• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    2016-11-22 09:48:58王元元徐群星謝華清吳子華邢姣嬌
    物理化學學報 2016年10期
    關(guān)鍵詞:卡洛蒙特偏壓

    王元元 徐群星 謝華清 吳子華 邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    王元元徐群星謝華清*吳子華邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    采用偏壓受限擴散聚集模型研究溶液中銀樹形納米結(jié)構(gòu)的生長。模擬中,在二維正方形格子中引入了等腰直角三角形粒子進行模擬,同時運用不同的粘貼概率來描述表面活性劑的效果。模擬結(jié)果表明樹形納米結(jié)構(gòu)隨著偏壓的增大而變得更密。表面活性劑的加入使得樹形納米結(jié)構(gòu)變得更加對稱和規(guī)則。更進一步,當表面活性劑的效果足夠強且外加偏壓很小的時候,銀納米顆粒聚集成了銀納米片。模擬結(jié)果有利于定性解釋相關(guān)的實驗結(jié)果。

    蒙特-卡洛模擬;樹形銀納米結(jié)構(gòu);表面活性劑

    In this paper,we investigate the growth of the silver dendritic nanostructures with the surfactants by applying the biased diffusion-limited aggregation(DLA)method25,26.To study the influence of the surfactant on the morphology of the dendritic nanostructures,the isosceles right-angled triangle particles are applied in the two-dimensional(2D)square grids and the sticking possibilities of different particle sides are introduced.

    2 Simulation method

    The growth of the dendritic nanostructure is an out-of-equilibrium process.As we know,when a bias voltage is applied,a local space charge and thus a large electric field are formed in the vicinity of the negative electrode12.This space charge area is the diffusion layer and it thickens with the deceasing ion concentration18.At first,Ag+moves freely and performs random Brownian motion and walks to the diffusion layer randomly.When Ag+moves into the diffusion layer,it will be driven to move toward the reaction surface by the electric field in the diffusion layer.When Ag+moves to the reaction surface,it gains an electron and is reduced to a silver atom.Then the reduced silver atom deposits on the reaction surface.We apply the 2D biased DLA model27to simulate the growth of the silver dendritic nanostructures in the silver nitrate solution.When the area of the reaction plane is large enough and the isotropy holds true in the plane,the threedimensional(3D)problem can be simplified to the quasi-2D problem in the plane perpendicular to the reaction plane(see Fig.1 (a)).At this time,the 2D simulation is acceptable.It is also noted that extending the DLA simulation to 3D is relatively straightforward but there are some important differences and options not available in two dimensions28,29.One of the significant improvements of the 3D algorithm is not to form the DLA on a grid of finite resolution but rather on a continuum.A particle adheres to the existing structure if it comes within some minimum distance of any part of the existing structure.In our simulation,a particle denotingAg+is released at a random site on the top horizontal line. This particle performs a bias random walk until it reaches the bottom horizontal line and then deposits.The next particle is then released,and so on.Two velocities are introduced to describe the particle motion:longitudinal velocity vyand the transverse velocity vx,which are perpendicular and parallel to the bottom line,respectively18.The velocity ratio between vyand vxis denoted as p (p=vy/vx).The longitudinal velocity is determined by the electric field in the diffusion layer,which is affected by the bias voltage. The transverse velocity is determined by the Brownian motion, which is only related to the solution temperature.In the simulation,we need to consider the effect of the surfactant.Since the capping agents change the free energies for different crystallographic planes and thus their relative growth rates24,we apply the square and isosceles right-angled triangle particles(see Fig.1(b)) instead of the round particles applied in the literature18,so that we can distinguish different sides of the particles.It should be noticed that there are four types of triangle particles(see Fig.1(b))in the 2D square grids when the rotation of the particles is neglected.In order to simulate different growth rates of different sides,the sticking rates26,30of different sides are introduced:The sticking rates for the two arms of the right angle and the hypotenuse of the triangle particles are paand phrespectively,while for the sides for the square particles,the sticking rates are all pe.When a particle walks to the neighbor position of one side with the sticking rate pi(i=a,h,e),it has a pipossibility to be stuck and 1-pipossibility to continue walking.Introducing the sticking possibility is actually adding an inhomogeneous perturbation,which weakens the screening effect3and makes the grown nanostructures become much regular and compacter.

    3 Results and discussion

    We now study how the morphology of the dendritic nanostructures changes with the bias voltage and the surfactant.Biased DLA Monte-Carlo method27is applied to obtain the simulation images.To compare the results simulated in different conditions, the image sizes are all 100×300 grids.

