• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    2016-11-22 09:48:58王元元徐群星謝華清吳子華邢姣嬌
    物理化學學報 2016年10期
    關(guān)鍵詞:卡洛蒙特偏壓

    王元元 徐群星 謝華清 吳子華 邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    王元元徐群星謝華清*吳子華邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    采用偏壓受限擴散聚集模型研究溶液中銀樹形納米結(jié)構(gòu)的生長。模擬中,在二維正方形格子中引入了等腰直角三角形粒子進行模擬,同時運用不同的粘貼概率來描述表面活性劑的效果。模擬結(jié)果表明樹形納米結(jié)構(gòu)隨著偏壓的增大而變得更密。表面活性劑的加入使得樹形納米結(jié)構(gòu)變得更加對稱和規(guī)則。更進一步,當表面活性劑的效果足夠強且外加偏壓很小的時候,銀納米顆粒聚集成了銀納米片。模擬結(jié)果有利于定性解釋相關(guān)的實驗結(jié)果。

    蒙特-卡洛模擬;樹形銀納米結(jié)構(gòu);表面活性劑

    In this paper,we investigate the growth of the silver dendritic nanostructures with the surfactants by applying the biased diffusion-limited aggregation(DLA)method25,26.To study the influence of the surfactant on the morphology of the dendritic nanostructures,the isosceles right-angled triangle particles are applied in the two-dimensional(2D)square grids and the sticking possibilities of different particle sides are introduced.

    2 Simulation method

    The growth of the dendritic nanostructure is an out-of-equilibrium process.As we know,when a bias voltage is applied,a local space charge and thus a large electric field are formed in the vicinity of the negative electrode12.This space charge area is the diffusion layer and it thickens with the deceasing ion concentration18.At first,Ag+moves freely and performs random Brownian motion and walks to the diffusion layer randomly.When Ag+moves into the diffusion layer,it will be driven to move toward the reaction surface by the electric field in the diffusion layer.When Ag+moves to the reaction surface,it gains an electron and is reduced to a silver atom.Then the reduced silver atom deposits on the reaction surface.We apply the 2D biased DLA model27to simulate the growth of the silver dendritic nanostructures in the silver nitrate solution.When the area of the reaction plane is large enough and the isotropy holds true in the plane,the threedimensional(3D)problem can be simplified to the quasi-2D problem in the plane perpendicular to the reaction plane(see Fig.1 (a)).At this time,the 2D simulation is acceptable.It is also noted that extending the DLA simulation to 3D is relatively straightforward but there are some important differences and options not available in two dimensions28,29.One of the significant improvements of the 3D algorithm is not to form the DLA on a grid of finite resolution but rather on a continuum.A particle adheres to the existing structure if it comes within some minimum distance of any part of the existing structure.In our simulation,a particle denotingAg+is released at a random site on the top horizontal line. This particle performs a bias random walk until it reaches the bottom horizontal line and then deposits.The next particle is then released,and so on.Two velocities are introduced to describe the particle motion:longitudinal velocity vyand the transverse velocity vx,which are perpendicular and parallel to the bottom line,respectively18.The velocity ratio between vyand vxis denoted as p (p=vy/vx).The longitudinal velocity is determined by the electric field in the diffusion layer,which is affected by the bias voltage. The transverse velocity is determined by the Brownian motion, which is only related to the solution temperature.In the simulation,we need to consider the effect of the surfactant.Since the capping agents change the free energies for different crystallographic planes and thus their relative growth rates24,we apply the square and isosceles right-angled triangle particles(see Fig.1(b)) instead of the round particles applied in the literature18,so that we can distinguish different sides of the particles.It should be noticed that there are four types of triangle particles(see Fig.1(b))in the 2D square grids when the rotation of the particles is neglected.In order to simulate different growth rates of different sides,the sticking rates26,30of different sides are introduced:The sticking rates for the two arms of the right angle and the hypotenuse of the triangle particles are paand phrespectively,while for the sides for the square particles,the sticking rates are all pe.When a particle walks to the neighbor position of one side with the sticking rate pi(i=a,h,e),it has a pipossibility to be stuck and 1-pipossibility to continue walking.Introducing the sticking possibility is actually adding an inhomogeneous perturbation,which weakens the screening effect3and makes the grown nanostructures become much regular and compacter.

    3 Results and discussion

    We now study how the morphology of the dendritic nanostructures changes with the bias voltage and the surfactant.Biased DLA Monte-Carlo method27is applied to obtain the simulation images.To compare the results simulated in different conditions, the image sizes are all 100×300 grids.

