍍錫電流效率及鍍錫層表面形貌的影響
    An Analysis of Mood System of Narrative Rock Song Lyrics and Its Interpersonal Functions
    UAV Velocity Measurement for Ground Moving Target
    (口歐)!鷹笛
    最美的贊歌獻(xiàn)給黨
    人人妻,人人澡人人爽秒播| 精品午夜福利视频在线观看一区| 99久久99久久久精品蜜桃| 在线观看www视频免费| av在线播放免费不卡| 亚洲狠狠婷婷综合久久图片| 可以在线观看的亚洲视频| 国产人伦9x9x在线观看| 精品不卡国产一区二区三区| 国内揄拍国产精品人妻在线| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 91九色精品人成在线观看| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 欧美zozozo另类| 中亚洲国语对白在线视频| 母亲3免费完整高清在线观看| 精品免费久久久久久久清纯| 99国产精品一区二区蜜桃av| 免费看十八禁软件| 精品久久久久久久末码| 两性夫妻黄色片| 一级作爱视频免费观看| 无人区码免费观看不卡| 精品熟女少妇八av免费久了| bbb黄色大片| 国产区一区二久久| 女人被狂操c到高潮| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| aaaaa片日本免费| 亚洲中文日韩欧美视频| 亚洲成人精品中文字幕电影| 久久中文字幕一级| 97超级碰碰碰精品色视频在线观看| 精品高清国产在线一区| 午夜福利18| 天天添夜夜摸| 99久久综合精品五月天人人| 国产精品国产高清国产av| 啦啦啦免费观看视频1| 国产一区二区三区在线臀色熟女| 99国产综合亚洲精品| 中文字幕熟女人妻在线| 首页视频小说图片口味搜索| 久久久久国产精品人妻aⅴ院| 巨乳人妻的诱惑在线观看| 制服丝袜大香蕉在线| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 国产精品久久久久久亚洲av鲁大| 午夜福利免费观看在线| 欧美丝袜亚洲另类 | 国产精品电影一区二区三区| 999精品在线视频| 99精品欧美一区二区三区四区| 午夜福利视频1000在线观看| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看 | 男女做爰动态图高潮gif福利片| 人成视频在线观看免费观看| 级片在线观看| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 久久这里只有精品中国| 91国产中文字幕| 国产精品永久免费网站| 小说图片视频综合网站| 久久久水蜜桃国产精品网| 成人av在线播放网站| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| or卡值多少钱| 精品日产1卡2卡| 亚洲av五月六月丁香网| 日本 av在线| 老鸭窝网址在线观看| 国内久久婷婷六月综合欲色啪| 欧美日韩精品网址| 天堂√8在线中文| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 欧美在线黄色| 在线观看午夜福利视频| 中文字幕久久专区| 男女午夜视频在线观看| 在线观看美女被高潮喷水网站 | 男人舔奶头视频| 露出奶头的视频| 欧美色欧美亚洲另类二区| 欧美乱码精品一区二区三区| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 国产精品永久免费网站| 18禁观看日本| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 小说图片视频综合网站| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 十八禁人妻一区二区| 99热这里只有是精品50| av天堂在线播放| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 免费电影在线观看免费观看| 两人在一起打扑克的视频| 色老头精品视频在线观看| 国产精品久久久久久精品电影| 国产亚洲av嫩草精品影院| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 日本免费a在线| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 国产高清视频在线观看网站| 久久久久久亚洲精品国产蜜桃av| 国产视频一区二区在线看| 长腿黑丝高跟| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 亚洲人成77777在线视频| 国产成人欧美在线观看| 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 88av欧美| www国产在线视频色| 国产黄片美女视频| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| svipshipincom国产片| 国产精品乱码一区二三区的特点| 老司机在亚洲福利影院| 又粗又爽又猛毛片免费看| 久久中文看片网| 成在线人永久免费视频| 成人av在线播放网站| 可以免费在线观看a视频的电影网站| 夜夜躁狠狠躁天天躁| 又黄又爽又免费观看的视频| 日本五十路高清| 99在线人妻在线中文字幕| 久久精品成人免费网站| 国产97色在线日韩免费| 99国产精品99久久久久| 欧美三级亚洲精品| 国产一区在线观看成人免费| 90打野战视频偷拍视频| tocl精华| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 久久中文字幕一级| 可以在线观看的亚洲视频| 国产人伦9x9x在线观看| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 成年免费大片在线观看| 熟女电影av网| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 国产成人aa在线观看| 91在线观看av| 亚洲精品色激情综合| 99热6这里只有精品| 曰老女人黄片| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 日韩欧美 国产精品| 国产亚洲精品久久久久5区| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 禁无遮挡网站| 久久久久国产精品人妻aⅴ院| 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 看片在线看免费视频| 99re在线观看精品视频| 国产成人av教育| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 中文亚洲av片在线观看爽| a级毛片a级免费在线| www.