• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    2016-11-22 09:48:57趙宗彥
    物理化學(xué)學(xué)報(bào) 2016年10期
    關(guān)鍵詞:材料科學(xué)工程學(xué)院異質(zhì)

    趙宗彥 田 凡

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    CdS/FeP復(fù)合光催化材料界面結(jié)構(gòu)與性質(zhì)的理論研究

    趙宗彥1,2,*田凡1

    (1昆明理工大學(xué)材料科學(xué)與工程學(xué)院,昆明650093;2云南大學(xué)材料科學(xué)與工程學(xué)院,云南省微納材料與技術(shù)重點(diǎn)實(shí)驗(yàn)室,昆明650504)

    構(gòu)建同質(zhì)異相或異質(zhì)結(jié)構(gòu)是提高光催化材料性能的有效途徑之一,尤其是對于CdS這類具有光腐蝕的材料,這種方法還能起到提高光催化材料穩(wěn)定性的作用。因此目前制備CdS基復(fù)合光催化材料得到了廣泛的研究,但是目前對其中的一些基本問題和關(guān)鍵因素仍需要進(jìn)一步探討和解釋。本文采用第一性原理方法對CdS/FeP復(fù)合光催化材料中異質(zhì)結(jié)構(gòu)的界面微觀結(jié)構(gòu)和性質(zhì)進(jìn)行深入研究。計(jì)算結(jié)果表明,由于在界面上部分懸掛鍵被飽和,界面模型呈現(xiàn)出與體相或表面模型不同的電子結(jié)構(gòu)特征,并且有界面態(tài)的存在。在CdS/ FeP異質(zhì)結(jié)構(gòu)的界面處,CdS和FeP的能帶都相對向下移動,而且FeP的能帶(費(fèi)米能級)插入到CdS的導(dǎo)帶下方;同時在界面達(dá)到平衡態(tài)之后,異質(zhì)結(jié)構(gòu)的內(nèi)建電場由FeP層指向CdS層,因而能夠?qū)崿F(xiàn)光生電子-空穴對在CdS/FeP界面處的空間有效分離,這對于光催化性能的增強(qiáng)極其有利。此外,構(gòu)建CdS/FeP異質(zhì)結(jié)構(gòu)也能夠進(jìn)一步增強(qiáng)CdS在可見光區(qū)的光吸收。本文研究結(jié)果為構(gòu)建具有異質(zhì)結(jié)構(gòu)的高效復(fù)合光催化材料提供了機(jī)理解釋和理論支持。

    光催化;硫化鎘;異質(zhì)結(jié)構(gòu);界面微觀結(jié)構(gòu);界面性質(zhì);密度泛函理論計(jì)算

    1 Introduction

    As strategic resource for social and economic development, energy always shows its importance and irreplaceable1.After longterm over-exploitation and excessive consumption,the fossil energy,including:coal,petroleum,and natural gas,will be exhausted in a few years2,3.What′s more,a series of environmental problems caused by fossil energy utilization could not be ignored, for example,greenhouse gas emissions,water resources pollution, and so on4.Severe energy crisis and environmental pollution makes the development of renewable energy(i.e.sustainable utilization,environment friendly,high efficiency,and cheap)is particularly necessary.In the renewable energy resources,solar energy is inexhaustible and clean.And thus,the technology of its efficient utilization is getting more and more attention from all over the world,becoming the important focus,and the corresponding progress increasingly blooming5.Photocatalysis is just one of the promising technologies of solar energy utilization:to produce hydrogen from water splitting,to produce hydrocarbon fuel from CO2reducing,to degrade the organic pollutants.So, scientists expect that it could help people to do away with dependence on fossil fuels in the future6.

    In 1972,Japanese scientists,Fujishima and Honda7observed water splitting phenomenon on the TiO2photoelectrode under UV-light irradiation.Their work provided preliminary evidence for the hydrogen production from photocatalytic water splitting,and opened the prelude of research on artificial photosynthesis to convert solar energy into chemical energy.Unfortunately,the technological development of photocatalysis is still facing two major obstacles to date:narrow spectral response and low quantum efficiency,leading to a long way to achieve large-scale and low-cost solar energy industrial utilization.Cadmium sulfide (CdS)is a typical visible-light driven semiconductor photocatalyst with a band gap of~2.4 eV,which is well overlapping with the spectrum of sunlight,and could theoretically utilize more 40%of solar energy.Furthermore,its conduction band edge is more negative than the H+/H2redox potential,implying that it is thus able to evolve hydrogen from water splitting under sunlight irradiation8,9.However,CdS has a fatal drawback in practical applications,i.e.its stability is much worse10.This phenomenon is ascribed from its anodic decomposition(the so-called photocorrosion)when CdS is in aqueous solution by long-time light irradiation.In order to improve its stability and activity,to construct hetero-structure(combined with cocatalyst or other semiconductors)has been proposed,which has been proved as an effective modification method.For example:Pt/CdS composite photocatalyst has higher photocatalytic activity than Ru/CdS for hydrogen evolution reaction11;ETS-4 loading not only promotes the efficiency of hydrogen production from water splitting under visible-light irradiation,but also enhances the stability of CdS12. Yan et al.13reported that an artificial photocatalyst(Pt-PdS/CdS) can achieve a quantum efficiency up to 93%in photocatalytic H2production under visible-light irradiation,and is very stable under the photocatalytic reaction conditions.