    3.1Effect of bias voltage on growth

    Fig.1 Schematic diagram of biased DLAmodel

    We first study the influence of the voltage on the growth.The results with square and triangle particles applied are shown in Fig.2 and Fig.3,respectively.The results of(a),(b)and(c)in Fig.2 and Fig.3 are obtained with p=0.25,1,4,which means that the longitudinal velocity increases induced by the increasing bias voltage.It is seen that when the bias voltage is small,the fractal trees are separate without overlapping each other(see Fig.2(a)and Fig.3(a)),no matter that the square or the triangle particles are applied.Then the dendritic nanostructures become denser with the increasing voltage.When the bias voltage is large enough(see Fig.2(c)and Fig.3(c)),the fractal trees connect together and jointinto a whole shape in which single trees cannot be separated out. At the same time,the sizes of branches decrease with the increasing voltage.This can be understood as follows.When p is small,which means that vxis larger than vy,each particle tends to be captured by the tip of the branches,instead to aggregate on the hollow sites.However,when p is large,which means that vyis larger than vx,the particle has much larger possibility to walk into the hollow position of the branches.Therefore,the bias voltage affects the walk property in the diffusion layers and thus modifies the whole morphology of the dendrites.It is also noticed that, although the simulation results with both square and triangle particles have similar features,the simulation images with the square particles are very rough in comparison with those with the triangle particles.This is because the area of the square particle is larger than that of the triangle particle.Considering that the size of the 2D grids is keeping the same,the larger the particles are,the rougher the simulation images are.

    Fig.2 Simulation images with the square particles applied

    Fig.3 Simulation images with the triangle particles applied

    Fig.4 Simulation images with the square particles applied

    Fig.5 Simulation images with the triangle particles applied for the equivalent sticking possibilities of the right-angle sides and the hypotenuse

    3.2Effect of surfactant on the growth

    We now turn to investigate the effect of the surfactant to the morphology of the silver dendritic nanostructures.The results with the square particles applied are shown in Fig.4.In the simulation, p=vy/vx=1.The sticking possibilities decrease gradually(pe=0.8, 0.6,0.4,0.2)for Fig.4(a)to(d),which implies that the growth rate becomes smaller and the effect of the surfactant becomes stronger. The simulation results in the four images do not have large dif-ference,except that the concentration of the branches increases a little.This comes from the fact that the four sides of the square are equivalent.The decrease of the growth rates of the four sides simultaneously can only lengthen the walking of the particles, which makes the particles prefer to walk toward the hollow of the branches.Therefore,changing the sticking possibilities of the four equivalent sides do not affect the whole morphology of the dendritic nanostructures strongly.This modification of the DLA model is similar to the multiple hits method.Therefore,it is not satisfying to explain the effect of the surfactant by applying the square particles in the modified DLAmodel.

    In the following,we introduce the triangle particles in the DLA model.The sticking possibilities of the right-angle sides and the hypotenuse are set to be the same(pa=ph)and the results are shown in Fig.5,where Fig.5(a-d)are corresponding to pa=ph= 0.8,0.6,0.4,0.2,respectively,which means that the effect of the surfactant increases.It is seen that the morphology of the deposit changes strongly with the decrease of the sticking possibility due to the inequality of the three sides,although the sticking possibilities of all the sides are the same.When the effect of the surfactant is weak(Fig.5(a)),the grown structures is still fractal dendrites,which is consistent with the observation in almost every experimental attempt for silver dendrites31-34.When the effect of the surfactant increases,the morphology becomes regular and ordered.When the effect of the surfactant is strong enough(Fig.5 (d)),the fractal trees are joint into some pieces.This result can also be seen in the experimental work35,where 1.1 mmol CTAB in 15 mL water is used as the surfactant.This is because when the sticking possibilities decrease due to the effect of the surfactant, every particle has large possibility to escape from the site where it touches the deposit at the first time and continue walking. Therefore,the possibility it walks into the hollow of the branches increases,which makes the nanostructures become much denser.

    We then continue to present the results when the sticking possibilities of the right-angle sides and the hypotenuse are different,which is in accordance with the effect of the surfactant in experiments.In Fig.6,the results when the surfactant only affects the hypotenuse of the triangle are shown,where ph=0.8,0.6,0.4, 0.2 for Fig.6(a),(b),(c),and(d),which implies that the effect of the surfactant increases gradually.At the same time,pa=1 and p= 1.It is seen that although phdecreases gradually,the dendritic structures do not have large difference.This implies that the surfactant that affects the growth rate of the hypotenuse does not influence the morphology strongly.Furthermore,we consider the cases when the surfactant only affects the right angle sides and the results are shown in Fig.7.In the simulation ph=1 and padecreases gradually.It is interesting that the fractal trees gradually joint together and become plates.It is also noticed that the results in Fig.7 are similar to those in Fig.5.It indicates that the surfactant that affects the growth rate of the right angle sides is in the leading role to modify the morphology of the dendrites.This can be understood as follows.There are two arms of the right angle,whereas only one hypotenuse in one triangle particles.When a particle touches the deposit,the possibility that the interface is the right-angle side is larger.Therefore,it is more efficient to change the sticking possibilities of the right angle sides than the hypotenuse.Our simulation results imply that different surfactants which influence different crystal faces have different effects on the morphology of the dendrites.

