• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    2016-11-22 09:48:57趙宗彥
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:材料科學(xué)工程學(xué)院異質(zhì)

    趙宗彥 田 凡

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    趙宗彥1,2,*田凡1

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    構(gòu)建同質(zhì)異相或異質(zhì)結(jié)構(gòu)是提高光催化材料性能的有效途徑之一,尤其是對于CdS這類具有光腐蝕的材料,這種方法還能起到提高光催化材料穩(wěn)定性的作用。因此目前制備CdS基復(fù)合光催化材料得到了廣泛的研究,但是目前對其中的一些基本問題和關(guān)鍵因素仍需要進(jìn)一步探討和解釋。本文采用第一性原理方法對CdS/FeP復(fù)合光催化材料中異質(zhì)結(jié)構(gòu)的界面微觀結(jié)構(gòu)和性質(zhì)進(jìn)行深入研究。計(jì)算結(jié)果表明,由于在界面上部分懸掛鍵被飽和,界面模型呈現(xiàn)出與體相或表面模型不同的電子結(jié)構(gòu)特征,并且有界面態(tài)的存在。在CdS/ FeP異質(zhì)結(jié)構(gòu)的界面處,CdS和FeP的能帶都相對向下移動,而且FeP的能帶(費(fèi)米能級)插入到CdS的導(dǎo)帶下方;同時在界面達(dá)到平衡態(tài)之后,異質(zhì)結(jié)構(gòu)的內(nèi)建電場由FeP層指向CdS層,因而能夠?qū)崿F(xiàn)光生電子-空穴對在CdS/FeP界面處的空間有效分離,這對于光催化性能的增強(qiáng)極其有利。此外,構(gòu)建CdS/FeP異質(zhì)結(jié)構(gòu)也能夠進(jìn)一步增強(qiáng)CdS在可見光區(qū)的光吸收。本文研究結(jié)果為構(gòu)建具有異質(zhì)結(jié)構(gòu)的高效復(fù)合光催化材料提供了機(jī)理解釋和理論支持。

    光催化;硫化鎘;異質(zhì)結(jié)構(gòu);界面微觀結(jié)構(gòu);界面性質(zhì);密度泛函理論計(jì)算

    1 Introduction

    As strategic resource for social and economic development, energy always shows its importance and irreplaceable1.After longterm over-exploitation and excessive consumption,the fossil energy,including:coal,petroleum,and natural gas,will be exhausted in a few years2,3.What′s more,a series of environmental problems caused by fossil energy utilization could not be ignored, for example,greenhouse gas emissions,water resources pollution, and so on4.Severe energy crisis and environmental pollution makes the development of renewable energy(i.e.sustainable utilization,environment friendly,high efficiency,and cheap)is particularly necessary.In the renewable energy resources,solar energy is inexhaustible and clean.And thus,the technology of its efficient utilization is getting more and more attention from all over the world,becoming the important focus,and the corresponding progress increasingly blooming5.Photocatalysis is just one of the promising technologies of solar energy utilization:to produce hydrogen from water splitting,to produce hydrocarbon fuel from CO2reducing,to degrade the organic pollutants.So, scientists expect that it could help people to do away with dependence on fossil fuels in the future6.

    In 1972,Japanese scientists,Fujishima and Honda7observed water splitting phenomenon on the TiO2photoelectrode under UV-light irradiation.Their work provided preliminary evidence for the hydrogen production from photocatalytic water splitting,and opened the prelude of research on artificial photosynthesis to convert solar energy into chemical energy.Unfortunately,the technological development of photocatalysis is still facing two major obstacles to date:narrow spectral response and low quantum efficiency,leading to a long way to achieve large-scale and low-cost solar energy industrial utilization.Cadmium sulfide (CdS)is a typical visible-light driven semiconductor photocatalyst with a band gap of~2.4 eV,which is well overlapping with the spectrum of sunlight,and could theoretically utilize more 40%of solar energy.Furthermore,its conduction band edge is more negative than the H+/H2redox potential,implying that it is thus able to evolve hydrogen from water splitting under sunlight irradiation8,9.However,CdS has a fatal drawback in practical applications,i.e.its stability is much worse10.This phenomenon is ascribed from its anodic decomposition(the so-called photocorrosion)when CdS is in aqueous solution by long-time light irradiation.In order to improve its stability and activity,to construct hetero-structure(combined with cocatalyst or other semiconductors)has been proposed,which has been proved as an effective modification method.For example:Pt/CdS composite photocatalyst has higher photocatalytic activity than Ru/CdS for hydrogen evolution reaction11;ETS-4 loading not only promotes the efficiency of hydrogen production from water splitting under visible-light irradiation,but also enhances the stability of CdS12. Yan et al.13reported that an artificial photocatalyst(Pt-PdS/CdS) can achieve a quantum efficiency up to 93%in photocatalytic H2production under visible-light irradiation,and is very stable under the photocatalytic reaction conditions.