    Metal cocatalyst(especially noble metal)loading is often used to improve the photocatalytic activity of CdS.However,noble metal is scarce and has high production cost,which is against by the original intention to develop low-cost renewable energy resources.Recently,to replace noble metal cocatalyst with cheap materials for CdS photocatalyst has been attracted more and more attention9,14.On the other hand,the stability and catalytic properties of metal phosphide,such as,MoP,InP,Ni2P,CoP,and FeP, also attract extensive concern,and have been widely investigated, owing to their inexpensive and earth-abundant compositions and highly active hydrodesulfurization catalysis reactions15.Cao et al.16reported at the first time that Ni2P nanoparticles present high photocatalytic hydrogen-generating activity and excellent stability in lactic acid aqueous solution under visible light LED irradiation using CdS nanorods as a photosensitizer.Callejas et al.17synthesized uniform,hollow morphology FeP/TiO2composite,which exhibits the highest hydrogen-evolution reaction activities reported to date in both acidic and neutral-pH aqueous solutions,indicating that FeP is a highly earth-abundant material for efficiently facilitating the hydrogen-evolution reaction both electrocatalytically and photocatalytically.Zhang et al.18also considered FeP as a promising alternative to Pt-based catalysts for the hydrogenevolution reaction,in order to develop inexpensive and highly efficient non-precious-metal electrocatalysts.Motivated by above encouraging experimental observations,we adopt density functional theory(DFT)to further investigate the interfacial structure and properties,in order to deepen the understanding of CdS/FeP composite photocatalyst with hetero-structure.Using theoretical simulations,the atomic-scale interfacial microstructure and the electronic-scale interface properties will be provided.And then, based on the calculated results,the detailed mechanism of CdS/ FeP hetero-structure to improve the photocatalytic performance will be discussed.We hope these findings could provide someuseful reference for the development of efficient photocatalyst with hetero-structure in the future.

    2 Computational methods and model

    All of the DFT calculations in the present work are carried out by Cambridge Serial Total Energy Package(CASTEP)codes that are included into the software of Materials Studio19.CASTEP is a quantum mechanics-based program designed specifically for solid-state materials science.For solid-state materials,the interactions between nucleus and electrons are approximately treaded by the Born-Oppenheimer approximation,Hartee-Fock selfconsistent field theory,and periodic potential method.Thus,the interaction between ion cores(i.e.Cd:[Kr],S:[Ne],Fe:[Ar],P: [Ne])are treated by the ultrasoft pesudopotential(USP)20.For expanding the Kohn-Sham wave functions,the energy cutoff is chosen as 330 eV.The exchange-correlation effects of valence electrons(i.e.Cd:4d105s2,S:3s23p4,Fe:3d64s2,P:3s23p3)were described by the revised Perdew-Burke-Ernzerhof for solid (PBEsol)within generalized gradient approximation(GGA)21.In order to overcome the well-known shortcoming of conventional GGA method that underestimates the band gap value of semiconductor by~50%,the GGA+U method is chosen to obtain accurate electronic structure22.The value of effective U is set as 3.6 eV for the Cd-d and Fe-d states,which is obtained by comparison between the calculated results and experimental measurement of band gap value of CdS.A 1×2×1 mesh in the irreducible Brillouin zone was set for Monkhorst-Pack scheme kpoints grid sampling,and a 90×30×360 mesh was set for the fast Fourier transformation.In the geometry optimization process,the minimization algorithm was chosen the Broyden-Fletcher-Goldfarb-Shanno(BFGS)scheme23.The convergence standard was set as follows:the force on the atoms was less than 0.3 eV·nm-1,the stress on the atoms was less than 0.05 GPa,the atomic displacement was less than 1×10-4nm,and the energy change per atom was less than 1×10-5eV.

    To simulate the interfacial structure and properties,the combination model of slab plus vacuum layer was adopted in the present work.The slab contains eight CdS layers and eight FeP layers,in which the two components were boned together. Moreover,the slabs ware separated by a 2 nm-thickness vacuum layer to avoid the mirror self-interaction along the interfacial normal direction.Firstly,the bulk CdS and FeP crystals were fully optimized both cell′s parameters and atomic coordination,and then the corresponding electronic structure and optical properties were calculated.Secondly,the surface with specific direction was cleaved from the optimized bulk phase with eight stoichiometric CdS or FeP layers,and then the atomic coordination was optimized,while the cell′s parameters were restricted.At the same time,the below four CdS layers are constrained to mimic the bulk effects for surface.Then the corresponding electronic structure and optical properties are calculated.Thirdly,two separated slabs of CdS and FeP are combined together,in which the supercell sizes are set as the averages two components.The final supercell sizes parallel to the interface are chose as the average of two components:1.6598 nm×0.5868 nm.Furthermore,the interfacial model is also separated by more than a 2 nm-thickness vacuum layer,and the size of this model along the normal direction interface is up to 7 nm.The total atoms reached to 256.After the interfacial model constructing,the atomic coordination of all atoms in this model are optimized by the BFGS scheme as mentioned above,except those atoms in the below four CdS layers.By this way,the interfacial stress could be reduced to a minimum.Finally,the electronic structure and optical properties are calculated for the interface,based on the optimized model.

    3 Results and discussion

    3.1Interfacial micro-structure

    By the geometry optimizing,we could obtain the accurate lattice constants of bulk CdS and FeP.For diamond-structure(i.e. zincblende structure)CdS(space group:F4ˉ3m),the calculated lattice constants are listed as following:a=b=c=0.5868 nm,α= β=γ=90°,which are very agreement with experimental measurement(a=b=c=0.5811 nm,α=β=γ=90°)24.For orthorhombic-structure FeP(space group:Pnma),the calculated lattice constants are listed as following:a=0.5027 nm,b=0.2962 nm, c=0.5663 nm,α=β=γ=90°,which are very agreement with experimental measurement(a=0.5191 nm,b=0.3009 nm,c= 0.5792 nm,α=β=γ=90°)25.The calculated results indicate that the computational methods are reasonable and credible in the present work.The knowledge of CdS semiconductor atomic surface structure is very important for the tailoring of heterostructure.Anumber of experimental and theoretical investigations have been carried out on CdS semiconductor and its surfaces26,27. In general,the non-polar(101)zincblende surface of CdS semiconductor shows an outward relaxation of the surface-layer anions and an inward relaxation of the surface-layer cations.Our present work well reproduced above conventional phenomenon.