    Fig.6 Simulation images with the triangle particles applied when the surfactant only affects the hypotenuse of the triangle

    Fig.7 Simulation images with the triangle particles applied when the surfactant only affects the right angle sides

    4 Conclusions

    Inconclusion,wehaveinvestigatedthegrowthofthedendritic nanostructures.By introducing the isosceles right-angled triangle particles in the 2D square grids and the sticking possibilities of differentsidesoftheparticle,amodifiedbiasedDLAmodelisset up and applied to study the effect of the bias voltage and the surfactant to the morphology of the fractal trees.It is found that the dendriticnanostructuresbecomedenserandthesizesofthesingle branches decrease with the increasing bias voltage.What is interestingisthatthefractaltreesjointtogetherandbecomeplatesdue to the surfactant,which implies that the surfactant can make the structuresinthewholebecomemuchmoreregularandsymmetrical.

    References

    (1) Tarascon,J.M.;Armand,M.Nature 2001,414,359. doi:10.1038/35104644

    (2) Shi,F.;Song,Y.;Niu,J.;Xia,X.;Wang,Z.;Zhang,X.Chem. Mater.2006,18,1365.doi:10.1021/cm052502n

    (3) Vicsek,T.Fractal Growth Phenomena;World Scientific: Singapore,1992.

    (4) Fang,J.X.;Ding,B.J.;Song,X.P.;Han,Y.Appl.Phys.Lett. 2008,92,173120.doi:10.1063/1.2888770

    (5) Xiao,J.P.;Xie,Y.;Tang,R.;Chen,M.;Tian,X.B.Adv.Mater. 2001,13,1887.doi:10.1002/1521-4095(200112)13:24<1887:: AID-ADMA1887>3.0.CO;2-2

    (6)Zheng,X.J.;Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Mao,B.W.; Zheng,L.S.Electrochem.Commun.2007,9,629.doi:10.1016/ j.elecom.2006.10.039

    (7) Gutés,A.;Carraro,C.;Maboudian,R.J.Am.Chem.Soc.2010, 132,1476.doi:10.1021/ja909806t

    (8)Wang,M.;Zhong,S.;Yin,X.B.;Zhu,J.M.;Peng,R.W.; Wang,Y.;Zhang,K.Q.;Ming,N.B.Phys.Rev.Lett.2001,86, 3827.doi:10.1103/PhysRevLett.86.3827

    (9) Sun,B.;Zou,X.W.;Jin,Z.Z.Phys.Rev.E 2004,69,067202. doi:10.1103/PhysRevE.69.067202

    (10) Cronemberger,C.M.;Sampaio,L.C.Phys.Rev.E 2006,73, 041403.doi:10.1103/PhysRevE.73.041403

    (11)Wu,X.Z.;Pei,M.S.;Wang,L.Y.;Li,X.N.;Tao,X.T.Acta Phys.-Chim.Sin.2010,26,3095.[吳馨洲,裴梅山,王廬巖,李肖男,陶緒堂.物理化學學報,2010,26,3095.]doi:10.3866/ PKU.WHXB20101132

    (13) Elezgaray,J.;Léger,C.;Argoul,F.J.Electrochem.Soc.1998, 145,2016.doi:10.1149/1.1838592

    (14) Monroe,C.;Newman,J.J.Electrochem.Soc.2003,150, A1377.doi:10.1149/1.1606686

    (15) Léger,C.;Elezgaray,J.;Argoul,F.J.Electroanal.Chem.2000, 486,204.doi:10.1016/S0022-0728(00)00143-1

    (16)Wang,M.;van Enckevort,W.J.P.;Ming,N.B.;Bennema,P. Nature 1994,367,438.doi:10.1038/367438a0

    (17) Nahal,A.;Mostafavi-Amjad,J.;Ghods,A.;Khajehpour,M.R. H.;Reihani,S.N.S.;Kolahchi,M.R.J.Appl.Phys.2006,100, 053503.doi:10.1063/1.2336493

    (18)You,H.J.;Fang,J.X.;Chen,F.;Shi,M.;Song,X.P.;Ding,B. J.J.Phys.Chem.C 2008,112,16301.doi:10.1021/jp8042126

    (19) Sawada,Y.;Dougherty,A.;Gollub,J.P.Phys.Rev.Lett.1986, 56,1260.doi:10.1103/PhysRevLett.56.1260