    Metal cocatalyst(especially noble metal)loading is often used to improve the photocatalytic activity of CdS.However,noble metal is scarce and has high production cost,which is against by the original intention to develop low-cost renewable energy resources.Recently,to replace noble metal cocatalyst with cheap materials for CdS photocatalyst has been attracted more and more attention9,14.On the other hand,the stability and catalytic properties of metal phosphide,such as,MoP,InP,Ni2P,CoP,and FeP, also attract extensive concern,and have been widely investigated, owing to their inexpensive and earth-abundant compositions and highly active hydrodesulfurization catalysis reactions15.Cao et al.16reported at the first time that Ni2P nanoparticles present high photocatalytic hydrogen-generating activity and excellent stability in lactic acid aqueous solution under visible light LED irradiation using CdS nanorods as a photosensitizer.Callejas et al.17synthesized uniform,hollow morphology FeP/TiO2composite,which exhibits the highest hydrogen-evolution reaction activities reported to date in both acidic and neutral-pH aqueous solutions,indicating that FeP is a highly earth-abundant material for efficiently facilitating the hydrogen-evolution reaction both electrocatalytically and photocatalytically.Zhang et al.18also considered FeP as a promising alternative to Pt-based catalysts for the hydrogenevolution reaction,in order to develop inexpensive and highly efficient non-precious-metal electrocatalysts.Motivated by above encouraging experimental observations,we adopt density functional theory(DFT)to further investigate the interfacial structure and properties,in order to deepen the understanding of CdS/FeP composite photocatalyst with hetero-structure.Using theoretical simulations,the atomic-scale interfacial microstructure and the electronic-scale interface properties will be provided.And then, based on the calculated results,the detailed mechanism of CdS/ FeP hetero-structure to improve the photocatalytic performance will be discussed.We hope these findings could provide someuseful reference for the development of efficient photocatalyst with hetero-structure in the future.

    2 Computational methods and model

    All of the DFT calculations in the present work are carried out by Cambridge Serial Total Energy Package(CASTEP)codes that are included into the software of Materials Studio19.CASTEP is a quantum mechanics-based program designed specifically for solid-state materials science.For solid-state materials,the interactions between nucleus and electrons are approximately treaded by the Born-Oppenheimer approximation,Hartee-Fock selfconsistent field theory,and periodic potential method.Thus,the interaction between ion cores(i.e.Cd:[Kr],S:[Ne],Fe:[Ar],P: [Ne])are treated by the ultrasoft pesudopotential(USP)20.For expanding the Kohn-Sham wave functions,the energy cutoff is chosen as 330 eV.The exchange-correlation effects of valence electrons(i.e.Cd:4d105s2,S:3s23p4,Fe:3d64s2,P:3s23p3)were described by the revised Perdew-Burke-Ernzerhof for solid (PBEsol)within generalized gradient approximation(GGA)21.In order to overcome the well-known shortcoming of conventional GGA method that underestimates the band gap value of semiconductor by~50%,the GGA+U method is chosen to obtain accurate electronic structure22.The value of effective U is set as 3.6 eV for the Cd-d and Fe-d states,which is obtained by comparison between the calculated results and experimental measurement of band gap value of CdS.A 1×2×1 mesh in the irreducible Brillouin zone was set for Monkhorst-Pack scheme kpoints grid sampling,and a 90×30×360 mesh was set for the fast Fourier transformation.In the geometry optimization process,the minimization algorithm was chosen the Broyden-Fletcher-Goldfarb-Shanno(BFGS)scheme23.The convergence standard was set as follows:the force on the atoms was less than 0.3 eV·nm-1,the stress on the atoms was less than 0.05 GPa,the atomic displacement was less than 1×10-4nm,and the energy change per atom was less than 1×10-5eV.

    To simulate the interfacial structure and properties,the combination model of slab plus vacuum layer was adopted in the present work.The slab contains eight CdS layers and eight FeP layers,in which the two components were boned together. Moreover,the slabs ware separated by a 2 nm-thickness vacuum layer to avoid the mirror self-interaction along the interfacial normal direction.Firstly,the bulk CdS and FeP crystals were fully optimized both cell′s parameters and atomic coordination,and then the corresponding electronic structure and optical properties were calculated.Secondly,the surface with specific direction was cleaved from the optimized bulk phase with eight stoichiometric CdS or FeP layers,and then the atomic coordination was optimized,while the cell′s parameters were restricted.At the same time,the below four CdS layers are constrained to mimic the bulk effects for surface.Then the corresponding electronic structure and optical properties are calculated.Thirdly,two separated slabs of CdS and FeP are combined together,in which the supercell sizes are set as the averages two components.The final supercell sizes parallel to the interface are chose as the average of two components:1.6598 nm×0.5868 nm.Furthermore,the interfacial model is also separated by more than a 2 nm-thickness vacuum layer,and the size of this model along the normal direction interface is up to 7 nm.The total atoms reached to 256.After the interfacial model constructing,the atomic coordination of all atoms in this model are optimized by the BFGS scheme as mentioned above,except those atoms in the below four CdS layers.By this way,the interfacial stress could be reduced to a minimum.Finally,the electronic structure and optical properties are calculated for the interface,based on the optimized model.

    3 Results and discussion

    3.1Interfacial micro-structure

    By the geometry optimizing,we could obtain the accurate lattice constants of bulk CdS and FeP.For diamond-structure(i.e. zincblende structure)CdS(space group:F4ˉ3m),the calculated lattice constants are listed as following:a=b=c=0.5868 nm,α= β=γ=90°,which are very agreement with experimental measurement(a=b=c=0.5811 nm,α=β=γ=90°)24.For orthorhombic-structure FeP(space group:Pnma),the calculated lattice constants are listed as following:a=0.5027 nm,b=0.2962 nm, c=0.5663 nm,α=β=γ=90°,which are very agreement with experimental measurement(a=0.5191 nm,b=0.3009 nm,c= 0.5792 nm,α=β=γ=90°)25.The calculated results indicate that the computational methods are reasonable and credible in the present work.The knowledge of CdS semiconductor atomic surface structure is very important for the tailoring of heterostructure.Anumber of experimental and theoretical investigations have been carried out on CdS semiconductor and its surfaces26,27. In general,the non-polar(101)zincblende surface of CdS semiconductor shows an outward relaxation of the surface-layer anions and an inward relaxation of the surface-layer cations.Our present work well reproduced above conventional phenomenon.