    To construct hetero-structure model,the important factor is the crystal lattice matching.If the crystal lattice mismatching is too large,the interface is unstable due to the larger interfacial stress. In spite of the large crystal lattice mismatching could be decreased by constructing larger supercells,but the interface stress could not be obviously reduced.In the present work,we found the interface combined by the(101)plane CdS and the(103)plane of FePcould meet the above requirement.The two-dimensional lattice constants of the(101)plane of CdS is listed as following:u=0.4149 nm,v=0.5868 nm,γ=90°;and those of the(103)plane of FeP is listed as following:u=1.6108 nm,v=0.2962 nm,γ=90°.For the interface of 4×1(101)CdS/1×2(103)FeP,the degree of crystal lattice mismatching is:Δu=3.04%,Δv=0.93%,Δγ=0, which are less than 5%,suggesting that the(101)plane of CdS and the(103)plane of FeP could form a stable interface.

    After all atomic coordination optimizing,the interfacial model is presented in Fig.1(a).One can see that the atomic relaxation at the interface is very significant:all the displacements of atoms at the interface are larger than 0.05 nm,and the variation of distancesbetween layers is larger than 0.02 nm.At the same time,the dangling bonds at the interface have been partially saturated. Using the formula defined by Xu et al.28,the adhesion energy(Eadh) of CdS/FeP is also calculated as-7.3 eV·nm2.This litter negative value indicates that the formation process of interface is exothermic and the formation of interface bonds stabilizes the interface.Therefore,the CdS/FeP hetero-structure is composed by the(101)plane of CdS and the(103)plane of FeP has small interface stress,and thus is stable.

    Fig.1 (a)Side view of CdS(101)/FeP(103)interface model, (b)average electrostatic potential,and(c)average electron density difference along the interfacial normal direction

    3.2Electronic structure

    In order to explore the evolution of electronic structure of our interfacial model from bulk,to surface,and to interface,the total and partial density of states(DOS)are illustrated in Fig.2.As shown in Fig.2(a),in the case of CdS@Bulk,the calculated band gap is 2.406 eV,which is very consistent with experimental measurement(~2.4 eV).The upper valence band(VB)is dominantly consisted by the S-3p states.The lower conduction band (CB)is dominantly consisted by the Cd-5s states.Below VB and above CB,another band is consisted by the hybridized state between S-3p and Cd-5s states.Compared with bulk electronic structure,in the cases of surface and interface,above-mentioned main features are also exhibited.In the case of CdS@Surface,the lower band of VB is relatively upward shifting and overlapping with the middle band of VB,while in the case of CdS@Bulk the lower band of VB is relatively separated with the middle band of VB.An opposite situation could be found for CB of CdS@Surface case:the lower CB is relatively separated from the middle band of CB,which is overlapping in the bulk case.These variations are arising from the existence of dangling bonds on the surface,and the obvious surface relaxation.Although the dangling bonds are partially saturated,these variations maybe partially disappeared in the case of CdS@Interface.However,owing to the different bonding ways and chemical environments at the interface,there areobviousdifferentelectronicstructuresinthecaseofCdS@Interface,especially the interfacial states in the band gap,and upper band of VB or the lower band of CB.For the case of FeP,as shown in Fig.2(b),bands near the Fermi energy level(EF)are overlapping with each other,suggesting that FeP is a metallic compound. Furthermore,the bonding information of the three models is similar,which are consisted by the hybridized states between Fe-3d states and P-3p states.The presented obvious differences are as following:(i)in the case of FeP@Surface,the energy bands are concentrated to the EF;(ii)the band gap states(or interfacial states)are more obvious in the case of FeP@Interface,as similar with the case of CdS@Interface,which means that the interfacial states are obvious and important for CdS/FeP hetero-structure.

    Fig.2 Calculated total and partial density of states of(a)CdS and(b)FePin different systems:bulk,surface,and interface

    When CdS(101)surface and FeP(103)surface are contact together to form the interface,the atoms at the interface will be relaxed,in order to reduce the interfacial stress and saturate the dangling bonds,as shown in Fig.1(a).Thus,the interfacial states are presenting in Fig.2.In order to further understand the interfacial states,we plotted the layer-resolution total DOS for the CdSand FeP in the interface model in Fig.3,which are respectively compared with the bulk total DOS of CdS or FeP.In the first two layers,the feature of electronic structure is obviously different with that of bulk phase.While,in the case of 3rd-6th layers,the feature of electronic structure is similar with that of bulk phase. This phenomenon indicates that the interfacial states are localized at the limited layers at the interface that are obviously relaxed. Another important phenomenon can be observed:the relative energy band shifting in the case of interface model.It is obviously seen that the energy bands of CdS and FeP are relatively downshifting compared with those of bulk phase.

    For the electronic structure of interface model,to align the energy bands between two components is the most important task. In the present work,we used the method that is defined by Zhang29and Chen30et al.to estimate the valence band offset ΔEVbetween CdS and FeP.The energy-level differences between valence band maximum(VBM)and core levels for CdS and FeP(i.e.are firstly calculated for the bulk models.For FeP, the VBM means the Fermi energy level in the present work.Then, for the interface model,the core-level difference(ΔEC′,C)between CdS layers and FeP layers is calculated.According to these data, the valence band offset ΔEV(CdS/FeP)can be derived by the following equations:ΔEV(CdS/FeP)=By this way,we estimated the shifting relative value of band:~0.3 eV for CdS and~1.1 eV for FeP in order to quantitatively evaluate the energy band shifting.