    (20) Lee,G.J.;Shin,S.I.;Oh,S.G.Chem.Lett.2004,33,118. doi:10.1246/cl.2004.118

    (21) Rashid,M.H.;Mandal,T.K.J.Phys.Chem.C 2007,111, 16750.doi:10.1021/jp074963x

    (23) Zhou,Y.;Yu,S.H.;Wang,C.Y.;Li,X.G.;Zhu,Y.R.;Chen,Z. Y.Adv.Mater.1999,11,850.doi:10.1002/(SICI)1521-4095 (199907)11:10<850::AID-ADMA850>3.0.CO;2-Z

    (24) Kang,Z.;Wang,E.;Lian,S.;Mao,B.;Chen,L.;Xu,L.Mater. Lett.2005,59,2289.doi:10.1016/j.matlet.2005.03.005

    (25) Witten,T.A.;Sander,L.M.Phys.Rev.Lett.1981,47,1400. doi:10.1103/PhysRevLett.47.1400

    (26) Witten,T.A.;Sander,L.M.Phys.Rev.B 1983,27,5686. doi:10.1103/PhysRevB.27.5686

    (27) Nagatani,T.;Sagués,F.Phys.Rev.A 1991,43,2970. doi:10.1103/PhysRevA.43.2970

    (28) Sander,L.M.;Cheng,Z.M.;Richter,R.Phys.Rev.B 1983,28, 6394.doi:10.1103/PhysRevB.28.6394

    (29) Xiong,H.L.;Yang,Z.M.;Li,H.Acta Phys.-Chim.Sin.2014, 30,413.[熊海靈,楊志敏,李航.物理化學學報,2014,30, 413.]doi:10.3866/PKU.WHXB201401203

    (31) Qin,Y.;Song,Y.;Sun,N.;Zhao,N.;Li,M.;Qi,L.Chem. Mater.2008,20,3965.doi:10.1021/cm8002386

    (32)Hong,X.;Wang,G.Z.;Wang,Y.;Zhu,W.;Shen,X.S.Chin.J. Chem.Phys.2010,23,596.doi:10.1088/1674-0068/23/05/596-602

    (33) Ye,W.;Shen,C.;Tian,J.;Wang,C.;Bao,L.;Gao,H. Electrochem.Commun.2008,10,625.doi:10.1016/j. elecom.2008.01.040

    (34) Liao,F.;Wang,Z.F.;Hu,X.Q.Colloid J.2011,73,504. doi:10.1134/s1061933x11040053

    (35) Zhang,L.;Ai,Z.;Jia,F.;Liu,L.;Hu,X.;Yu,J.C.Chemistry 2006,12,4185.doi:10.1002/chem.200501404

    Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures

    WANG Yuan-YuanXU Qun-XingXIE Hua-Qing*WU Zi-HuaXING Jiao-Jiao
    (School of Environmental and Materials Engineering,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China)

    The bias diffusion-limited aggregation model is used to study the growth of silver dendritic nanostructures in solution.In the simulation,right-angled isosceles triangle particles are introduced in twodimensional square grids and the sticking possibilities of different particle sides are introduced to describe the effect of the surfactant.Our simulation results show that the dendritic nanostructures become denser with increasing bias voltage.It is also found that the dendritic nanostructures become much more symmetrical and regular when the surfactant is applied.Furthermore,if the effect of the surfactant is strong enough and the bias voltage is small,the branches of the nanostructures are assembled into silver plates.Our simulation results are helpful to explain the experimental results qualitatively.

    Monte-Carlo simulation;Silver dendritic nanostructure;Surfactant

    1 Introduction

    Electrodeposition of metals and alloys,which has been performed for more than a century,is very flexible to manufacture a large number of metallic objects with very different morphologies such as pulverulent deposits,dendrites,needles,rough or porous deposits by changing,sometimes slightly,the experimental conditions.Among different morphologies,dendritic nanostructures have attracted much more attention recently.First,the dendritic growth is sometimes harmful in the electrochemical industry,for example,a serious problem in battery technology1.Secondly,the dendritic nanostructures have potential applications due to its special properties,such as catalysis and superhydrophobicity2. Moreover,dendritic growth in electrodeposition has also been considered as one of the typical out-of-equilibrium phenomena, in which several basic physics can be investigated3.So far,many experimental4-11and theoretical works12-14have been reported.These works mainly focused on different factors which affect the fractal dendritic shape15,such as convection16,ion concentration17,18,voltage18,19,surfactant20-23,and so on.Among these factors, one special factor is the surfactant.The presence of such capping agents can change the free energies for different crystallographic planes and thus their relative growth rates24.However,there still lacks convincing theoretical works to investigate the effect of the surfactant so far.