    To construct hetero-structure model,the important factor is the crystal lattice matching.If the crystal lattice mismatching is too large,the interface is unstable due to the larger interfacial stress. In spite of the large crystal lattice mismatching could be decreased by constructing larger supercells,but the interface stress could not be obviously reduced.In the present work,we found the interface combined by the(101)plane CdS and the(103)plane of FePcould meet the above requirement.The two-dimensional lattice constants of the(101)plane of CdS is listed as following:u=0.4149 nm,v=0.5868 nm,γ=90°;and those of the(103)plane of FeP is listed as following:u=1.6108 nm,v=0.2962 nm,γ=90°.For the interface of 4×1(101)CdS/1×2(103)FeP,the degree of crystal lattice mismatching is:Δu=3.04%,Δv=0.93%,Δγ=0, which are less than 5%,suggesting that the(101)plane of CdS and the(103)plane of FeP could form a stable interface.

    After all atomic coordination optimizing,the interfacial model is presented in Fig.1(a).One can see that the atomic relaxation at the interface is very significant:all the displacements of atoms at the interface are larger than 0.05 nm,and the variation of distancesbetween layers is larger than 0.02 nm.At the same time,the dangling bonds at the interface have been partially saturated. Using the formula defined by Xu et al.28,the adhesion energy(Eadh) of CdS/FeP is also calculated as-7.3 eV·nm2.This litter negative value indicates that the formation process of interface is exothermic and the formation of interface bonds stabilizes the interface.Therefore,the CdS/FeP hetero-structure is composed by the(101)plane of CdS and the(103)plane of FeP has small interface stress,and thus is stable.

    Fig.1 (a)Side view of CdS(101)/FeP(103)interface model, (b)average electrostatic potential,and(c)average electron density difference along the interfacial normal direction

    3.2Electronic structure

    In order to explore the evolution of electronic structure of our interfacial model from bulk,to surface,and to interface,the total and partial density of states(DOS)are illustrated in Fig.2.As shown in Fig.2(a),in the case of CdS@Bulk,the calculated band gap is 2.406 eV,which is very consistent with experimental measurement(~2.4 eV).The upper valence band(VB)is dominantly consisted by the S-3p states.The lower conduction band (CB)is dominantly consisted by the Cd-5s states.Below VB and above CB,another band is consisted by the hybridized state between S-3p and Cd-5s states.Compared with bulk electronic structure,in the cases of surface and interface,above-mentioned main features are also exhibited.In the case of CdS@Surface,the lower band of VB is relatively upward shifting and overlapping with the middle band of VB,while in the case of CdS@Bulk the lower band of VB is relatively separated with the middle band of VB.An opposite situation could be found for CB of CdS@Surface case:the lower CB is relatively separated from the middle band of CB,which is overlapping in the bulk case.These variations are arising from the existence of dangling bonds on the surface,and the obvious surface relaxation.Although the dangling bonds are partially saturated,these variations maybe partially disappeared in the case of CdS@Interface.However,owing to the different bonding ways and chemical environments at the interface,there areobviousdifferentelectronicstructuresinthecaseofCdS@Interface,especially the interfacial states in the band gap,and upper band of VB or the lower band of CB.For the case of FeP,as shown in Fig.2(b),bands near the Fermi energy level(EF)are overlapping with each other,suggesting that FeP is a metallic compound. Furthermore,the bonding information of the three models is similar,which are consisted by the hybridized states between Fe-3d states and P-3p states.The presented obvious differences are as following:(i)in the case of FeP@Surface,the energy bands are concentrated to the EF;(ii)the band gap states(or interfacial states)are more obvious in the case of FeP@Interface,as similar with the case of CdS@Interface,which means that the interfacial states are obvious and important for CdS/FeP hetero-structure.

    Fig.2 Calculated total and partial density of states of(a)CdS and(b)FePin different systems:bulk,surface,and interface

    When CdS(101)surface and FeP(103)surface are contact together to form the interface,the atoms at the interface will be relaxed,in order to reduce the interfacial stress and saturate the dangling bonds,as shown in Fig.1(a).Thus,the interfacial states are presenting in Fig.2.In order to further understand the interfacial states,we plotted the layer-resolution total DOS for the CdSand FeP in the interface model in Fig.3,which are respectively compared with the bulk total DOS of CdS or FeP.In the first two layers,the feature of electronic structure is obviously different with that of bulk phase.While,in the case of 3rd-6th layers,the feature of electronic structure is similar with that of bulk phase. This phenomenon indicates that the interfacial states are localized at the limited layers at the interface that are obviously relaxed. Another important phenomenon can be observed:the relative energy band shifting in the case of interface model.It is obviously seen that the energy bands of CdS and FeP are relatively downshifting compared with those of bulk phase.

    For the electronic structure of interface model,to align the energy bands between two components is the most important task. In the present work,we used the method that is defined by Zhang29and Chen30et al.to estimate the valence band offset ΔEVbetween CdS and FeP.The energy-level differences between valence band maximum(VBM)and core levels for CdS and FeP(i.e.are firstly calculated for the bulk models.For FeP, the VBM means the Fermi energy level in the present work.Then, for the interface model,the core-level difference(ΔEC′,C)between CdS layers and FeP layers is calculated.According to these data, the valence band offset ΔEV(CdS/FeP)can be derived by the following equations:ΔEV(CdS/FeP)=By this way,we estimated the shifting relative value of band:~0.3 eV for CdS and~1.1 eV for FeP in order to quantitatively evaluate the energy band shifting.