    3.1Effect of bias voltage on growth

    Fig.1 Schematic diagram of biased DLAmodel

    We first study the influence of the voltage on the growth.The results with square and triangle particles applied are shown in Fig.2 and Fig.3,respectively.The results of(a),(b)and(c)in Fig.2 and Fig.3 are obtained with p=0.25,1,4,which means that the longitudinal velocity increases induced by the increasing bias voltage.It is seen that when the bias voltage is small,the fractal trees are separate without overlapping each other(see Fig.2(a)and Fig.3(a)),no matter that the square or the triangle particles are applied.Then the dendritic nanostructures become denser with the increasing voltage.When the bias voltage is large enough(see Fig.2(c)and Fig.3(c)),the fractal trees connect together and jointinto a whole shape in which single trees cannot be separated out. At the same time,the sizes of branches decrease with the increasing voltage.This can be understood as follows.When p is small,which means that vxis larger than vy,each particle tends to be captured by the tip of the branches,instead to aggregate on the hollow sites.However,when p is large,which means that vyis larger than vx,the particle has much larger possibility to walk into the hollow position of the branches.Therefore,the bias voltage affects the walk property in the diffusion layers and thus modifies the whole morphology of the dendrites.It is also noticed that, although the simulation results with both square and triangle particles have similar features,the simulation images with the square particles are very rough in comparison with those with the triangle particles.This is because the area of the square particle is larger than that of the triangle particle.Considering that the size of the 2D grids is keeping the same,the larger the particles are,the rougher the simulation images are.

    Fig.2 Simulation images with the square particles applied

    Fig.3 Simulation images with the triangle particles applied

    Fig.4 Simulation images with the square particles applied

    Fig.5 Simulation images with the triangle particles applied for the equivalent sticking possibilities of the right-angle sides and the hypotenuse

    3.2Effect of surfactant on the growth

    We now turn to investigate the effect of the surfactant to the morphology of the silver dendritic nanostructures.The results with the square particles applied are shown in Fig.4.In the simulation, p=vy/vx=1.The sticking possibilities decrease gradually(pe=0.8, 0.6,0.4,0.2)for Fig.4(a)to(d),which implies that the growth rate becomes smaller and the effect of the surfactant becomes stronger. The simulation results in the four images do not have large dif-ference,except that the concentration of the branches increases a little.This comes from the fact that the four sides of the square are equivalent.The decrease of the growth rates of the four sides simultaneously can only lengthen the walking of the particles, which makes the particles prefer to walk toward the hollow of the branches.Therefore,changing the sticking possibilities of the four equivalent sides do not affect the whole morphology of the dendritic nanostructures strongly.This modification of the DLA model is similar to the multiple hits method.Therefore,it is not satisfying to explain the effect of the surfactant by applying the square particles in the modified DLAmodel.

    In the following,we introduce the triangle particles in the DLA model.The sticking possibilities of the right-angle sides and the hypotenuse are set to be the same(pa=ph)and the results are shown in Fig.5,where Fig.5(a-d)are corresponding to pa=ph= 0.8,0.6,0.4,0.2,respectively,which means that the effect of the surfactant increases.It is seen that the morphology of the deposit changes strongly with the decrease of the sticking possibility due to the inequality of the three sides,although the sticking possibilities of all the sides are the same.When the effect of the surfactant is weak(Fig.5(a)),the grown structures is still fractal dendrites,which is consistent with the observation in almost every experimental attempt for silver dendrites31-34.When the effect of the surfactant increases,the morphology becomes regular and ordered.When the effect of the surfactant is strong enough(Fig.5 (d)),the fractal trees are joint into some pieces.This result can also be seen in the experimental work35,where 1.1 mmol CTAB in 15 mL water is used as the surfactant.This is because when the sticking possibilities decrease due to the effect of the surfactant, every particle has large possibility to escape from the site where it touches the deposit at the first time and continue walking. Therefore,the possibility it walks into the hollow of the branches increases,which makes the nanostructures become much denser.

    We then continue to present the results when the sticking possibilities of the right-angle sides and the hypotenuse are different,which is in accordance with the effect of the surfactant in experiments.In Fig.6,the results when the surfactant only affects the hypotenuse of the triangle are shown,where ph=0.8,0.6,0.4, 0.2 for Fig.6(a),(b),(c),and(d),which implies that the effect of the surfactant increases gradually.At the same time,pa=1 and p= 1.It is seen that although phdecreases gradually,the dendritic structures do not have large difference.This implies that the surfactant that affects the growth rate of the hypotenuse does not influence the morphology strongly.Furthermore,we consider the cases when the surfactant only affects the right angle sides and the results are shown in Fig.7.In the simulation ph=1 and padecreases gradually.It is interesting that the fractal trees gradually joint together and become plates.It is also noticed that the results in Fig.7 are similar to those in Fig.5.It indicates that the surfactant that affects the growth rate of the right angle sides is in the leading role to modify the morphology of the dendrites.This can be understood as follows.There are two arms of the right angle,whereas only one hypotenuse in one triangle particles.When a particle touches the deposit,the possibility that the interface is the right-angle side is larger.Therefore,it is more efficient to change the sticking possibilities of the right angle sides than the hypotenuse.Our simulation results imply that different surfactants which influence different crystal faces have different effects on the morphology of the dendrites.