    March 30,2016;Revised:May 26,2016;Published online:May 27,2016.

    .Email:hqxie@sspu.edu.cn;Tel:+86-21-50214461.

    O647.1

    10.3866/PKU.WHXB201605272

    The project was supported by the National Natural Science Foundation of China(51406111),Shanghai Natural Science Foundation,China

    (14ZR1417000),Scientific Innovation Project of Shanghai Education Committee,China(15ZZ100),and Young Eastern Scholar of Shanghai,China (QD2015052).

    國家自然科學基金(51406111),上海市自然科學基金(14ZR1417000),上海教委科研創(chuàng)新項目(15ZZ100)和上海市青年東方學者(QD2015052)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (12) Chazalviel,J.N.Phys.Rev.A 1990,42,7355.10.1103/ PhysRevA.42.7355

    (22) Sun,X.;Hagner,M.Langmuir 2007,23,9147.10.1021/ la701519x

    (30) Meakin,P.Phy.Rev.A 1983,27,1495.10.1103/ PhysRevA.27.1495

    猜你喜歡
    卡洛蒙特偏壓
    隱匿于黑白線條中的現(xiàn)實寓意
    預留土法對高鐵隧道口淺埋偏壓段的影響
    卡洛莊園里的故事(1) 花仙子
    讀寫算(中)(2016年5期)2016-11-07 07:26:21
    淺埋偏壓富水隧道掘進支護工藝分析
    河南科技(2015年4期)2015-02-27 14:21:05
    灰色理論在偏壓連拱隧道中的應用
    基于TPS40210的APD偏壓溫補電路設(shè)計
    三毛,你什么時候回來
    意林(2013年8期)2013-05-14 16:49:19
    中文字幕人妻熟人妻熟丝袜美| 一级爰片在线观看| 毛片一级片免费看久久久久| 久久久久视频综合| av免费在线看不卡| 色吧在线观看| 亚洲国产av新网站| 亚洲精品日韩在线中文字幕| 亚洲经典国产精华液单| 欧美人与善性xxx| 久久婷婷青草| 成人综合一区亚洲| 欧美极品一区二区三区四区| 国产中年淑女户外野战色| 国产老妇伦熟女老妇高清| 亚洲综合精品二区| 欧美日韩国产mv在线观看视频 | 亚洲欧美一区二区三区国产| 欧美成人一区二区免费高清观看| 日韩免费高清中文字幕av| 国产高清国产精品国产三级 | 国产一区二区三区综合在线观看 | 成人午夜精彩视频在线观看| 成年av动漫网址| 啦啦啦视频在线资源免费观看| 26uuu在线亚洲综合色| av专区在线播放| 国产无遮挡羞羞视频在线观看| 国产人妻一区二区三区在| 97热精品久久久久久| 99久国产av精品国产电影| 亚洲欧美日韩卡通动漫| 日本欧美国产在线视频| 啦啦啦中文免费视频观看日本| 欧美另类一区| 少妇被粗大猛烈的视频| av国产免费在线观看| 欧美亚洲 丝袜 人妻 在线| 人妻夜夜爽99麻豆av| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 色5月婷婷丁香| 看十八女毛片水多多多| 国产精品一区二区在线观看99| 最后的刺客免费高清国语| 国产亚洲最大av| 九九在线视频观看精品| 国产精品一区二区性色av| 成人黄色视频免费在线看| 交换朋友夫妻互换小说| 黄片wwwwww| 97超视频在线观看视频| 国产精品秋霞免费鲁丝片| 日日撸夜夜添| 视频中文字幕在线观看| 51国产日韩欧美| 男人爽女人下面视频在线观看| 性色av一级| 简卡轻食公司| 99热全是精品| 在线免费观看不下载黄p国产| 亚洲国产毛片av蜜桃av| 精华霜和精华液先用哪个| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 免费黄网站久久成人精品| 国产成人精品一,二区| 男人添女人高潮全过程视频| 伊人久久国产一区二区| 三级国产精品片| 欧美精品亚洲一区二区| 久久久色成人| 天天躁日日操中文字幕| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| av国产久精品久网站免费入址| 国产黄片视频在线免费观看| av国产久精品久网站免费入址| 欧美成人一区二区免费高清观看| 国产精品久久久久久av不卡| 亚洲成人手机| av国产久精品久网站免费入址| 亚洲欧美一区二区三区国产| 97在线人人人人妻| 久久女婷五月综合色啪小说| 男女下面进入的视频免费午夜| 午夜免费鲁丝| 91精品国产九色| 又爽又黄a免费视频| 麻豆成人av视频| 九九在线视频观看精品| 免费高清在线观看视频在线观看| 久久久久人妻精品一区果冻| 久久久久性生活片| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 