    Fig.3 Calculated layer-resolution total density of states of CdS(a)and FeP(b)in the CdS/FePmodel compared with the total density of states of bulk phase

    The electrostatic potential along the interfacial normal direction was illustrated in Fig.1(b),in compared with that of CdS surface along the[101]direction or FeP surface along the[103]direction. The obvious feature is the potential of CdS slab(with average potential of-9.74 eV)is higher than that of FeP slab(with average potential of-17.52 eV).Therefore,the built-in electric field points from FeP slab to CdS slab under equilibrium,after the interface is formed and stable.Compared with bulk counterpart, the average potential of CdS slab is increased by~0.76 eV,while that of FeP slab is decreased by~0.01 eV.For the clean unrelaxed CdS(101)surface,the work function is 5.458 eV,which is higher than that of the clean unrelaxed FeP(103)surface(ΦFeP=4.692 eV).So,when they contact together,the electrons will be transferred from CdS slab to FeP slab,resulting the existence of space charge region(or depletion layer).It is could be confirmed the average electron density difference along the interfacial normal direction as shown in Fig.1(c).The result of electron transfer is the Fermi energy(EF,CdS)and the vacuum energy level(EVac,CdS)of CdS slab is downwards shifting,as well as the EF,FePof FeP slab,until the EF,CdSand the EF,FePare aligned.Finally,the EF,CdS/FePis located at below the bottom of CB of CdS by~0.9 eV.From Fig.1(c),the thickness of space charge region could be estimated by about 0.8 nm.Based on above calculated data and discussion,we proposed the energy band diagram of CdS(101)/FeP(103)interface as illustrated in Fig.4.Because of the existence of built-in electric field,the energy band edges of CdS are shifted downwards,which is called as the band bending.The degree of energy band bending (VBB)is defined as the difference of work function between CdS (101)surface and FeP(103)surface,VBB=ΦCdS-ΦFeP=0.766 eV. The presence of the space charge region can prevent more electrons flow from CdS slab to FeP slab.Thus,under the equilibrium conditions,the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface.

    Fig.4 Proposed energy band diagram of CdS/FePhetero-structure

    3.3Optical properties

    Fig.5 illustrated the calculated absorption spectra of different CdS and FeP systems along the[101](for CdS)or[103](for FeP) directions.The optical properties of different systems are determined by their composition,crystal structure,and electronic structure.For example,the fundamental absorption band edge of bulk CdS is located about 550 nm,which is determined by the ~2.4 eV band gap.While the absorption spectra of bulk FeP has no obvious absorption band edge in the visible-light region. Furthermore,the absorption coefficient of FeP is obviously larger than that of CdS,owing to its intrinsic metallic or semi-metallic characters.Compared to bulk CdS,the fundamental absorption band edge of CdS(101)surface along the normal direction is obviously blue-shifting.In the case of FeP(103)surface,the absorption coefficient is significantly decreased.In the case of CdS/ FeP composite photocatalyst,the optical properties have significant difference compared with bulk CdSor bulk FePin the visiblelight region.Importantly,the absorption coefficient of CdS/FeP composite photocatalyst is obviously increasing in the visible-light region in comparison with CdS(101)surface or bulk CdS.This calculated result suggests that the FeP loading could enhance the visible-light absorption of CdS.

    Fig.5 Calculated absorption spectra of CdS or FePin different systems:bulk,surface,and interface

    4 Conclusions

    To in-depth investigate the interfacial properties of CdS/FeP composite photocatalyst with hetero-structure,its atomic-scale structure,electronic structure,and optical properties are calculated by density functional theory in the present work.Firstly,the interface is consisted by the CdS(101)crystalline plane and FeP (103)crystalline plane,which have slight lattice mismatching(less than 5%)and could form a stable interface.Owing to partially saturated dangling bonds,the electronic structure of interface model exhibits both the features of bulk and surface references. At the interface of CdS/FeP hetero-structure,the energy bands of CdS and FeP are relatively down-shifting,and the energy band of FeP inserts at the below of conduction band of CdS,which is very favorable for the improvement of photocatalytic performance. Moreover,the built-in electric field of hetero-structure points from FeP layer to CdS layer under equilibrium,so the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface,which is the improvement mechanism for photocatalytic performance.Based on the calculated results,the energy band diagram of CdS(101)/FeP(103)interface is proposed.In addition, to construct CdS/FeP hetero-structure also can further improve the absorption properties of CdS in visible-light region.

    References

    (1)Guo,Q.;Zhou,C.Y.;Ma,Z.B.;Ren,Z.F.;Fan,H.J.;Yang,X. M.Acta Phys.-Chim.Sin.2016,32,28.[郭慶,周傳耀,馬志博,任澤峰,樊紅軍,楊學(xué)明.物理化學(xué)學(xué)報(bào),2016,32,28.] doi:10.3866/PKU.WHXB201512081

    (2) Chang,X.X.;Gong,J.L.Acta Phys.-Chim.Sin.2016,32,2. [常曉俠,鞏金龍.物理化學(xué)學(xué)報(bào),2016,32,2.]doi:10.3866/ PKU.WHXB201510192

    (5) Schultz,D.M.;Yoon,T.P.Science 2014,343,1239176. doi:10.1126/science.1239176

    (8) Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (9) Zong,X.;Yan,H.;Wu,G.;Ma,G.;Wen,F.;Wang,L.;Li,C. J.Am.Chem.Soc.2008,130,7176.doi:10.1021/ja8007825

    (10) Yang,S.;Wen,X.;Zhang,W.;Yang,S.J.Electrochem.Soc. 2005,152,G220.doi:10.1149/1.1859991

    (11) Sathish,M.;Viswanathan,B.;Viswanath,R.P.Int.J.Hydrog. Energy 2006,31,891.doi:10.1016/j.ijhydene.2005.08.002