    Fig.6 Simulation images with the triangle particles applied when the surfactant only affects the hypotenuse of the triangle

    Fig.7 Simulation images with the triangle particles applied when the surfactant only affects the right angle sides

    4 Conclusions

    Inconclusion,wehaveinvestigatedthegrowthofthedendritic nanostructures.By introducing the isosceles right-angled triangle particles in the 2D square grids and the sticking possibilities of differentsidesoftheparticle,amodifiedbiasedDLAmodelisset up and applied to study the effect of the bias voltage and the surfactant to the morphology of the fractal trees.It is found that the dendriticnanostructuresbecomedenserandthesizesofthesingle branches decrease with the increasing bias voltage.What is interestingisthatthefractaltreesjointtogetherandbecomeplatesdue to the surfactant,which implies that the surfactant can make the structuresinthewholebecomemuchmoreregularandsymmetrical.

    References

    (1) Tarascon,J.M.;Armand,M.Nature 2001,414,359. doi:10.1038/35104644

    (2) Shi,F.;Song,Y.;Niu,J.;Xia,X.;Wang,Z.;Zhang,X.Chem. Mater.2006,18,1365.doi:10.1021/cm052502n

    (3) Vicsek,T.Fractal Growth Phenomena;World Scientific: Singapore,1992.

    (4) Fang,J.X.;Ding,B.J.;Song,X.P.;Han,Y.Appl.Phys.Lett. 2008,92,173120.doi:10.1063/1.2888770

    (5) Xiao,J.P.;Xie,Y.;Tang,R.;Chen,M.;Tian,X.B.Adv.Mater. 2001,13,1887.doi:10.1002/1521-4095(200112)13:24<1887:: AID-ADMA1887>3.0.CO;2-2

    (6)Zheng,X.J.;Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Mao,B.W.; Zheng,L.S.Electrochem.Commun.2007,9,629.doi:10.1016/ j.elecom.2006.10.039

    (7) Gutés,A.;Carraro,C.;Maboudian,R.J.Am.Chem.Soc.2010, 132,1476.doi:10.1021/ja909806t

    (8)Wang,M.;Zhong,S.;Yin,X.B.;Zhu,J.M.;Peng,R.W.; Wang,Y.;Zhang,K.Q.;Ming,N.B.Phys.Rev.Lett.2001,86, 3827.doi:10.1103/PhysRevLett.86.3827

    (9) Sun,B.;Zou,X.W.;Jin,Z.Z.Phys.Rev.E 2004,69,067202. doi:10.1103/PhysRevE.69.067202

    (10) Cronemberger,C.M.;Sampaio,L.C.Phys.Rev.E 2006,73, 041403.doi:10.1103/PhysRevE.73.041403

    (11)Wu,X.Z.;Pei,M.S.;Wang,L.Y.;Li,X.N.;Tao,X.T.Acta Phys.-Chim.Sin.2010,26,3095.[吳馨洲,裴梅山,王廬巖,李肖男,陶緒堂.物理化學學報,2010,26,3095.]doi:10.3866/ PKU.WHXB20101132

    (13) Elezgaray,J.;Léger,C.;Argoul,F.J.Electrochem.Soc.1998, 145,2016.doi:10.1149/1.1838592

    (14) Monroe,C.;Newman,J.J.Electrochem.Soc.2003,150, A1377.doi:10.1149/1.1606686

    (15) Léger,C.;Elezgaray,J.;Argoul,F.J.Electroanal.Chem.2000, 486,204.doi:10.1016/S0022-0728(00)00143-1

    (16)Wang,M.;van Enckevort,W.J.P.;Ming,N.B.;Bennema,P. Nature 1994,367,438.doi:10.1038/367438a0

    (17) Nahal,A.;Mostafavi-Amjad,J.;Ghods,A.;Khajehpour,M.R. H.;Reihani,S.N.S.;Kolahchi,M.R.J.Appl.Phys.2006,100, 053503.doi:10.1063/1.2336493

    (18)You,H.J.;Fang,J.X.;Chen,F.;Shi,M.;Song,X.P.;Ding,B. J.J.Phys.Chem.C 2008,112,16301.doi:10.1021/jp8042126

