• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單壁碳納米管改變手性外延生長的密度泛函理論研究

    2016-11-22 07:31:24尹利長
    新型炭材料 2016年5期
    關(guān)鍵詞:生長

    諶 為, 李 峰, 劉 暢, 尹利長

    (中國科學(xué)院金屬研究所 沈陽材料科學(xué)國家(聯(lián)合)實(shí)驗(yàn)室,遼寧 沈陽110016)

    ?

    單壁碳納米管改變手性外延生長的密度泛函理論研究

    諶 為, 李 峰, 劉 暢, 尹利長

    (中國科學(xué)院金屬研究所 沈陽材料科學(xué)國家(聯(lián)合)實(shí)驗(yàn)室,遼寧 沈陽110016)

    采用密度泛函理論計(jì)算系統(tǒng)研究了單壁碳納米管(Single-walled carbon nanotube,SWCNT)改變手性外延生長(手性指數(shù)從(n,m)變化到(n±Δ,m?Δ),其中Δ=1和2)的熱力學(xué)過程。結(jié)果表明,碳管手性變化后外延生長在熱力學(xué)上都需要吸收能量,其所需吸收的能量隨著管徑的減小線性減小。在Δ=1的情況下,由于近扶手椅型碳管改變手性時(shí),所引入的5~7元環(huán)對與管軸的夾角比近鋸齒型碳管更大,導(dǎo)致5~7元環(huán)對的形成能增加,使得管徑相同的近扶手椅型碳管比近鋸齒型碳管在改變手性生長時(shí)需要吸收更多的能量。在Δ=2的情況下,發(fā)現(xiàn)只有當(dāng)兩個必須引入的5~7元環(huán)對相互毗鄰,手性改變的外延生長所需能量最小,預(yù)測其為實(shí)驗(yàn)上最易于實(shí)現(xiàn)的碳管手性指數(shù)由(n,m)變化到(n±Δ,m?Δ)的外延生長模式。這些理論研究結(jié)果有助于深入理解SWCNTs手性變化后外延生長的熱力學(xué)行為,可為基于外延生長可控制備單一手性SWCNTs提供理論依據(jù)。

    單壁碳納米管; 手性變化; 5~7缺陷; 外延生長; 密度泛函理論

    1 Introduction

    A single-walled carbon nanotube (SWCNT) can be conceptually considered as a cylinder rolled up from a graphene sheet. The geometry structure of a SWCNT is exclusively determined by a pair of chirality indices (n,m) according to the rolling direction of the graphene sheet[1]. The electronic properties of SWCNTs are closely related to their geometry structures. For example, SWCNTs can be either metallic (m-SWCNTs) or semiconducting (s-SWCNTs) depending on their chiralities. To be specific, when (2n+m)/3 is an integer, the SWCNTs are metallic, and otherwise semiconducting[2]. The unique electronic properties of SWCNTs show appealling potential applications in many fields. For instance, s-SWCNTs can be used for high mobility nano transistors[3]and computers[4], while m-SWCNTs are suitable for fabricating transparent electrically conductive films[5], field-emission electron sources[6], nanocables[7], and so on. Unfortunately, as-grown SWCNT samples are always a mixture of m-SWCNTs and s-SWCNTs[8]due to the negligible formation energy difference among different SWCNTs with comparable diameters[9], highly limiting their widespread applications. Basically, the above issue can be possibly solved by a direct synthesis of uniformly metallic (or semiconducting) or even single-chirality nanotubes through controlling the composition, morphology and/or size of catalysts for SWCNT growth by chemical vapor deposition[10]. For example, dominantly semiconducting SWCNTs with a narrow distribution of diameter and chirality were synthesized by using bimetallic CoMn[11], FeRu[12]catalysts, or monometallic Co nanoparticles with a well-defined crystal structure[13]. Moreover, SWCNTs with only a few specific chiralities were realized by a fine regulation and design of catalysts[14-20]. Also, the chirality distribution of as-grown SWCNTs can be altered by varying the composition of NixFe1-xnanocatalysts based on an epitaxial growth model[21]. Very recently, Yang et al. reported a direct growth of the (12,6) tube with an abundance higher than 92% using WCo bimetallic nanocatalysts[22], and Fasel et al. have achieved single-chirality SWCNTs with only one chirality of (6, 6) by using surface-catalyzed cyclodehydrogenation of C96H54precusors on Pt(111) surface[23]. However, despite enormous efforts and remarkable progress, real achievements of uniformly conducting and even chirally pure SWCNTs in a large amount by a direct growth is still highly impractical due to the insufficient understanding of the growth mechanism and the multiple factors (catalyst structure and morphology[24], temperature[25], and so on) relating to the growth of SWCNTs.