    (12) Guan,G.;Kida,T.;Kusakabe,K.;Kimura,K.;Fang,X.;Ma,T.; Abe,E.;Yoshida,A.Chem.Phys.Lett.2004,385,319. doi:10.1016/j.cplett.2004.01.002

    (13) Yan,H.;Yang,J.;Ma,G.;Wu,G.;Zong,X.;Lei,Z.;Shi,J.;Li, C.J.Catal.2009,266,165.doi:10.1016/j.jcat.2009.06.024

    (14) Walter,M.G.;Warren,E.L.;McKone,J.R.;Boettcher,S.W.; Mi,Q.;Santori,E.A.;Lewis,N.S.Chem.Rev.2010,110,6446. doi:10.1021/cr1002326

    (15) Song,H.;Wang,J.;Wang,Z.;Song,H.;Li,F.;Jin,Z.J.Catal. 2014,311,257.doi:10.1016/j.jcat.2013.11.021

    (16) Cao,S.;Chen,Y.;Wang,C.J.;He,P.;Fu,W.F.Chem. Commun.2014,50,10427.doi:10.1039/C4CC05026F

    (17) Callejas,J.F.;McEnaney,J.M.;Read,C.G.;Crompton,J.C.; Biacchi,A.J.;Popczun,E.J.;Gordon,T.R.;Lewis,N.S.; Schaak,R.E.ACS Nano 2014,8,11101.doi:10.1021/ nn5048553

    (18) Zhang,Z.;Hao,J.;Yang,W.;Lu,B.;Tang,J.Nanoscale 2015, 7,4400.doi:10.1039/C4NR07436J

    (19) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert,M.J.;Refson,K.;Payne,M.C.Z.Kristallogr.2005,220,567. doi:10.1524/zkri.220.5.567.65075

    (21) Perdew,J.P.;Ruzsinszky,A.;Csonka,G.I.;Vydrov,O.A.; Scuseria,G.E.;Constantin,L.A.;Zhou,X.;Burke,K.Phys. Rev.Lett.2008,100,136406.doi:10.1103/ PhysRevLett.100.136406

    (22) Anisimov,V.I.;Zaanen,J.;Andersen,O.K.Phys.Rev.B 1991, 44,943.doi:10.1103/PhysRevB.44.943

    (23) Pfrommer,B.G.;Caté,M.;Louie,S.G.;Cohen,M.L. J.Comput.Phys.1997,131,233.doi:10.1006/jcph.1996.5612

    (24)Yeh,C.Y.;Lu,Z.W.;Froyen,S.;Zunger,A.Phys.Rev.B 1992, 46,10086.doi:10.1103/PhysRevB.46.10086

    (25) Rundqvist,S.;Nawapong,P.C.Acta Chem.Scand.1965,19, 1006.doi:10.3891/acta.chem.scand.19-1006

    (26) Lin,C.M.;Tsai,M.H.;Yang,T.J.;Chuu,D.S.Phys.Rev.B 1997,56,9209.doi:10.1103/PhysRevB.56.9209

    (27) Schr?er,P.;Krüger,P.;Pollmann,J.Phys.Rev.B 1993,48, 18264.doi:10.1103/PhysRevB.48.18264

    (28) Xu,X.;Sun,X.;Sun,B.;Peng,H.;Liu,W.;Wang,X.J.Colloid Interface Sci.2016,473,100.doi:10.1016/j.jcis.2016.03.059

    (29) Zhang,S.B.;Wei,S.H.;Zunger,A.J.Appl.Phys.1998,83, 3192.doi:10.1063/1.367120

    (30) Chen,S.;Yang,J.H.;Gong,X.G.;Walsh,A.;Wei,S.H.Phys. Rev.B 2010,81,245204.doi:10.1103/PhysRevB.81.245204

    Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst

    ZHAO Zong-Yan1,2,*TIAN Fan1
    (1Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China;2Yunnan Key Laboratory of Micro/Nano Materials&Technology,School of Materials Science and Engineering, Yunnan University,Kunming 650504,P.R.China)

    An effective method for improving the performance of a photocatalyst is to construct a suitable hetero-/homo-structure.This strategy can also lead to improvements in the stability of the photocatalysts that suffer with photo-corrosion(such as CdS).The preparation of CdS-based composite photocatalysts has therefore been widely studied.Unfortunately,however,some of the fundamental and more significant aspects of this strategy still need to be evaluated in greater detail.In this study,we have evaluated the interfacial microstructure and properties of a CdS/FeP composite photocatalyst with a hetero-structure using a series of the firstprinciples calculations.The results revealed that the electronic structure of the interface model exhibited different features compared with the bulk and surface models,because of the partially saturated dangling bonds. However,several obvious interfacial states were observed.At the interface of the CdS/FeP hetero-structure, the energy bands of CdS and FeP were relatively down-shifted,whereas the energy band of FeP was inserted below the conduction band of CdS.Furthermore,the direction of the built-in electric field of the hetero-structureprojected out from the FeP layer towards the CdS layer under the equilibrium conditions.The photo-generated electron-hole pairs were therefore spatially separated by the CdS/FeP interface,which was favorable for improving the photocatalytic performance.The construction of a CdS/FeP hetero-structure can also lead to further improvements in the absorption properties of CdS in the visible-light region.The results of this study have provided mechanical explanations and theoretical support for the construction of highly efficient composite photocatalyst with hetero-structures.

    April 19,2016;Revised:July 13,2016;Published online:July 13,2016.

    .Email:zzy@kmust.edu.cn;Tel:+86-871-65109952.

    Photocatalysis;Cadmium sulfide;Hetero-structure;Interfacial micro-structure;Interfacial property;Density functional theory calculation

    O647

    10.3866/PKU.WHXB201607131

    The project was supported by the National Natural Science Foundation of China(21473082),and 18th Yunnan Province YoungAcademic and Technical Leaders Reserve Talent Project(2015HB015).