    Fig.3 Calculated layer-resolution total density of states of CdS(a)and FeP(b)in the CdS/FePmodel compared with the total density of states of bulk phase

    The electrostatic potential along the interfacial normal direction was illustrated in Fig.1(b),in compared with that of CdS surface along the[101]direction or FeP surface along the[103]direction. The obvious feature is the potential of CdS slab(with average potential of-9.74 eV)is higher than that of FeP slab(with average potential of-17.52 eV).Therefore,the built-in electric field points from FeP slab to CdS slab under equilibrium,after the interface is formed and stable.Compared with bulk counterpart, the average potential of CdS slab is increased by~0.76 eV,while that of FeP slab is decreased by~0.01 eV.For the clean unrelaxed CdS(101)surface,the work function is 5.458 eV,which is higher than that of the clean unrelaxed FeP(103)surface(ΦFeP=4.692 eV).So,when they contact together,the electrons will be transferred from CdS slab to FeP slab,resulting the existence of space charge region(or depletion layer).It is could be confirmed the average electron density difference along the interfacial normal direction as shown in Fig.1(c).The result of electron transfer is the Fermi energy(EF,CdS)and the vacuum energy level(EVac,CdS)of CdS slab is downwards shifting,as well as the EF,FePof FeP slab,until the EF,CdSand the EF,FePare aligned.Finally,the EF,CdS/FePis located at below the bottom of CB of CdS by~0.9 eV.From Fig.1(c),the thickness of space charge region could be estimated by about 0.8 nm.Based on above calculated data and discussion,we proposed the energy band diagram of CdS(101)/FeP(103)interface as illustrated in Fig.4.Because of the existence of built-in electric field,the energy band edges of CdS are shifted downwards,which is called as the band bending.The degree of energy band bending (VBB)is defined as the difference of work function between CdS (101)surface and FeP(103)surface,VBB=ΦCdS-ΦFeP=0.766 eV. The presence of the space charge region can prevent more electrons flow from CdS slab to FeP slab.Thus,under the equilibrium conditions,the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface.

    Fig.4 Proposed energy band diagram of CdS/FePhetero-structure

    3.3Optical properties

    Fig.5 illustrated the calculated absorption spectra of different CdS and FeP systems along the[101](for CdS)or[103](for FeP) directions.The optical properties of different systems are determined by their composition,crystal structure,and electronic structure.For example,the fundamental absorption band edge of bulk CdS is located about 550 nm,which is determined by the ~2.4 eV band gap.While the absorption spectra of bulk FeP has no obvious absorption band edge in the visible-light region. Furthermore,the absorption coefficient of FeP is obviously larger than that of CdS,owing to its intrinsic metallic or semi-metallic characters.Compared to bulk CdS,the fundamental absorption band edge of CdS(101)surface along the normal direction is obviously blue-shifting.In the case of FeP(103)surface,the absorption coefficient is significantly decreased.In the case of CdS/ FeP composite photocatalyst,the optical properties have significant difference compared with bulk CdSor bulk FePin the visiblelight region.Importantly,the absorption coefficient of CdS/FeP composite photocatalyst is obviously increasing in the visible-light region in comparison with CdS(101)surface or bulk CdS.This calculated result suggests that the FeP loading could enhance the visible-light absorption of CdS.

    Fig.5 Calculated absorption spectra of CdS or FePin different systems:bulk,surface,and interface

    4 Conclusions

    To in-depth investigate the interfacial properties of CdS/FeP composite photocatalyst with hetero-structure,its atomic-scale structure,electronic structure,and optical properties are calculated by density functional theory in the present work.Firstly,the interface is consisted by the CdS(101)crystalline plane and FeP (103)crystalline plane,which have slight lattice mismatching(less than 5%)and could form a stable interface.Owing to partially saturated dangling bonds,the electronic structure of interface model exhibits both the features of bulk and surface references. At the interface of CdS/FeP hetero-structure,the energy bands of CdS and FeP are relatively down-shifting,and the energy band of FeP inserts at the below of conduction band of CdS,which is very favorable for the improvement of photocatalytic performance. Moreover,the built-in electric field of hetero-structure points from FeP layer to CdS layer under equilibrium,so the photo-generated electron-hole pairs can be spatially separated by the CdS/FeP interface,which is the improvement mechanism for photocatalytic performance.Based on the calculated results,the energy band diagram of CdS(101)/FeP(103)interface is proposed.In addition, to construct CdS/FeP hetero-structure also can further improve the absorption properties of CdS in visible-light region.

    References

    (1)Guo,Q.;Zhou,C.Y.;Ma,Z.B.;Ren,Z.F.;Fan,H.J.;Yang,X. M.Acta Phys.-Chim.Sin.2016,32,28.[郭慶,周傳耀,馬志博,任澤峰,樊紅軍,楊學(xué)明.物理化學(xué)學(xué)報(bào),2016,32,28.] doi:10.3866/PKU.WHXB201512081

    (2) Chang,X.X.;Gong,J.L.Acta Phys.-Chim.Sin.2016,32,2. [常曉俠,鞏金龍.物理化學(xué)學(xué)報(bào),2016,32,2.]doi:10.3866/ PKU.WHXB201510192

    (5) Schultz,D.M.;Yoon,T.P.Science 2014,343,1239176. doi:10.1126/science.1239176

    (8) Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (9) Zong,X.;Yan,H.;Wu,G.;Ma,G.;Wen,F.;Wang,L.;Li,C. J.Am.Chem.Soc.2008,130,7176.doi:10.1021/ja8007825

    (10) Yang,S.;Wen,X.;Zhang,W.;Yang,S.J.Electrochem.Soc. 2005,152,G220.doi:10.1149/1.1859991

    (11) Sathish,M.;Viswanathan,B.;Viswanath,R.P.Int.J.Hydrog. Energy 2006,31,891.doi:10.1016/j.ijhydene.2005.08.002