    (19) Sawada,Y.;Dougherty,A.;Gollub,J.P.Phys.Rev.Lett.1986, 56,1260.doi:10.1103/PhysRevLett.56.1260

    (20) Lee,G.J.;Shin,S.I.;Oh,S.G.Chem.Lett.2004,33,118. doi:10.1246/cl.2004.118

    (21) Rashid,M.H.;Mandal,T.K.J.Phys.Chem.C 2007,111, 16750.doi:10.1021/jp074963x

    (23) Zhou,Y.;Yu,S.H.;Wang,C.Y.;Li,X.G.;Zhu,Y.R.;Chen,Z. Y.Adv.Mater.1999,11,850.doi:10.1002/(SICI)1521-4095 (199907)11:10<850::AID-ADMA850>3.0.CO;2-Z

    (24) Kang,Z.;Wang,E.;Lian,S.;Mao,B.;Chen,L.;Xu,L.Mater. Lett.2005,59,2289.doi:10.1016/j.matlet.2005.03.005

    (25) Witten,T.A.;Sander,L.M.Phys.Rev.Lett.1981,47,1400. doi:10.1103/PhysRevLett.47.1400

    (26) Witten,T.A.;Sander,L.M.Phys.Rev.B 1983,27,5686. doi:10.1103/PhysRevB.27.5686

    (27) Nagatani,T.;Sagués,F.Phys.Rev.A 1991,43,2970. doi:10.1103/PhysRevA.43.2970

    (28) Sander,L.M.;Cheng,Z.M.;Richter,R.Phys.Rev.B 1983,28, 6394.doi:10.1103/PhysRevB.28.6394

    (29) Xiong,H.L.;Yang,Z.M.;Li,H.Acta Phys.-Chim.Sin.2014, 30,413.[熊海靈,楊志敏,李航.物理化學學報,2014,30, 413.]doi:10.3866/PKU.WHXB201401203

    (31) Qin,Y.;Song,Y.;Sun,N.;Zhao,N.;Li,M.;Qi,L.Chem. Mater.2008,20,3965.doi:10.1021/cm8002386

    (32)Hong,X.;Wang,G.Z.;Wang,Y.;Zhu,W.;Shen,X.S.Chin.J. Chem.Phys.2010,23,596.doi:10.1088/1674-0068/23/05/596-602

    (33) Ye,W.;Shen,C.;Tian,J.;Wang,C.;Bao,L.;Gao,H. Electrochem.Commun.2008,10,625.doi:10.1016/j. elecom.2008.01.040

    (34) Liao,F.;Wang,Z.F.;Hu,X.Q.Colloid J.2011,73,504. doi:10.1134/s1061933x11040053

    (35) Zhang,L.;Ai,Z.;Jia,F.;Liu,L.;Hu,X.;Yu,J.C.Chemistry 2006,12,4185.doi:10.1002/chem.200501404

    Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures

    WANG Yuan-YuanXU Qun-XingXIE Hua-Qing*WU Zi-HuaXING Jiao-Jiao
    (School of Environmental and Materials Engineering,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China)

    The bias diffusion-limited aggregation model is used to study the growth of silver dendritic nanostructures in solution.In the simulation,right-angled isosceles triangle particles are introduced in twodimensional square grids and the sticking possibilities of different particle sides are introduced to describe the effect of the surfactant.Our simulation results show that the dendritic nanostructures become denser with increasing bias voltage.It is also found that the dendritic nanostructures become much more symmetrical and regular when the surfactant is applied.Furthermore,if the effect of the surfactant is strong enough and the bias voltage is small,the branches of the nanostructures are assembled into silver plates.Our simulation results are helpful to explain the experimental results qualitatively.

    Monte-Carlo simulation;Silver dendritic nanostructure;Surfactant

    1 Introduction

    Electrodeposition of metals and alloys,which has been performed for more than a century,is very flexible to manufacture a large number of metallic objects with very different morphologies such as pulverulent deposits,dendrites,needles,rough or porous deposits by changing,sometimes slightly,the experimental conditions.Among different morphologies,dendritic nanostructures have attracted much more attention recently.First,the dendritic growth is sometimes harmful in the electrochemical industry,for example,a serious problem in battery technology1.Secondly,the dendritic nanostructures have potential applications due to its special properties,such as catalysis and superhydrophobicity2. Moreover,dendritic growth in electrodeposition has also been considered as one of the typical out-of-equilibrium phenomena, in which several basic physics can be investigated3.So far,many experimental4-11and theoretical works12-14have been reported.These works mainly focused on different factors which affect the fractal dendritic shape15,such as convection16,ion concentration17,18,voltage18,19,surfactant20-23,and so on.Among these factors, one special factor is the surfactant.The presence of such capping agents can change the free energies for different crystallographic planes and thus their relative growth rates24.However,there still lacks convincing theoretical works to investigate the effect of the surfactant so far.