日本猛色少妇xxxxx猛交久久| av一本久久久久| 久久精品夜色国产| 久久国产精品男人的天堂亚洲 | 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 美女国产视频在线观看| 性色avwww在线观看| 又爽又黄a免费视频| 国产av精品麻豆| 中国三级夫妇交换| 久久国内精品自在自线图片| 精品亚洲成国产av| 日本-黄色视频高清免费观看| 一本色道久久久久久精品综合| 一级毛片我不卡| 亚洲精品一区蜜桃| 精品亚洲成a人片在线观看 | 秋霞在线观看毛片| 五月伊人婷婷丁香| 国产高清不卡午夜福利| 国产欧美亚洲国产| 肉色欧美久久久久久久蜜桃| 大话2 男鬼变身卡| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 高清黄色对白视频在线免费看 | 日本免费在线观看一区| 黑丝袜美女国产一区| 寂寞人妻少妇视频99o| 制服丝袜香蕉在线| 哪个播放器可以免费观看大片| 亚洲精品色激情综合| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 久久久亚洲精品成人影院| a级毛片免费高清观看在线播放| 妹子高潮喷水视频| 在线精品无人区一区二区三 | 亚洲av在线观看美女高潮| 全区人妻精品视频| 亚洲欧洲日产国产| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 久久99精品国语久久久| 久久99热这里只频精品6学生| 内地一区二区视频在线| 高清午夜精品一区二区三区| 久久人人爽人人爽人人片va| 亚州av有码| 好男人视频免费观看在线| 新久久久久国产一级毛片| 亚洲av日韩在线播放| 久久久精品94久久精品| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 一级二级三级毛片免费看| 一区二区三区四区激情视频| 成人一区二区视频在线观看| 男人和女人高潮做爰伦理| 在线亚洲精品国产二区图片欧美 | 91午夜精品亚洲一区二区三区| 国产亚洲91精品色在线| 国产免费一区二区三区四区乱码| av国产久精品久网站免费入址| 久久99热这里只频精品6学生| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 国产精品偷伦视频观看了| 精品久久国产蜜桃| 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 五月伊人婷婷丁香| xxx大片免费视频| 久久国内精品自在自线图片| 国产亚洲av片在线观看秒播厂| 亚洲经典国产精华液单| 汤姆久久久久久久影院中文字幕| 久久精品国产自在天天线| 日韩制服骚丝袜av| 在现免费观看毛片| 日韩成人伦理影院| 国产午夜精品久久久久久一区二区三区| 黑人高潮一二区| 亚洲欧美清纯卡通| 精品人妻一区二区三区麻豆| 色网站视频免费| 精品一区二区免费观看| 丰满少妇做爰视频| 美女视频免费永久观看网站| 久久久欧美国产精品| 亚洲精品自拍成人| 男女边吃奶边做爰视频| 日韩亚洲欧美综合| 人妻少妇偷人精品九色| 在线观看免费视频网站a站| 夫妻性生交免费视频一级片| 亚洲av中文av极速乱| 一级a做视频免费观看| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| 一级a做视频免费观看| 久久久久精品性色| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| 蜜桃久久精品国产亚洲av| 十八禁网站网址无遮挡 | kizo精华| 精品酒店卫生间| 99精国产麻豆久久婷婷| 亚洲熟女精品中文字幕| 久久久久视频综合| 啦啦啦视频在线资源免费观看| 老司机影院成人| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 99re6热这里在线精品视频| 精品酒店卫生间| 日韩制服骚丝袜av| 秋霞在线观看毛片| 人体艺术视频欧美日本| 成人影院久久| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 老师上课跳d突然被开到最大视频| 久久亚洲国产成人精品v| 最近中文字幕2019免费版| 91久久精品国产一区二区成人| 国产精品女同一区二区软件| 国产精品女同一区二区软件| 麻豆国产97在线/欧美| 日韩av在线免费看完整版不卡| 3wmmmm亚洲av在线观看| 大片电影免费在线观看免费| 免费大片18禁| 下体分泌物呈黄色| 一级av片app| 亚洲精品一二三| 女性生殖器流出的白浆| 亚洲欧美日韩无卡精品| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片 | 美女cb高潮喷水在线观看| 久久99热6这里只有精品| 成人二区视频| 亚洲国产日韩一区二区| 舔av片在线| 校园人妻丝袜中文字幕| 精品亚洲乱码少妇综合久久| 免费在线观看成人毛片| 中文在线观看免费www的网站| 亚洲人成网站在线观看播放| 亚洲电影在线观看av| 亚洲精品亚洲一区二区| 国产成人91sexporn| 国产精品福利在线免费观看| 亚洲美女视频黄频| 99久久综合免费| 最近最新中文字幕大全电影3| 你懂的网址亚洲精品在线观看| 久久国产乱子免费精品| 免费观看的影片在线观看| 