    (12) Guan,G.;Kida,T.;Kusakabe,K.;Kimura,K.;Fang,X.;Ma,T.; Abe,E.;Yoshida,A.Chem.Phys.Lett.2004,385,319. doi:10.1016/j.cplett.2004.01.002

    (13) Yan,H.;Yang,J.;Ma,G.;Wu,G.;Zong,X.;Lei,Z.;Shi,J.;Li, C.J.Catal.2009,266,165.doi:10.1016/j.jcat.2009.06.024

    (14) Walter,M.G.;Warren,E.L.;McKone,J.R.;Boettcher,S.W.; Mi,Q.;Santori,E.A.;Lewis,N.S.Chem.Rev.2010,110,6446. doi:10.1021/cr1002326

    (15) Song,H.;Wang,J.;Wang,Z.;Song,H.;Li,F.;Jin,Z.J.Catal. 2014,311,257.doi:10.1016/j.jcat.2013.11.021

    (16) Cao,S.;Chen,Y.;Wang,C.J.;He,P.;Fu,W.F.Chem. Commun.2014,50,10427.doi:10.1039/C4CC05026F

    (17) Callejas,J.F.;McEnaney,J.M.;Read,C.G.;Crompton,J.C.; Biacchi,A.J.;Popczun,E.J.;Gordon,T.R.;Lewis,N.S.; Schaak,R.E.ACS Nano 2014,8,11101.doi:10.1021/ nn5048553

    (18) Zhang,Z.;Hao,J.;Yang,W.;Lu,B.;Tang,J.Nanoscale 2015, 7,4400.doi:10.1039/C4NR07436J

    (19) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert,M.J.;Refson,K.;Payne,M.C.Z.Kristallogr.2005,220,567. doi:10.1524/zkri.220.5.567.65075

    (21) Perdew,J.P.;Ruzsinszky,A.;Csonka,G.I.;Vydrov,O.A.; Scuseria,G.E.;Constantin,L.A.;Zhou,X.;Burke,K.Phys. Rev.Lett.2008,100,136406.doi:10.1103/ PhysRevLett.100.136406

    (22) Anisimov,V.I.;Zaanen,J.;Andersen,O.K.Phys.Rev.B 1991, 44,943.doi:10.1103/PhysRevB.44.943

    (23) Pfrommer,B.G.;Caté,M.;Louie,S.G.;Cohen,M.L. J.Comput.Phys.1997,131,233.doi:10.1006/jcph.1996.5612

    (24)Yeh,C.Y.;Lu,Z.W.;Froyen,S.;Zunger,A.Phys.Rev.B 1992, 46,10086.doi:10.1103/PhysRevB.46.10086

    (25) Rundqvist,S.;Nawapong,P.C.Acta Chem.Scand.1965,19, 1006.doi:10.3891/acta.chem.scand.19-1006

    (26) Lin,C.M.;Tsai,M.H.;Yang,T.J.;Chuu,D.S.Phys.Rev.B 1997,56,9209.doi:10.1103/PhysRevB.56.9209

    (27) Schr?er,P.;Krüger,P.;Pollmann,J.Phys.Rev.B 1993,48, 18264.doi:10.1103/PhysRevB.48.18264

    (28) Xu,X.;Sun,X.;Sun,B.;Peng,H.;Liu,W.;Wang,X.J.Colloid Interface Sci.2016,473,100.doi:10.1016/j.jcis.2016.03.059

    (29) Zhang,S.B.;Wei,S.H.;Zunger,A.J.Appl.Phys.1998,83, 3192.doi:10.1063/1.367120

    (30) Chen,S.;Yang,J.H.;Gong,X.G.;Walsh,A.;Wei,S.H.Phys. Rev.B 2010,81,245204.doi:10.1103/PhysRevB.81.245204

    Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst

    ZHAO Zong-Yan1,2,*TIAN Fan1
    (1Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China;2Yunnan Key Laboratory of Micro/Nano Materials&Technology,School of Materials Science and Engineering, Yunnan University,Kunming 650504,P.R.China)

    An effective method for improving the performance of a photocatalyst is to construct a suitable hetero-/homo-structure.This strategy can also lead to improvements in the stability of the photocatalysts that suffer with photo-corrosion(such as CdS).The preparation of CdS-based composite photocatalysts has therefore been widely studied.Unfortunately,however,some of the fundamental and more significant aspects of this strategy still need to be evaluated in greater detail.In this study,we have evaluated the interfacial microstructure and properties of a CdS/FeP composite photocatalyst with a hetero-structure using a series of the firstprinciples calculations.The results revealed that the electronic structure of the interface model exhibited different features compared with the bulk and surface models,because of the partially saturated dangling bonds. However,several obvious interfacial states were observed.At the interface of the CdS/FeP hetero-structure, the energy bands of CdS and FeP were relatively down-shifted,whereas the energy band of FeP was inserted below the conduction band of CdS.Furthermore,the direction of the built-in electric field of the hetero-structureprojected out from the FeP layer towards the CdS layer under the equilibrium conditions.The photo-generated electron-hole pairs were therefore spatially separated by the CdS/FeP interface,which was favorable for improving the photocatalytic performance.The construction of a CdS/FeP hetero-structure can also lead to further improvements in the absorption properties of CdS in the visible-light region.The results of this study have provided mechanical explanations and theoretical support for the construction of highly efficient composite photocatalyst with hetero-structures.

    April 19,2016;Revised:July 13,2016;Published online:July 13,2016.

    .Email:zzy@kmust.edu.cn;Tel:+86-871-65109952.

    Photocatalysis;Cadmium sulfide;Hetero-structure;Interfacial micro-structure;Interfacial property;Density functional theory calculation

    O647

    10.3866/PKU.WHXB201607131

    The project was supported by the National Natural Science Foundation of China(21473082),and 18th Yunnan Province YoungAcademic and Technical Leaders Reserve Talent Project(2015HB015).