精华液| 国产高清视频在线播放一区| 中国美女看黄片| 看片在线看免费视频| 国产高清激情床上av| 操出白浆在线播放| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 国产人伦9x9x在线观看| 亚洲国产看品久久| 操出白浆在线播放| 国产亚洲精品av在线| 日韩欧美国产一区二区入口| 黄色 视频免费看| 两个人免费观看高清视频| 男女视频在线观看网站免费 | 成人三级黄色视频| 久久人妻福利社区极品人妻图片| av片东京热男人的天堂| 国产成人av激情在线播放| 全区人妻精品视频| 99re在线观看精品视频| 免费人成视频x8x8入口观看| 在线看三级毛片| 国产1区2区3区精品| 12—13女人毛片做爰片一| 波多野结衣高清作品| 制服诱惑二区| 脱女人内裤的视频| 在线观看66精品国产| 草草在线视频免费看| 69av精品久久久久久| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 亚洲国产精品999在线| 黄频高清免费视频| 免费看日本二区| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av | 欧美人与性动交α欧美精品济南到| 婷婷丁香在线五月| 亚洲专区国产一区二区| 免费在线观看完整版高清| 久久久国产成人免费| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 曰老女人黄片| АⅤ资源中文在线天堂| 欧美成人一区二区免费高清观看 | 成人av在线播放网站| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 欧美成人免费av一区二区三区| 欧美精品亚洲一区二区| 黄色女人牲交| 一本久久中文字幕| 日本一本二区三区精品| 久久婷婷成人综合色麻豆| 国产精品九九99| av片东京热男人的天堂| 无限看片的www在线观看| 啦啦啦免费观看视频1| 国产精品自产拍在线观看55亚洲| 国产区一区二久久| 无限看片的www在线观看| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 国产激情偷乱视频一区二区| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 可以免费在线观看a视频的电影网站| 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 久久亚洲真实| 两个人看的免费小视频| 好男人电影高清在线观看| 亚洲无线在线观看| x7x7x7水蜜桃| 成人精品一区二区免费| 人人妻人人澡欧美一区二区| 俄罗斯特黄特色一大片| 国产成人欧美在线观看| 精品电影一区二区在线| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 又大又爽又粗| 婷婷精品国产亚洲av| 国产亚洲精品久久久久5区| 天堂av国产一区二区熟女人妻 | 成人三级做爰电影| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器 | 全区人妻精品视频| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 搡老妇女老女人老熟妇| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 男男h啪啪无遮挡| 波多野结衣高清作品| 国产高清videossex| 国产不卡一卡二| 99久久精品国产亚洲精品| 国产一区二区三区视频了| www.www免费av| 午夜激情av网站| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区免费| 九色成人免费人妻av| 亚洲人成网站高清观看| 欧美黑人欧美精品刺激| 成人18禁高潮啪啪吃奶动态图| 草草在线视频免费看| 精品日产1卡2卡| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx| 一级黄色大片毛片| 日本免费a在线| 亚洲av成人一区二区三| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 国产在线精品亚洲第一网站| 亚洲18禁久久av| 九色国产91popny在线| 国产av一区二区精品久久| 人妻久久中文字幕网| 国产野战对白在线观看| 国产单亲对白刺激| 成人三级黄色视频| 色av中文字幕| 日本 av在线| 亚洲avbb在线观看| 久久99热这里只有精品18| 校园春色视频在线观看| 色在线成人网| 99久久综合精品五月天人人| 美女午夜性视频免费| 免费看日本二区| 日韩欧美精品v在线| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 欧美日韩福利视频一区二区| 嫩草影视91久久| 日韩有码中文字幕| 国产精品久久久久久亚洲av鲁大| 国产视频内射| 国产在线观看jvid| 91麻豆av在线| 男女下面进入的视频免费午夜| 成熟少妇高潮喷水视频| 国产精品av视频在线免费观看| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免费看| 国产激情久久老熟女| 美女午夜性视频免费| 午夜福利成人在线免费观看| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 精品国产美女av久久久久小说| 国内久久婷婷六月综合欲色啪| 日本 av在线| 亚洲国产精品久久男人天堂| 国产91精品成人一区二区三区| 国产av一区在线观看免费| 国产高清激情床上av| √禁漫天堂资源中文www| avwww免费| 亚洲国产精品久久男人天堂| 亚洲,欧美精品.