    國家自然科學(xué)基金(21473082)和云南省第18批中青年學(xué)術(shù)和技術(shù)后備人才項(xiàng)目(2015HB015)資助?Editorial office ofActa Physico-Chimica Sinica

    (3)Hamakawa,Y.Renew.Energy 1994,5,34.10.1016/0960-1481(94)90352-2

    (4) Kamat,P.V.J.Phys.Chem.C 2007,111,2834.10.1021/ jp066952u

    (6) Qu,Y.;Duan,X.Chem.Soc.Rev.2013,42,2568.10.1039/ C2CS35355E

    (7) Fujishima,A.;Honda,K.1972,238,37.10.1038/238037a0

    (20) Vanderbilt,D.Phys.Rev.B 1990,41,7892.10.1103/ PhysRevB.41.7892

    猜你喜歡
    材料科學(xué)工程學(xué)院異質(zhì)
    中海油化工與新材料科學(xué)研究院
    福建工程學(xué)院
    福建工程學(xué)院
    材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 亚洲国产精品成人综合色| 国产国语露脸激情在线看| 正在播放国产对白刺激| 精品少妇一区二区三区视频日本电影| 在线永久观看黄色视频| 免费女性裸体啪啪无遮挡网站| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 欧美三级亚洲精品| 好男人在线观看高清免费视频 | 成人国产综合亚洲| 中文字幕人成人乱码亚洲影| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频| 久久久久精品国产欧美久久久| 波多野结衣巨乳人妻| 999精品在线视频| 亚洲第一青青草原| 欧美乱妇无乱码| 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 国产一区在线观看成人免费| 欧美激情高清一区二区三区| 中出人妻视频一区二区| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全免费视频| 成人亚洲精品av一区二区| 熟妇人妻久久中文字幕3abv| 一级a爱片免费观看的视频| 成在线人永久免费视频| 国产单亲对白刺激| 美女国产高潮福利片在线看| 男女做爰动态图高潮gif福利片| 51午夜福利影视在线观看| e午夜精品久久久久久久| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 国产黄色小视频在线观看| 成人国语在线视频| 757午夜福利合集在线观看| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 高清在线国产一区| 国产精品98久久久久久宅男小说| 国产私拍福利视频在线观看| 国产亚洲av嫩草精品影院| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 久久热在线av| 久久久久久九九精品二区国产 | 大香蕉久久成人网| 欧美最黄视频在线播放免费| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 国产日本99.免费观看| 精品久久久久久久人妻蜜臀av| 老司机靠b影院| 亚洲国产欧洲综合997久久, | 波多野结衣高清无吗| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品国产区一区二| 亚洲无线在线观看| 成年免费大片在线观看| 777久久人妻少妇嫩草av网站| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av高清一级| 成年女人毛片免费观看观看9| 在线国产一区二区在线| 久久精品人妻少妇| 国产精品av久久久久免费| 在线看三级毛片| 国产在线精品亚洲第一网站| 国产熟女xx| 国产亚洲精品一区二区www| 久久精品亚洲精品国产色婷小说| 香蕉久久夜色| 亚洲中文字幕日韩| 女人高潮潮喷娇喘18禁视频| 亚洲久久久国产精品| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 欧美丝袜亚洲另类 | 国产乱人伦免费视频| 欧美一区二区精品小视频在线| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 99久久无色码亚洲精品果冻| 91老司机精品| 伊人久久大香线蕉亚洲五| 露出奶头的视频| 在线av久久热| 免费无遮挡裸体视频| 两个人免费观看高清视频| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 好男人电影高清在线观看| or卡值多少钱| svipshipincom国产片| 少妇 在线观看| 免费电影在线观看免费观看| 制服诱惑二区| 窝窝影院91人妻| 成人国产一区最新在线观看| 日日干狠狠操夜夜爽| 法律面前人人平等表现在哪些方面| 欧美精品亚洲一区二区| АⅤ资源中文在线天堂| 久久久国产成人精品二区| www日本在线高清视频| 国内揄拍国产精品人妻在线 | 日韩精品中文字幕看吧| 亚洲av美国av| 国内精品久久久久久久电影| 国语自产精品视频在线第100页| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 色婷婷久久久亚洲欧美| 久久久久久久久久黄片| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 久久久久久大精品| 欧美国产日韩亚洲一区| 黄网站色视频无遮挡免费观看| 国产黄a三级三级三级人| 久久这里只有精品19| 天天一区二区日本电影三级| 老汉色av国产亚洲站长工具| 特大巨黑吊av在线直播 | 国产欧美日韩一区二区精品| 亚洲自偷自拍图片 自拍| 久久精品夜夜夜夜夜久久蜜豆 | www.999成人在线观看| 十八禁网站免费在线| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 真人一进一出gif抽搐免费| 波多野结衣巨乳人妻| 国产精品久久久av美女十八| tocl精华| 色老头精品视频在线观看| 一进一出好大好爽视频| av片东京热男人的天堂| 日本成人三级电影网站| a级毛片a级免费在线| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久 | 精品国产超薄肉色丝袜足j| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 女性生殖器流出的白浆| 成人亚洲精品av一区二区| 亚洲精品在线美女| 日本免费a在线| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| www.www免费av| 