亚洲色图综合在线观看| 国产无遮挡羞羞视频在线观看| 中文字幕久久专区| 久久国产精品大桥未久av | 黑丝袜美女国产一区| 亚洲美女黄色视频免费看| 精品一区在线观看国产| 欧美日韩国产mv在线观看视频 | 九九在线视频观看精品| 熟女电影av网| 亚洲天堂av无毛| 亚洲av男天堂| 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说 | 人人妻人人添人人爽欧美一区卜 | 成年女人在线观看亚洲视频| 亚洲经典国产精华液单| 黄片无遮挡物在线观看| 又粗又硬又长又爽又黄的视频| 大香蕉97超碰在线| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 少妇人妻 视频| 久久人人爽人人片av| 熟女电影av网| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 久久久亚洲精品成人影院| 精品久久久精品久久久| 久久鲁丝午夜福利片| 色哟哟·www| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | av在线老鸭窝| 欧美精品一区二区免费开放| 国产 精品1| 久久女婷五月综合色啪小说| 有码 亚洲区| 97在线人人人人妻| 久久精品久久久久久噜噜老黄| 国产中年淑女户外野战色| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 国产成人精品久久久久久| 高清不卡的av网站| 久久毛片免费看一区二区三区| 国产成人91sexporn| 晚上一个人看的免费电影| 2022亚洲国产成人精品| 男人爽女人下面视频在线观看| 一级毛片黄色毛片免费观看视频| 91九色精品人成在线观看| 久久精品国产亚洲av涩爱| xxx大片免费视频| 亚洲精品一区蜜桃| 麻豆av在线久日| 亚洲欧美日韩高清在线视频 | 国产黄频视频在线观看| 欧美乱码精品一区二区三区| 国产午夜精品一二区理论片| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 美女大奶头黄色视频| 午夜激情久久久久久久| 99热全是精品| 国产在线免费精品| 操美女的视频在线观看| 美女国产高潮福利片在线看| 午夜福利,免费看| 精品人妻熟女毛片av久久网站| 亚洲人成网站在线观看播放| 麻豆av在线久日| 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| 午夜福利,免费看| 国产黄色免费在线视频| 日本一区二区免费在线视频| 人人妻人人添人人爽欧美一区卜| 国产亚洲av高清不卡| 91成人精品电影| 精品久久久久久久毛片微露脸 | 中文字幕人妻丝袜一区二区| 麻豆av在线久日| 久久国产精品人妻蜜桃| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 只有这里有精品99| 午夜免费鲁丝| 超碰97精品在线观看| 五月开心婷婷网| 成人18禁高潮啪啪吃奶动态图| 日韩 欧美 亚洲 中文字幕| 日本av免费视频播放| 中文字幕av电影在线播放| 亚洲黑人精品在线| 午夜激情久久久久久久| 97人妻天天添夜夜摸| 国产野战对白在线观看| 亚洲av欧美aⅴ国产| 久久久久精品人妻al黑| 欧美在线一区亚洲| 国产日韩一区二区三区精品不卡| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| 日韩电影二区| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 亚洲伊人色综图| 国产福利在线免费观看视频| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播 | videosex国产| 久久精品熟女亚洲av麻豆精品| 嫁个100分男人电影在线观看 | 国产无遮挡羞羞视频在线观看| 高清视频免费观看一区二区| www.精华液| 国产在线一区二区三区精| 国产精品 国内视频| 国产免费视频播放在线视频| 国产野战对白在线观看| 国产成人影院久久av| 欧美乱码精品一区二区三区| 老司机影院成人| 十八禁网站网址无遮挡| 亚洲精品自拍成人| 久久 成人 亚洲| 午夜影院在线不卡| 美女大奶头黄色视频| 黑人欧美特级aaaaaa片| 热re99久久精品国产66热6| 天天添夜夜摸| 一边亲一边摸免费视频| 在线观看www视频免费| 国产成人精品在线电影| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区三区影片| 视频在线观看一区二区三区| 午夜两性在线视频| 最新的欧美精品一区二区| 亚洲成人免费电影在线观看 | 久久久久久人人人人人| bbb黄色大片| 自线自在国产av| 少妇人妻 视频| 精品人妻一区二区三区麻豆| 91麻豆av在线| 久久久精品免费免费高清| 国产人伦9x9x在线观看| 国产精品国产av在线观看| 国产高清videossex| kizo精华| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 国产精品.