    國家自然科學(xué)基金(21473082)和云南省第18批中青年學(xué)術(shù)和技術(shù)后備人才項(xiàng)目(2015HB015)資助?Editorial office ofActa Physico-Chimica Sinica

    (3)Hamakawa,Y.Renew.Energy 1994,5,34.10.1016/0960-1481(94)90352-2

    (4) Kamat,P.V.J.Phys.Chem.C 2007,111,2834.10.1021/ jp066952u

    (6) Qu,Y.;Duan,X.Chem.Soc.Rev.2013,42,2568.10.1039/ C2CS35355E

    (7) Fujishima,A.;Honda,K.1972,238,37.10.1038/238037a0

    (20) Vanderbilt,D.Phys.Rev.B 1990,41,7892.10.1103/ PhysRevB.41.7892

    猜你喜歡
    材料科學(xué)工程學(xué)院異質(zhì)
    中海油化工與新材料科學(xué)研究院
    福建工程學(xué)院
    福建工程學(xué)院
    材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    福建工程學(xué)院
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    国产精品1区2区在线观看. | 欧美成人免费av一区二区三区 | 免费在线观看完整版高清| 一夜夜www| 麻豆国产av国片精品| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 成人av一区二区三区在线看| 91精品三级在线观看| 18在线观看网站| 熟女少妇亚洲综合色aaa.| 色播在线永久视频| 纯流量卡能插随身wifi吗| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| av网站在线播放免费| 咕卡用的链子| 村上凉子中文字幕在线| 国产精品av久久久久免费| 黄色片一级片一级黄色片| 亚洲在线自拍视频| 国产精品亚洲一级av第二区| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| 国产亚洲欧美98| 99国产精品99久久久久| 嫩草影视91久久| 国产午夜精品久久久久久| 男人操女人黄网站| 日日夜夜操网爽| 亚洲精品国产区一区二| 亚洲熟妇熟女久久| 99热国产这里只有精品6| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 在线观看免费视频网站a站| 天堂中文最新版在线下载| 日本撒尿小便嘘嘘汇集6| 男人的好看免费观看在线视频 | 日本a在线网址| 黑人猛操日本美女一级片| av免费在线观看网站| 亚洲一区二区三区不卡视频| 久久热在线av| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 欧美激情久久久久久爽电影 | 男女下面插进去视频免费观看| 嫁个100分男人电影在线观看| 日韩有码中文字幕| 国产精品免费大片| 淫妇啪啪啪对白视频| av国产精品久久久久影院| 亚洲国产欧美网| 午夜两性在线视频| 极品少妇高潮喷水抽搐| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 一夜夜www| 操出白浆在线播放| 最新在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 免费人成视频x8x8入口观看| 操出白浆在线播放| 一级毛片女人18水好多| 又黄又爽又免费观看的视频| 成年版毛片免费区| 99久久99久久久精品蜜桃| 亚洲av片天天在线观看| 亚洲色图av天堂| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久av美女十八| 一进一出好大好爽视频| 老司机影院毛片| 51午夜福利影视在线观看| 成年人黄色毛片网站| 精品久久久久久电影网| 高清av免费在线| 99国产精品99久久久久| 飞空精品影院首页| 五月开心婷婷网| 国产极品粉嫩免费观看在线| 无限看片的www在线观看| 波多野结衣av一区二区av| 成在线人永久免费视频| 99久久综合精品五月天人人| 一边摸一边做爽爽视频免费| 日韩三级视频一区二区三区| 夜夜夜夜夜久久久久| 一二三四社区在线视频社区8| 国产精品成人在线| 别揉我奶头~嗯~啊~动态视频| 如日韩欧美国产精品一区二区三区| 久久香蕉国产精品| 免费在线观看日本一区| 午夜久久久在线观看| 无人区码免费观看不卡| 色综合欧美亚洲国产小说| 精品久久久久久久久久免费视频 | 亚洲国产欧美一区二区综合| 国产精品秋霞免费鲁丝片| 高清在线国产一区| 午夜日韩欧美国产| 变态另类成人亚洲欧美熟女 | 国产精品免费大片| 精品少妇久久久久久888优播| 国产成人欧美| 免费高清在线观看日韩| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 久久香蕉激情| 99久久99久久久精品蜜桃| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 搡老岳熟女国产| 久久精品91无色码中文字幕| 久久 成人 亚洲| 亚洲少妇的诱惑av| 亚洲aⅴ乱码一区二区在线播放 | 巨乳人妻的诱惑在线观看| 久久香蕉精品热| 国产亚洲精品久久久久久毛片 | 人人妻人人爽人人添夜夜欢视频| 亚洲欧美色中文字幕在线| 亚洲一区高清亚洲精品| 性少妇av在线| 国产欧美日韩综合在线一区二区| 国产av又大| 中文字幕色久视频| 91大片在线观看| 久久久久国产精品人妻aⅴ院 | 久久精品国产亚洲av高清一级| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| 色综合婷婷激情| 色老头精品视频在线观看| 国产精品国产高清国产av | 婷婷丁香在线五月| 悠悠久久av| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 中文亚洲av片在线观看爽 | 高清欧美精品videossex| 国产主播在线观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 日本wwww免费看| 欧美国产精品va在线观看不卡| 另类亚洲欧美激情| 亚洲午夜理论影院| 国产片内射在线| 十分钟在线观看高清视频www| 18禁黄网站禁片午夜丰满| a级毛片在线看网站| 午夜两性在线视频| 伊人久久大香线蕉亚洲五| 在线观看一区二区三区激情| 一a级毛片在线观看| 国产蜜桃级精品一区二区三区 | 久久久国产成人精品二区 | 高清欧美精品videossex| 韩国精品一区二区三区| 一本一本久久a久久精品综合妖精| 日韩人妻精品一区2区三区| 久久久国产成人精品二区 | 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 久久香蕉国产精品| 在线观看日韩欧美| 国产精品永久免费网站| 