    March 30,2016;Revised:May 26,2016;Published online:May 27,2016.

    .Email:hqxie@sspu.edu.cn;Tel:+86-21-50214461.

    O647.1

    10.3866/PKU.WHXB201605272

    The project was supported by the National Natural Science Foundation of China(51406111),Shanghai Natural Science Foundation,China

    (14ZR1417000),Scientific Innovation Project of Shanghai Education Committee,China(15ZZ100),and Young Eastern Scholar of Shanghai,China (QD2015052).

    國家自然科學基金(51406111),上海市自然科學基金(14ZR1417000),上海教委科研創(chuàng)新項目(15ZZ100)和上海市青年東方學者(QD2015052)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (12) Chazalviel,J.N.Phys.Rev.A 1990,42,7355.10.1103/ PhysRevA.42.7355

    (22) Sun,X.;Hagner,M.Langmuir 2007,23,9147.10.1021/ la701519x

    (30) Meakin,P.Phy.Rev.A 1983,27,1495.10.1103/ PhysRevA.27.1495

    猜你喜歡
    卡洛蒙特偏壓
    隱匿于黑白線條中的現(xiàn)實寓意
    預留土法對高鐵隧道口淺埋偏壓段的影響
    卡洛莊園里的故事(1) 花仙子
    讀寫算(中)(2016年5期)2016-11-07 07:26:21
    淺埋偏壓富水隧道掘進支護工藝分析
    河南科技(2015年4期)2015-02-27 14:21:05
    灰色理論在偏壓連拱隧道中的應用
    基于TPS40210的APD偏壓溫補電路設(shè)計
    三毛,你什么時候回來
    意林(2013年8期)2013-05-14 16:49:19
    91麻豆av在线| av天堂在线播放| 国产探花极品一区二区| 国产精品久久电影中文字幕| 精品一区二区三区视频在线| 亚洲欧美日韩卡通动漫| 九九热线精品视视频播放| 天堂动漫精品| 国产私拍福利视频在线观看| 免费看a级黄色片| 国产精品久久久久久亚洲av鲁大| 夜夜看夜夜爽夜夜摸| 在线观看免费视频日本深夜| 99精品在免费线老司机午夜| 成人亚洲精品av一区二区| 亚洲一区高清亚洲精品| bbb黄色大片| 最近在线观看免费完整版| 国模一区二区三区四区视频| 69av精品久久久久久| 国产精品女同一区二区软件 | 欧美日韩综合久久久久久 | 俺也久久电影网| 女生性感内裤真人,穿戴方法视频| 香蕉av资源在线| 国产主播在线观看一区二区| av中文乱码字幕在线| 午夜福利在线观看免费完整高清在 | 欧美精品国产亚洲| 精品国产三级普通话版| 3wmmmm亚洲av在线观看| 美女免费视频网站| 在线观看av片永久免费下载| 一区二区三区激情视频| 成人高潮视频无遮挡免费网站| 99热精品在线国产| 久久久久精品国产欧美久久久| 国产精品久久久久久久久免 | 51国产日韩欧美| 久久久久国内视频| 国产亚洲精品久久久com| 18禁裸乳无遮挡免费网站照片| 色精品久久人妻99蜜桃| 男女视频在线观看网站免费| 嫩草影院入口| 色精品久久人妻99蜜桃| 一个人观看的视频www高清免费观看| 色综合站精品国产| 色综合亚洲欧美另类图片| 成人三级黄色视频| 深夜a级毛片| 91字幕亚洲| 国产爱豆传媒在线观看| 欧美三级亚洲精品| 在线十欧美十亚洲十日本专区| 18+在线观看网站| 精品久久久久久久久久久久久| 欧美国产日韩亚洲一区| 色尼玛亚洲综合影院| 亚洲人成网站在线播| 国产成人欧美在线观看| 一进一出抽搐动态| 国产欧美日韩一区二区精品| 简卡轻食公司| 在线观看66精品国产| 欧美潮喷喷水| 国产激情偷乱视频一区二区| 久久久精品大字幕| 国内精品久久久久精免费| 黄色丝袜av网址大全| 国产色爽女视频免费观看| 国产aⅴ精品一区二区三区波| 精品日产1卡2卡| 久久精品国产99精品国产亚洲性色| xxxwww97欧美| xxxwww97欧美| 成熟少妇高潮喷水视频| 亚洲av不卡在线观看| 国产精品永久免费网站| 91麻豆av在线| 国产精品久久久久久久久免 | 91在线观看av| a级一级毛片免费在线观看| 日本一本二区三区精品| 亚洲av成人精品一区久久| 国产色婷婷99| 看黄色毛片网站| 欧美+日韩+精品| 欧美精品啪啪一区二区三区| 日韩国内少妇激情av| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 欧美激情国产日韩精品一区| 国产伦一二天堂av在线观看| 国产探花极品一区二区| h日本视频在线播放| 亚洲国产高清在线一区二区三| 一进一出抽搐gif免费好疼| 国产精品久久久久久亚洲av鲁大| 久久人人精品亚洲av| 97人妻精品一区二区三区麻豆| 久久99热这里只有精品18| 日韩欧美一区二区三区在线观看| 