日日夜夜操网爽| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 国产亚洲精品av在线| 午夜福利一区二区在线看| 久久久国产成人免费| 香蕉久久夜色| 国产av不卡久久| 国产单亲对白刺激| 久久久久久九九精品二区国产 | 欧美日韩亚洲国产一区二区在线观看| 国产亚洲av高清不卡| 国产精品九九99| 首页视频小说图片口味搜索| 欧美日韩黄片免| 久久人妻福利社区极品人妻图片| svipshipincom国产片| 国内少妇人妻偷人精品xxx网站 | 免费女性裸体啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 国产精品爽爽va在线观看网站 | 2021天堂中文幕一二区在线观 | 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 91老司机精品| 久久精品国产亚洲av香蕉五月| 麻豆成人午夜福利视频| 又紧又爽又黄一区二区| 欧美日韩亚洲综合一区二区三区_| 欧美成人免费av一区二区三区| 亚洲熟女毛片儿| 久久久久久久午夜电影| 在线播放国产精品三级| 午夜福利在线在线| 亚洲五月天丁香| 国产99久久九九免费精品| 天天躁夜夜躁狠狠躁躁| 长腿黑丝高跟| a级毛片在线看网站| bbb黄色大片| 女警被强在线播放| 精品久久久久久成人av| 人人澡人人妻人| 日韩国内少妇激情av| 国产成人欧美| 亚洲成人国产一区在线观看| 欧美zozozo另类| 免费在线观看成人毛片| 国产激情欧美一区二区| 亚洲精品国产区一区二| 日韩欧美三级三区| 久久精品成人免费网站| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲美女久久久| 神马国产精品三级电影在线观看 | 99国产综合亚洲精品| www.精华液| 欧美一区二区精品小视频在线| 精品免费久久久久久久清纯| 亚洲精品av麻豆狂野| 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 在线观看舔阴道视频| 午夜福利一区二区在线看| 欧美色欧美亚洲另类二区| 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| avwww免费| 精品一区二区三区四区五区乱码| 黄色 视频免费看| 满18在线观看网站| 久久久久久久久中文| 99热只有精品国产| 精品久久久久久久久久久久久 | 久9热在线精品视频| 岛国在线观看网站| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 国产激情欧美一区二区| 亚洲成av片中文字幕在线观看| 人妻久久中文字幕网| 韩国精品一区二区三区| 最近在线观看免费完整版| 成人国产综合亚洲| а√天堂www在线а√下载| 看免费av毛片| 国产精品免费一区二区三区在线| www.精华液| 男女午夜视频在线观看| 亚洲人成伊人成综合网2020| 亚洲 国产 在线| 俺也久久电影网| 国产免费男女视频| 久久久精品欧美日韩精品| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 国产精品亚洲av一区麻豆| 999精品在线视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 长腿黑丝高跟| 我的亚洲天堂| 国产精品,欧美在线| 中出人妻视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品第一综合不卡| 国产成人av教育| 精品一区二区三区视频在线观看免费| 人成视频在线观看免费观看| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 精品国产乱子伦一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | av片东京热男人的天堂| 亚洲专区中文字幕在线| 好男人在线观看高清免费视频 | 欧美色视频一区免费| 国产乱人伦免费视频| 中文字幕另类日韩欧美亚洲嫩草| 日日摸夜夜添夜夜添小说| 国产私拍福利视频在线观看| 久久久久精品国产欧美久久久| 欧美在线黄色| 成人三级做爰电影| 精品久久久久久,| 黄色片一级片一级黄色片| 在线观看www视频免费| 老鸭窝网址在线观看| 国产熟女xx| 国产一区二区在线av高清观看| 国产精品一区二区免费欧美| av欧美777| 久久久国产成人精品二区| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 少妇 在线观看| 99国产精品一区二区蜜桃av| 在线十欧美十亚洲十日本专区| 久久久精品欧美日韩精品| 脱女人内裤的视频| 天堂√8在线中文| 中文在线观看免费www的网站 | 天天添夜夜摸| 欧美久久黑人一区二区| 香蕉av资源在线| 国产亚洲欧美精品永久| 亚洲第一av免费看| 午夜福利成人在线免费观看| 成人三级黄色视频| 精品欧美一区二区三区在线| 精华霜和精华液先用哪个| 国产区一区二久久| 此物有八面人人有两片| 美女 人体艺术 gogo| 老汉色∧v一级毛片| 午夜免费激情av| 久久国产精品影院| a级毛片在线看网站| 国产精品乱码一区二三区的特点| av视频在线观看入口| 熟妇人妻久久中文字幕3abv| 日本a在线网址| 国产激情偷乱视频一区二区| 亚洲成av片中文字幕在线观看| 国产精品 欧美亚洲| 亚洲国产毛片av蜜桃av| 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 亚洲免费av在线视频| 国产av在哪里看| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 真人一进一出gif抽搐免费| 久久久久久免费高清国产稀缺| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| 国内久久婷婷六月综合欲色啪| 国产又色又爽无遮挡免费看| 精品99又大又爽又粗少妇毛片| 国产精品无大码| aaaaa片日本免费| av天堂在线播放| 亚洲人与动物交配视频| 久久久午夜欧美精品| 亚洲人与动物交配视频| 人人妻,人人澡人人爽秒播| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 国产高清视频在线播放一区| 国产亚洲av嫩草精品影院| 精品熟女少妇av免费看| 日韩欧美精品免费久久| 三级男女做爰猛烈吃奶摸视频| 嫩草影院入口| 国产精品亚洲一级av第二区| 亚洲最大成人手机在线| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 亚洲成人久久性| 午夜福利在线观看吧| 麻豆一二三区av精品| 91av网一区二区| 国产精华一区二区三区| 午夜视频国产福利| 91av网一区二区| 插阴视频在线观看视频| 人人妻人人看人人澡| 久久精品国产清高在天天线| 精品欧美国产一区二区三| 国产成人一区二区在线| 亚州av有码| 亚洲国产精品成人久久小说 | 国产一区二区三区在线臀色熟女| 亚洲欧美精品综合久久99| 亚洲一区二区三区色噜噜| 