午夜91福利影院| 老熟女久久久| 人妻丰满熟妇av一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 国产区一区二久久| 怎么达到女性高潮| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 深夜精品福利| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 激情在线观看视频在线高清 | 超色免费av| av天堂久久9| 老司机在亚洲福利影院| 热99久久久久精品小说推荐| 亚洲性夜色夜夜综合| 国产精品偷伦视频观看了| 欧美成人免费av一区二区三区 | 热99国产精品久久久久久7| 999久久久国产精品视频| 乱人伦中国视频| 女人高潮潮喷娇喘18禁视频| 精品国产美女av久久久久小说| 久久人妻福利社区极品人妻图片| 男女下面插进去视频免费观看| 国产亚洲欧美98| 老司机午夜福利在线观看视频| 黄色女人牲交| 中文字幕人妻丝袜一区二区| 夜夜爽天天搞| 久久久久久亚洲精品国产蜜桃av| 人人妻人人添人人爽欧美一区卜| 国产精品一区二区精品视频观看| 精品一区二区三卡| 国产精品久久久久久人妻精品电影| 日本精品一区二区三区蜜桃| 无遮挡黄片免费观看| 一本一本久久a久久精品综合妖精| 国产伦人伦偷精品视频| 99久久精品国产亚洲精品| 精品久久久久久久久久免费视频 | 18禁国产床啪视频网站| 欧美日韩亚洲综合一区二区三区_| 日本一区二区免费在线视频| av国产精品久久久久影院| 亚洲五月色婷婷综合| 亚洲国产毛片av蜜桃av| 露出奶头的视频| 国产欧美日韩综合在线一区二区| 国精品久久久久久国模美| 国产精品亚洲一级av第二区| 免费看十八禁软件| 热99久久久久精品小说推荐| 老司机影院毛片| 国产精品美女特级片免费视频播放器 | 一区二区三区激情视频| 亚洲精品国产区一区二| av视频免费观看在线观看| 五月开心婷婷网| 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| a级毛片黄视频| 欧美黑人精品巨大| 啪啪无遮挡十八禁网站| 操美女的视频在线观看| 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 人妻 亚洲 视频| 精品久久久久久久毛片微露脸| 国产av又大| 久久国产亚洲av麻豆专区| 日韩欧美国产一区二区入口| 国产一区二区三区在线臀色熟女 | 国产成人av教育| 天天躁日日躁夜夜躁夜夜| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 欧美日韩成人在线一区二区| 91老司机精品| 一级a爱片免费观看的视频| 中文欧美无线码| 国产精品一区二区免费欧美| 欧美亚洲日本最大视频资源| 十八禁网站免费在线| 人人妻人人澡人人看| 757午夜福利合集在线观看| 国产成人精品久久二区二区免费| 真人做人爱边吃奶动态| 一区二区三区国产精品乱码| 黄色 视频免费看| av视频免费观看在线观看| 性色av乱码一区二区三区2| 欧美黄色淫秽网站| 午夜免费鲁丝| 国产精品98久久久久久宅男小说| av视频免费观看在线观看| 一夜夜www| 十分钟在线观看高清视频www| 丁香六月欧美| 精品久久久精品久久久| 国产精品 欧美亚洲| av不卡在线播放| 悠悠久久av| 欧美日本中文国产一区发布| 国产精品成人在线| 午夜免费鲁丝| av线在线观看网站| 99re6热这里在线精品视频| 精品国产亚洲在线| 国产成人系列免费观看| 一夜夜www| 91麻豆av在线| 亚洲午夜精品一区,二区,三区| 国产xxxxx性猛交| 精品免费久久久久久久清纯 | 成年版毛片免费区| 午夜视频精品福利| 久久久国产精品麻豆| 黄片大片在线免费观看| 国产高清国产精品国产三级| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 一本综合久久免费| 亚洲片人在线观看| 免费观看a级毛片全部| 9色porny在线观看| 国产在线一区二区三区精| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 亚洲成人手机| 国产亚洲精品第一综合不卡| 19禁男女啪啪无遮挡网站| 18禁美女被吸乳视频| 极品人妻少妇av视频| 国产激情欧美一区二区| 超碰97精品在线观看| 涩涩av久久男人的天堂| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女 | 色综合婷婷激情| 日本黄色视频三级网站网址 | 9色porny在线观看| 日本五十路高清| 亚洲国产欧美一区二区综合| 人人妻人人添人人爽欧美一区卜| 国产野战对白在线观看| 电影成人av| 国产蜜桃级精品一区二区三区 | 国产av又大| 操美女的视频在线观看| 亚洲av片天天在线观看| 欧美日韩精品网址| 精品人妻1区二区| 国产成人精品无人区| 欧美国产精品一级二级三级| 在线观看www视频免费| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 色在线成人网| 精品福利永久在线观看| av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人影院久久av| 看黄色毛片网站| 一区二区日韩欧美中文字幕| 性少妇av在线| 精品国产亚洲在线| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 国产一区二区激情短视频| 午夜老司机福利片| 王馨瑶露胸无遮挡在线观看| 久久国产乱子伦精品免费另类| 亚洲av成人av| 麻豆国产av国片精品| 高清欧美精品videossex| 亚洲精品国产区一区二| 亚洲成人国产一区在线观看| 99香蕉大伊视频| 欧美最黄视频在线播放免费 | 国产成人欧美在线观看 | 热99国产精品久久久久久7| 99国产精品免费福利视频| 久久久国产成人精品二区 | 日本五十路高清| 又大又爽又粗| 大码成人一级视频| 国产激情欧美一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲人成伊人成综合网2020| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 久久久久久久国产电影| 国产精品久久视频播放| 天天躁日日躁夜夜躁夜夜| 精品国产超薄肉色丝袜足j| 一夜夜www| 看黄色毛片网站| 亚洲第一青青草原| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费 | 午夜福利在线观看吧| 女人爽到高潮嗷嗷叫在线视频| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 一边摸一边抽搐一进一出视频| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 亚洲全国av大片| tocl精华| 久久久久久久久免费视频了| 超碰97精品在线观看| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区 | 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 