婷婷六月久久综合丁香| 99热只有精品国产| 国产av不卡久久| 久久精品综合一区二区三区| а√天堂www在线а√下载| 丝袜美腿在线中文| 一本久久中文字幕| 可以在线观看的亚洲视频| 无人区码免费观看不卡| 国产精品亚洲av一区麻豆| 精品99又大又爽又粗少妇毛片 | 亚洲男人的天堂狠狠| 淫妇啪啪啪对白视频| 色5月婷婷丁香| 亚洲色图av天堂| 1000部很黄的大片| 最好的美女福利视频网| 在线观看一区二区三区| www.999成人在线观看| 成人特级av手机在线观看| 久久6这里有精品| 久久久色成人| 蜜桃亚洲精品一区二区三区| 直男gayav资源| 人妻丰满熟妇av一区二区三区| 午夜精品一区二区三区免费看| 看免费av毛片| 日韩精品中文字幕看吧| 午夜福利在线观看免费完整高清在 | 欧美一级a爱片免费观看看| 亚洲无线观看免费| 一个人看的www免费观看视频| 熟女电影av网| 午夜免费成人在线视频| 宅男免费午夜| 黄色视频,在线免费观看| 国产精华一区二区三区| 老司机午夜福利在线观看视频| 高清在线国产一区| 99热这里只有是精品50| 熟妇人妻久久中文字幕3abv| 久久国产精品影院| 午夜福利高清视频| 五月伊人婷婷丁香| 我的女老师完整版在线观看| 国产精品三级大全| 乱人视频在线观看| 女人十人毛片免费观看3o分钟| 一本一本综合久久| 又爽又黄无遮挡网站| av黄色大香蕉| 天堂av国产一区二区熟女人妻| 日本熟妇午夜| 亚洲电影在线观看av| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影| 一区福利在线观看| 天堂√8在线中文| 欧美zozozo另类| 给我免费播放毛片高清在线观看| xxxwww97欧美| 午夜久久久久精精品| 禁无遮挡网站| 久久久久国内视频| 国产视频内射| 人妻久久中文字幕网| netflix在线观看网站| 精品一区二区三区人妻视频| 久久人人精品亚洲av| 欧美黄色片欧美黄色片| 亚洲性夜色夜夜综合| 日韩欧美精品免费久久 | 国产一级毛片七仙女欲春2| av中文乱码字幕在线| 日韩欧美三级三区| 毛片一级片免费看久久久久 | or卡值多少钱| 久久午夜福利片| aaaaa片日本免费| 亚洲av电影不卡..在线观看| 免费在线观看日本一区| 成人国产综合亚洲| 国产野战对白在线观看| 十八禁网站免费在线| 久久久久久久精品吃奶| 三级毛片av免费| av在线老鸭窝| 在线十欧美十亚洲十日本专区| 午夜福利高清视频| 我的女老师完整版在线观看| 欧美成人性av电影在线观看| 国产麻豆成人av免费视频| 中文字幕人妻熟人妻熟丝袜美| 丁香六月欧美| 免费av不卡在线播放| 一区二区三区高清视频在线| 午夜福利欧美成人| 波多野结衣高清作品| 亚洲欧美日韩卡通动漫| 日韩有码中文字幕| 亚洲av不卡在线观看| 成人一区二区视频在线观看| 精品福利观看| 国产高潮美女av| 香蕉av资源在线| 日韩欧美免费精品| 中亚洲国语对白在线视频| 久久99热6这里只有精品| 欧美另类亚洲清纯唯美| 人妻丰满熟妇av一区二区三区| 亚洲专区国产一区二区| av在线观看视频网站免费| 美女高潮喷水抽搐中文字幕| 亚洲国产精品成人综合色| 午夜激情欧美在线| 又爽又黄a免费视频| 亚洲欧美日韩东京热| 此物有八面人人有两片| 国产私拍福利视频在线观看| 偷拍熟女少妇极品色| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区| 怎么达到女性高潮| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 国产精品,欧美在线| 免费大片18禁| 亚洲人成电影免费在线| 淫妇啪啪啪对白视频| 伊人久久精品亚洲午夜| 亚洲精品在线观看二区| 一二三四社区在线视频社区8| 日韩欧美精品免费久久 | 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 欧美性猛交黑人性爽| 精品欧美国产一区二区三| 久久精品国产亚洲av天美| netflix在线观看网站| 成人av一区二区三区在线看| 有码 亚洲区| 最近在线观看免费完整版| 天堂影院成人在线观看| 一个人看的www免费观看视频| 男女下面进入的视频免费午夜| 精品久久久久久久久av| 俺也久久电影网| 日韩欧美在线二视频| 757午夜福利合集在线观看| 人人妻人人澡欧美一区二区| 国产高清视频在线观看网站| 最后的刺客免费高清国语| 99久国产av精品| 欧美精品啪啪一区二区三区| av天堂在线播放| 久久精品综合一区二区三区| 性色avwww在线观看| 老女人水多毛片| 在线a可以看的网站| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区 | 51午夜福利影视在线观看| 国产中年淑女户外野战色| 啦啦啦观看免费观看视频高清| 国产黄片美女视频| 国产午夜精品久久久久久一区二区三区 | 露出奶头的视频| 可以在线观看的亚洲视频| 久久人妻av系列| 久久香蕉精品热| 我的女老师完整版在线观看| 免费人成视频x8x8入口观看| 免费看日本二区| 一本综合久久免费| 在线观看av片永久免费下载| 日本五十路高清| 日韩欧美一区二区三区在线观看| 男女视频在线观看网站免费| 欧美丝袜亚洲另类 | 欧美高清性xxxxhd video| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 极品教师在线免费播放| 国产麻豆成人av免费视频| 