| 久久久久久久久免费视频了| 长腿黑丝高跟| 黄色毛片三级朝国网站| 欧美性猛交黑人性爽| 亚洲国产欧美网| 国产一区二区三区在线臀色熟女| 亚洲自偷自拍图片 自拍| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 大型av网站在线播放| 老熟妇乱子伦视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 一级作爱视频免费观看| 午夜福利在线在线| 久久久久久亚洲精品国产蜜桃av| 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 亚洲国产精品成人综合色| 亚洲av片天天在线观看| av有码第一页| 日日爽夜夜爽网站| 草草在线视频免费看| 在线看三级毛片| 夜夜看夜夜爽夜夜摸| 国产午夜精品久久久久久| 日本三级黄在线观看| 午夜福利在线在线| 国产精品久久久久久人妻精品电影| 观看免费一级毛片| 亚洲乱码一区二区免费版| 日本 欧美在线| 一级毛片精品| 在线视频色国产色| 男插女下体视频免费在线播放| 国产熟女xx| 他把我摸到了高潮在线观看| x7x7x7水蜜桃| av免费在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产片内射在线| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看 | 听说在线观看完整版免费高清| 99热这里只有是精品50| 久久99热这里只有精品18| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| 午夜福利免费观看在线| 久久热在线av| 国产一区二区在线观看日韩 | 国产亚洲精品综合一区在线观看 | 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 十八禁网站免费在线| www.熟女人妻精品国产| 97碰自拍视频| 香蕉国产在线看| 国产熟女xx| av有码第一页| √禁漫天堂资源中文www| 日本五十路高清| 免费搜索国产男女视频| 99国产精品99久久久久| 亚洲成人国产一区在线观看| 久久草成人影院| 两个人的视频大全免费| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 亚洲精品色激情综合| 精品欧美一区二区三区在线| 人人妻,人人澡人人爽秒播| 好男人在线观看高清免费视频| av免费在线观看网站| 午夜成年电影在线免费观看| 怎么达到女性高潮| 男女做爰动态图高潮gif福利片| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 国产三级黄色录像| 欧美大码av| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 妹子高潮喷水视频| 日日干狠狠操夜夜爽| 一级毛片高清免费大全| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻 | 一级片免费观看大全| 欧美 亚洲 国产 日韩一| av超薄肉色丝袜交足视频| 久久国产精品影院| 老鸭窝网址在线观看| 国产精品一区二区三区四区免费观看 | 国产蜜桃级精品一区二区三区| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 成人18禁在线播放| 99国产精品一区二区三区| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 成人午夜高清在线视频| 色老头精品视频在线观看| 岛国在线免费视频观看| 亚洲色图av天堂| a在线观看视频网站| 成人特级黄色片久久久久久久| 一本久久中文字幕| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 国产精品一区二区精品视频观看| 免费看十八禁软件| 国产精品国产高清国产av| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 亚洲av美国av| 两个人看的免费小视频| 丰满人妻一区二区三区视频av | 12—13女人毛片做爰片一| 午夜精品在线福利| 精品国产亚洲在线| 成人手机av| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 母亲3免费完整高清在线观看| 国产黄片美女视频| av超薄肉色丝袜交足视频| 国产精品免费视频内射| 丝袜人妻中文字幕| 亚洲电影在线观看av| 午夜精品在线福利| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 我的老师免费观看完整版| 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 免费一级毛片在线播放高清视频| 99久久无色码亚洲精品果冻| 18禁观看日本| √禁漫天堂资源中文www| 久久久久久久午夜电影| 老熟妇乱子伦视频在线观看| 免费在线观看黄色视频的| 五月伊人婷婷丁香| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 亚洲熟妇熟女久久| 色老头精品视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产看品久久| 看片在线看免费视频| 欧美黑人巨大hd| 亚洲全国av大片| 亚洲avbb在线观看| 视频区欧美日本亚洲| 久热爱精品视频在线9| 非洲黑人性xxxx精品又粗又长| 国产精品久久久人人做人人爽| 亚洲av片天天在线观看| 国产成人影院久久av| av天堂在线播放| 91大片在线观看| 叶爱在线成人免费视频播放| 国产午夜福利久久久久久| 老司机午夜福利在线观看视频| 老汉色av国产亚洲站长工具| 亚洲av五月六月丁香网| 热99re8久久精品国产| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 国产精品久久视频播放| 国产三级在线视频| 国产成人av激情在线播放| 国产高清有码在线观看视频 | 男人的好看免费观看在线视频 | 制服人妻中文乱码| 在线观看美女被高潮喷水网站 | 日韩高清综合在线| 最好的美女福利视频网| 九色国产91popny在线| 亚洲欧美一区二区三区黑人| 欧美一区二区精品小视频在线| √禁漫天堂资源中文www| 亚洲狠狠婷婷综合久久图片| 一区二区三区激情视频| 可以免费在线观看a视频的电影网站| 老汉色av国产亚洲站长工具| 欧美日韩精品网址| 97超级碰碰碰精品色视频在线观看| 在线免费观看的www视频| 亚洲最大成人中文| 亚洲人与动物交配视频| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 禁无遮挡网站| 国产不卡一卡二| 亚洲国产欧美网| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免费看| 人人妻人人看人人澡| 91国产中文字幕| 男人舔女人下体高潮全视频| 99久久99久久久精品蜜桃| 两性夫妻黄色片| 在线观看一区二区三区| 久久久久久久久中文| 毛片女人毛片| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品国产精品久久久不卡| 三级男女做爰猛烈吃奶摸视频| 亚洲一区高清亚洲精品| 黄色视频不卡| 一二三四在线观看免费中文在| 最新在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 久久久水蜜桃国产精品网| 精品少妇一区二区三区视频日本电影| 国产精品亚洲av一区麻豆| 国产三级黄色录像| 亚洲成人免费电影在线观看| 老司机福利观看| 天天添夜夜摸| 成人av一区二区三区在线看| 正在播放国产对白刺激| 最近最新中文字幕大全免费视频|