亚洲国产欧美网| 91成人精品电影| 亚洲人成电影观看| av电影中文网址| 欧美日韩中文字幕国产精品一区二区三区 | 9191精品国产免费久久| 在线观看一区二区三区激情| 欧美色视频一区免费| 精品卡一卡二卡四卡免费| 成人精品一区二区免费| 精品人妻在线不人妻| 日韩大码丰满熟妇| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 人成视频在线观看免费观看| 久久久国产成人精品二区 | 精品久久久久久久久久免费视频 | 国产成人av激情在线播放| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 热re99久久国产66热| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 久久久久久久精品吃奶| 亚洲国产欧美网| 99国产精品免费福利视频| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 日韩有码中文字幕| 777久久人妻少妇嫩草av网站| 久久久久久久午夜电影 | 国产精品秋霞免费鲁丝片| 超碰成人久久| 精品乱码久久久久久99久播| 中文字幕人妻熟女乱码| 韩国av一区二区三区四区| 在线观看免费视频网站a站| 在线av久久热| 国产亚洲精品第一综合不卡| 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线 | 一区二区三区国产精品乱码| 午夜福利欧美成人| 欧美色视频一区免费| 亚洲国产精品合色在线| 久久精品人人爽人人爽视色| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 一级片免费观看大全| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 精品国产一区二区三区四区第35| 精品免费久久久久久久清纯 | 麻豆乱淫一区二区| 久久人妻福利社区极品人妻图片| 欧洲精品卡2卡3卡4卡5卡区| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| 韩国av一区二区三区四区| 色94色欧美一区二区| 国产激情久久老熟女| 婷婷精品国产亚洲av在线 | 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| av不卡在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩成人在线一区二区| 不卡av一区二区三区| 在线天堂中文资源库| 欧美久久黑人一区二区| 丁香欧美五月| 欧美人与性动交α欧美精品济南到| 丰满饥渴人妻一区二区三| 天天操日日干夜夜撸| 亚洲av片天天在线观看| 成年人免费黄色播放视频| av天堂久久9| 午夜福利一区二区在线看| 国产高清videossex| 啦啦啦 在线观看视频| 韩国av一区二区三区四区| 天堂中文最新版在线下载| 又黄又粗又硬又大视频| 天天影视国产精品| 久久久久久久午夜电影 | 色婷婷av一区二区三区视频| 每晚都被弄得嗷嗷叫到高潮| av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 国产av精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 久久婷婷成人综合色麻豆| 男人的好看免费观看在线视频 | 精品免费久久久久久久清纯 | 丰满的人妻完整版| 国产国语露脸激情在线看| 亚洲精品国产区一区二| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | 中文字幕人妻丝袜一区二区| 欧美国产精品一级二级三级| 99re在线观看精品视频| 波多野结衣一区麻豆| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 国产一区二区激情短视频| 精品第一国产精品| 国产精品久久久av美女十八| 精品久久久久久电影网| 欧美 日韩 精品 国产| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| 极品教师在线免费播放| 窝窝影院91人妻| 黄色女人牲交| 伦理电影免费视频| 天天影视国产精品| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 日本vs欧美在线观看视频| 12—13女人毛片做爰片一| 两性夫妻黄色片| 国产精品久久久久久精品古装| 久久99一区二区三区| 国产在视频线精品| 亚洲九九香蕉| 9191精品国产免费久久| 国产一区二区三区在线臀色熟女 | 欧美中文综合在线视频| 国产淫语在线视频| 亚洲一区高清亚洲精品| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 在线观看www视频免费| 免费看十八禁软件| 久久香蕉精品热| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 欧美日韩瑟瑟在线播放| 亚洲精华国产精华精| 超碰成人久久| 亚洲av第一区精品v没综合| 久久精品亚洲精品国产色婷小说| 日本黄色日本黄色录像| 看免费av毛片| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| www.999成人在线观看| 国产成人啪精品午夜网站| av在线播放免费不卡| 亚洲精品国产一区二区精华液| 国产不卡一卡二| 91麻豆av在线| 在线观看一区二区三区激情| 久久精品国产99精品国产亚洲性色 | 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 国产精品久久电影中文字幕 | 精品免费久久久久久久清纯 | 国产成人精品在线电影| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 黄色丝袜av网址大全| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3 | 天天躁夜夜躁狠狠躁躁| 久久香蕉激情| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 日韩免费av在线播放| 欧美黄色淫秽网站| 国产不卡一卡二| 午夜成年电影在线免费观看| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 国产免费男女视频| 91av网站免费观看| 9热在线视频观看99| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 午夜精品在线福利| 亚洲熟女毛片儿| 中文欧美无线码| 999久久久精品免费观看国产| 无人区码免费观看不卡| 国产亚洲精品第一综合不卡| 中文字幕色久视频| 国产又色又爽无遮挡免费看| 法律面前人人平等表现在哪些方面| 色在线成人网| 国产激情久久老熟女| 亚洲成人国产一区在线观看| 国产99久久九九免费精品| 国产成人精品在线电影| 欧美精品啪啪一区二区三区| 欧美乱妇无乱码| 丁香欧美五月| 91精品国产国语对白视频| 最新的欧美精品一区二区| 国产一区在线观看成人免费|