久久久| 国产成人a∨麻豆精品| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 天天添夜夜摸| 久久久久网色| 汤姆久久久久久久影院中文字幕| 久久精品久久久久久久性| 亚洲视频免费观看视频| 在线观看国产h片| 国产欧美日韩一区二区三 | 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 亚洲,一卡二卡三卡| 老熟女久久久| 超色免费av| 高清欧美精品videossex| 女性生殖器流出的白浆| 欧美日韩视频高清一区二区三区二| 国产xxxxx性猛交| 天天操日日干夜夜撸| av在线播放精品| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 亚洲精品第二区| 黄色一级大片看看| 黑人猛操日本美女一级片| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 99热全是精品| cao死你这个sao货| 人人澡人人妻人| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 精品卡一卡二卡四卡免费| 99九九在线精品视频| 国产主播在线观看一区二区 | 男女高潮啪啪啪动态图| 成年av动漫网址| 丝袜人妻中文字幕| 99国产精品99久久久久| 国产男女超爽视频在线观看| 男人爽女人下面视频在线观看| 久久精品亚洲av国产电影网| 亚洲av成人不卡在线观看播放网 | 老司机深夜福利视频在线观看 | √禁漫天堂资源中文www| 考比视频在线观看| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 下体分泌物呈黄色| 欧美日韩视频精品一区| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 亚洲国产毛片av蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 国产成人一区二区在线| 中文字幕高清在线视频| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 久久九九热精品免费| 免费在线观看影片大全网站 | 亚洲精品成人av观看孕妇| 大香蕉久久成人网| 妹子高潮喷水视频| 亚洲av男天堂| 无遮挡黄片免费观看| 国产精品三级大全| 亚洲国产精品999| 丝袜美足系列| 国产成人精品久久久久久| 侵犯人妻中文字幕一二三四区| 欧美日韩视频精品一区| 新久久久久国产一级毛片| 夫妻午夜视频| 国产精品二区激情视频| 国产av国产精品国产| 亚洲九九香蕉| 欧美日韩av久久| 欧美日韩成人在线一区二区| 亚洲伊人色综图| 大片电影免费在线观看免费| 黄片小视频在线播放| 色视频在线一区二区三区| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 国产女主播在线喷水免费视频网站| 麻豆乱淫一区二区| 极品人妻少妇av视频| 久久狼人影院| 国产成人av激情在线播放| 久久久精品免费免费高清| 久久久久久久久免费视频了| 免费高清在线观看日韩| www日本在线高清视频| 交换朋友夫妻互换小说| 日韩中文字幕欧美一区二区 | 天天躁狠狠躁夜夜躁狠狠躁| 精品一区在线观看国产| 大香蕉久久网| 亚洲欧美一区二区三区久久| 国产精品久久久久久人妻精品电影 | 亚洲免费av在线视频| 国产又色又爽无遮挡免| 精品国产国语对白av| 人成视频在线观看免费观看| 亚洲精品国产区一区二| 一级毛片 在线播放| 国产欧美日韩一区二区三 | 9热在线视频观看99| 成人手机av| 无遮挡黄片免费观看| 我的亚洲天堂| 精品免费久久久久久久清纯 | 日本wwww免费看| 久久精品aⅴ一区二区三区四区| 午夜福利视频精品| 国产黄色免费在线视频| 日本五十路高清| 两个人看的免费小视频| 国产有黄有色有爽视频| 美女视频免费永久观看网站| 2018国产大陆天天弄谢| 国产免费现黄频在线看| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 国产精品二区激情视频| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 久久天堂一区二区三区四区| 日韩免费高清中文字幕av| 国产黄频视频在线观看| 欧美在线黄色| 美女福利国产在线| av网站免费在线观看视频| 老熟女久久久| 久久热在线av| 亚洲一码二码三码区别大吗| 欧美 日韩 精品 国产| 欧美国产精品一级二级三级| 精品国产一区二区三区久久久樱花| 一边摸一边做爽爽视频免费| 少妇的丰满在线观看| www.999成人在线观看| 老司机亚洲免费影院| bbb黄色大片| 国产一卡二卡三卡精品| 国产在视频线精品| 亚洲一卡2卡3卡4卡5卡精品中文| 日日爽夜夜爽网站| 国产精品久久久久久人妻精品电影 | www.熟女人妻精品国产| 人体艺术视频欧美日本| 婷婷成人精品国产| √禁漫天堂资源中文www| 99国产综合亚洲精品| 啦啦啦啦在线视频资源| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 久久国产精品人妻蜜桃| 中文字幕亚洲精品专区| 国产91精品成人一区二区三区 | 午夜影院在线不卡| xxx大片免费视频| 欧美+亚洲+日韩+国产| 亚洲欧洲国产日韩| 成人国产av品久久久| 欧美黄色片欧美黄色片| 黄色怎么调成土黄色| 国产精品九九99| 脱女人内裤的视频| 久久女婷五月综合色啪小说| 久久99热这里只频精品6学生| 看免费成人av毛片|