在线国产一区二区在线| av在线观看视频网站免费| 欧美性猛交╳xxx乱大交人| 老司机午夜十八禁免费视频| 韩国av一区二区三区四区| 亚洲美女黄片视频| 久久久久久久午夜电影| 亚洲欧美日韩高清专用| 日日夜夜操网爽| 久久久久久九九精品二区国产| 国产av不卡久久| 精品人妻熟女av久视频| 人人妻人人看人人澡| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 国产人妻一区二区三区在| av黄色大香蕉| 亚洲第一区二区三区不卡| 国产精品一区二区三区四区久久| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 欧美成狂野欧美在线观看| 久久久久精品国产欧美久久久| 人妻制服诱惑在线中文字幕| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| .国产精品久久| 五月玫瑰六月丁香| 午夜精品久久久久久毛片777| 看片在线看免费视频| 日韩人妻高清精品专区| or卡值多少钱| 女人被狂操c到高潮| 婷婷精品国产亚洲av| 深夜精品福利| 狂野欧美白嫩少妇大欣赏| 国产成+人综合+亚洲专区| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 久久久久精品国产欧美久久久| 少妇高潮的动态图| 久久久成人免费电影| 日本一二三区视频观看| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 欧美黄色片欧美黄色片| 国产真实乱freesex| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 欧美激情在线99| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 噜噜噜噜噜久久久久久91| 桃色一区二区三区在线观看| 黄色配什么色好看| 国产欧美日韩一区二区三| 午夜精品在线福利| 久久久久久久亚洲中文字幕 | 午夜福利视频1000在线观看| av在线老鸭窝| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区| 国产成人aa在线观看| 天天一区二区日本电影三级| 色吧在线观看| 51国产日韩欧美| 少妇高潮的动态图| 十八禁网站免费在线| 久久久久性生活片| 国产乱人伦免费视频| 久久久久久久久大av| 午夜精品在线福利| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 国产亚洲精品久久久com| 搡老熟女国产l中国老女人| 亚洲美女视频黄频| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 丁香欧美五月| 久久人人爽人人爽人人片va | 亚洲五月天丁香| 精品乱码久久久久久99久播| 欧美最新免费一区二区三区 | 亚洲在线观看片| 一进一出抽搐动态| 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲av美国av| 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 日本免费a在线| 一本精品99久久精品77| 久久人人精品亚洲av| 亚洲五月婷婷丁香| 国产午夜精品论理片| 我的女老师完整版在线观看| 很黄的视频免费| av天堂中文字幕网| 亚洲内射少妇av| 久久精品国产亚洲av天美| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 麻豆成人午夜福利视频| 国产色婷婷99| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 变态另类丝袜制服| 成年免费大片在线观看| 亚洲,欧美,日韩| 国产野战对白在线观看| 一个人免费在线观看电影| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| www.色视频.com| 99热6这里只有精品| 免费一级毛片在线播放高清视频| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 日韩欧美一区二区三区在线观看| bbb黄色大片| 亚洲中文日韩欧美视频| 成人毛片a级毛片在线播放| 狠狠狠狠99中文字幕| 精品免费久久久久久久清纯| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 特级一级黄色大片| 99热只有精品国产| 日本 欧美在线| 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 欧美性猛交╳xxx乱大交人| 最近在线观看免费完整版| 免费av观看视频| 老熟妇仑乱视频hdxx| 精品久久久久久久久av| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 亚洲第一欧美日韩一区二区三区| 亚洲午夜理论影院| 午夜影院日韩av| 亚洲精华国产精华精| 中文资源天堂在线| 精品国产三级普通话版| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 一本综合久久免费| 国产精品av视频在线免费观看| 色哟哟哟哟哟哟| 