最近中文字幕高清免费大全6| av专区在线播放| 久久精品夜夜夜夜夜久久蜜豆| 秋霞在线观看毛片| 亚洲电影在线观看av| 日日摸夜夜添夜夜爱| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 日本黄色片子视频| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看 | 天堂av国产一区二区熟女人妻| 亚洲内射少妇av| 真人做人爱边吃奶动态| 亚洲av一区综合| 国产精品乱码一区二三区的特点| 精品久久久久久久末码| 女同久久另类99精品国产91| 最近在线观看免费完整版| 日韩av不卡免费在线播放| 久久精品夜色国产| 99国产极品粉嫩在线观看| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 九九久久精品国产亚洲av麻豆| 中文在线观看免费www的网站| 亚州av有码| 日韩一区二区视频免费看| 欧美一区二区国产精品久久精品| 成人永久免费在线观看视频| 色播亚洲综合网| 国产精品国产高清国产av| 一区二区三区免费毛片| 日韩欧美 国产精品| 一进一出抽搐动态| 国产 一区精品| 国产久久久一区二区三区| 99久久精品热视频| 精品久久久久久久久久免费视频| 久久99热这里只有精品18| 亚洲精品456在线播放app| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久| 亚洲性久久影院| 国产成人福利小说| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 俺也久久电影网| 日本熟妇午夜| 男女边吃奶边做爰视频| 色尼玛亚洲综合影院| 久久人人精品亚洲av| a级毛色黄片| 国产极品精品免费视频能看的| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线观看播放| 香蕉av资源在线| 啦啦啦啦在线视频资源| 免费在线观看影片大全网站| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放 | 日韩国内少妇激情av| 成人午夜高清在线视频| 日本-黄色视频高清免费观看| 精品人妻熟女av久视频| 蜜臀久久99精品久久宅男| 欧美另类亚洲清纯唯美| 精品乱码久久久久久99久播| 久久久欧美国产精品| 女人十人毛片免费观看3o分钟| 变态另类成人亚洲欧美熟女| 精品欧美国产一区二区三| 蜜臀久久99精品久久宅男| 亚洲av电影不卡..在线观看| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 露出奶头的视频| 国内精品一区二区在线观看| 日本欧美国产在线视频| 日本免费一区二区三区高清不卡| 蜜桃亚洲精品一区二区三区| 久久久久久久久久黄片| 午夜免费男女啪啪视频观看 | 国产午夜精品论理片| 国产精品一及| 成年女人毛片免费观看观看9| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 国产成人a∨麻豆精品| 搡老熟女国产l中国老女人| 男女边吃奶边做爰视频| 中文字幕久久专区| 免费高清视频大片| 精品久久久噜噜| 亚洲精品色激情综合| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 国内揄拍国产精品人妻在线| 精品久久久久久成人av| 午夜a级毛片| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 女的被弄到高潮叫床怎么办| 国产精品无大码| 欧美中文日本在线观看视频| 欧美日本亚洲视频在线播放| 国产视频内射| av中文乱码字幕在线| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 少妇人妻精品综合一区二区 | 久久精品国产亚洲av涩爱 | 毛片一级片免费看久久久久| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 日韩av在线大香蕉| 欧美区成人在线视频| 热99re8久久精品国产| 午夜a级毛片| 美女被艹到高潮喷水动态| 69人妻影院| 久久精品91蜜桃| 日本黄色片子视频| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 中国美女看黄片| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| 国产成人福利小说| 国产白丝娇喘喷水9色精品| 好男人在线观看高清免费视频| 少妇人妻一区二区三区视频| 日韩大尺度精品在线看网址| 免费观看人在逋| 白带黄色成豆腐渣| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲婷婷狠狠爱综合网| 日韩精品中文字幕看吧| av卡一久久| 国产熟女欧美一区二区| 亚洲四区av| 久久久午夜欧美精品| 中文在线观看免费www的网站| 国产一区二区三区在线臀色熟女| 欧美日韩综合久久久久久| 日本撒尿小便嘘嘘汇集6| 国产精品一及| 日日摸夜夜添夜夜添小说| 九九热线精品视视频播放| a级一级毛片免费在线观看| 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 九九热线精品视视频播放| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 精品福利观看| 亚洲高清免费不卡视频| 你懂的网址亚洲精品在线观看 | 欧美日韩精品成人综合77777| 亚洲不卡免费看| av免费在线看不卡| 亚洲在线观看片| 一级毛片电影观看 | 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看 | 欧美区成人在线视频| 亚洲成a人片在线一区二区| 99热只有精品国产| 欧美激情久久久久久爽电影| 亚洲国产色片| 菩萨蛮人人尽说江南好唐韦庄 | 蜜桃亚洲精品一区二区三区| 99在线人妻在线中文字幕| 国产白丝娇喘喷水9色精品| 麻豆乱淫一区二区| 亚洲精品色激情综合| 久久久久国产网址| 乱系列少妇在线播放| 丰满的人妻完整版| 国产免费男女视频| 成人性生交大片免费视频hd| 国产精品福利在线免费观看| 亚洲精品456在线播放app| 婷婷六月久久综合丁香| 乱码一卡2卡4卡精品| 哪里可以看免费的av片| 在线国产一区二区在线| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 在现免费观看毛片| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 亚洲美女视频黄频| 亚洲人成网站高清观看| 97在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲五月天丁香| 国内精品美女久久久久久| 亚洲成a人片在线一区二区| 男人舔女人下体高潮全视频| 丝袜喷水一区| 丰满乱子伦码专区| 又黄又爽又免费观看的视频| 性色avwww在线观看| 日韩精品青青久久久久久| 晚上一个人看的免费电影|