亚洲人成网站在线播放欧美日韩| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| xxxwww97欧美| 九九在线视频观看精品| 亚洲综合色惰| 国产人妻一区二区三区在| 麻豆成人av在线观看| 我的女老师完整版在线观看| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 精品久久久久久久久av| 亚洲一区高清亚洲精品| 亚洲成人久久性| 国产一区二区三区在线臀色熟女| 国产高清三级在线| 久久久久亚洲av毛片大全| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 国内精品一区二区在线观看| 色哟哟·www| 久久99热6这里只有精品| 成年女人看的毛片在线观看| 国产精品三级大全| 亚洲精品456在线播放app | 国产成人影院久久av| 午夜日韩欧美国产| 无遮挡黄片免费观看| 欧美黑人巨大hd| 国产精品不卡视频一区二区 | 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 久久久久久九九精品二区国产| 国产一区二区三区在线臀色熟女| 亚洲av不卡在线观看| 成人国产综合亚洲| 免费av毛片视频| 老司机午夜福利在线观看视频| 在线观看66精品国产| 床上黄色一级片| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 亚洲第一电影网av| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看| 成人av在线播放网站| 国产精品不卡视频一区二区 | 色精品久久人妻99蜜桃| 精品久久久久久成人av| 国产白丝娇喘喷水9色精品| 男女做爰动态图高潮gif福利片| a在线观看视频网站| 亚洲av电影不卡..在线观看| 悠悠久久av| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 一进一出好大好爽视频| 欧美zozozo另类| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 99久久精品热视频| 波多野结衣高清作品| 久久久色成人| a级一级毛片免费在线观看| 波多野结衣高清无吗| 一区二区三区四区激情视频 | 亚洲国产精品合色在线| 少妇丰满av| 禁无遮挡网站| 久久久久久久久中文| 美女大奶头视频| 亚州av有码| 欧美在线一区亚洲| 久久精品国产亚洲av天美| 国产乱人伦免费视频| 亚洲18禁久久av| 能在线免费观看的黄片| 国产午夜福利久久久久久| 欧美一区二区亚洲| 亚洲人成网站在线播| 成人av一区二区三区在线看| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产三级在线视频| 俺也久久电影网| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 成人精品一区二区免费| 国产欧美日韩一区二区三| 国产人妻一区二区三区在| 特级一级黄色大片| 亚洲av免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 欧美性猛交黑人性爽| 亚洲成a人片在线一区二区| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 免费一级毛片在线播放高清视频| 日本与韩国留学比较| 午夜免费激情av| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 日韩欧美国产在线观看| 国产91精品成人一区二区三区| 日韩欧美国产在线观看| 精品乱码久久久久久99久播| 国产综合懂色| 99热只有精品国产| 中文字幕久久专区| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 美女黄网站色视频| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 欧美最黄视频在线播放免费| 少妇的逼好多水| 天堂av国产一区二区熟女人妻| 亚洲av日韩精品久久久久久密| 国产精品不卡视频一区二区 | 国产大屁股一区二区在线视频| 亚洲18禁久久av| 国产精品野战在线观看| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| 我要搜黄色片| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看| 一夜夜www| 亚洲专区国产一区二区| 国产精品嫩草影院av在线观看 | 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 欧美乱色亚洲激情| 国产高清有码在线观看视频| 国语自产精品视频在线第100页| 午夜老司机福利剧场| 999久久久精品免费观看国产| 日韩 亚洲 欧美在线| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 身体一侧抽搐| 99热6这里只有精品| 精品久久久久久久久久免费视频| 久久精品久久久久久噜噜老黄 | 国产野战对白在线观看| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 国产精品伦人一区二区| 色哟哟哟哟哟哟| 一进一出抽搐动态| 深夜a级毛片| 两人在一起打扑克的视频| 男人舔女人下体高潮全视频| 国产av一区在线观看免费|