    On the other hand, we also noted that the chirality of SWCNTs could be uniformly controlled by an epitaxial growth with open-end short SWCNT seeds, namely “cloning growth”. For example, Yao et al. grew SWCNTs with a controlled chirality by using open-end SWCNTs as seeds[26], Liu et al. synthesized SWCNTs with predefined chiralities using purified single-chirality nanotubes as seeds[27]. It is also found that the diameter or even the chirality of SWCNTs can be finely controlled via a tube junction formation by changing the temperature during SWCNT growth[28], which is a typical case for a chirality-changed. In principle, such a chirality-unchanged (cloning growth) or chirality-changed epitaxial growth would achieve a chirally pure SWCNT growth in a large amount with finely controlled growth conditions. However, the underlying mechanism of this cloning or chirality-changed epitaxial growth of SWCNTs is still unclear, thus highly hindering the experimental progress in this aspect.

    In this work, we systematically studied the thermodynamics for the cloning and chirality-changed growth of SWCNTs by DFT calculations, aiming to obtain guideful hints to achieve single-chirality SWCNTs by an epitaxial growth. Taking the SWCNTs with diameters ranging from 0.4 to 1.3 nm as examples, we have calculated the energy changes (ΔE) for SWCNTs with chirality change from (n,m) to (n±Δ, m?Δ),Δ=1 and 2. The energy changes for the chirality-changed epitaxial growth of SWCNTs increase linearly with increasing the tube diameters, ranging from 1.1 (2.0) to 3.7 (4.4) eV in the case ofΔ=1 (2). It is also found that the energy changes in the case ofΔ=1 are about 0.2- 0.4 eV larger for near armchair (nAC) tubes than those for near zigzag (nZZ) tubes, resulting from the larger angle difference between pentagon-heptagon defects (5,7-defects) and the tube axis for nAC tubes. In the case ofΔ=2, the topological connection with two adjacent 5,7-defects, which are indispensable for the chirality-changed growth of SWCNTs in this case, is found to be the most energetically stable. Similar to the case ofΔ=1, the energy needed to change chirality of a SWCNT forΔ=2 case increases with increasing the tube diameter. Our DFT results provide a deep understanding on the thermodynamics of the chirality-changed epitaxial growth and may guide for the chirality-controlled synthesis of SWCNTs.

    2 Computational methods

    In this work, all calculations were carried out within the framework of DFT implemented in the Vienna Ab Initio Simulation Package (VASP)[29], using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof[30]. The electron-ion interactions were described by using the frozen-core projector augmented wave approach[31, 32]. Testing calculations show that the total energy of a (5, 1)/(4, 2) tube junction obtained by using a cut-off energy of 450 eV is only 30 meV lower than that by using the cut-off energy of 280 eV, which is negligible in comparison with the energy input (1.1 eV) for changing a (5, 1) tube to a (4, 2) tube. Thus, the energy cut-off for plane waves was set to be 280 eV for all calculations in this work. Considering that different tube junctions were constructed based on the cluster model to simulate the chirality-changed epitaxial growth for different SWCNTs, only Gamma point was used to sample the first Brillouin zone for all calculations in this work. Optimized geometry structures for all tube junctions considered in the present work were determined until the residual forces acted on each atom were less than 0.01 eV/?.

    Different tube junctions consisting of two short segments of different SWCNTs with chirality of (n,m) and (n±Δ, m?Δ) (Δ=1, 2) were constructed to study the atomic structure change and corresponding energy change induced by the chirality-changed epitaxial growth of different SWCNTs. Eight nZZ (n, 1) (n=5-11 and 15) and eight other tubes including (5,2), (5,3), (6,3), (6,4), (7,4), (7,5), (8,5) and (10,7) were considered for the case of chirality change withΔ=1, and twelve (n,m) tubes with m=2, 3, 4 and n ranging from m+4 to m+7 for case of chirality change withΔ=2, in order to achieve a convincing comparison of the energy change among different tubes in this work. It should be noted that, one of the initial purposes of this work is to understand the difference of energy changes between highly symmetrical tubes, like ZZ and AC tubes, during their chirality-changed epitaxial growths. Unfortunately, both ZZ and AC tubes will change their helicities from the left-handed to the right-handed (or from right-handed to left-handed) when their chiralities are changed from (n,m) to (n±Δ, m?Δ) (Δ=1, 2). Alternatively, we choose these nZZ and nAC tubes in this work without considering the possible influence of the tube helicity on the energy changes during the chirality-changed epitaxial growth. We use the cluster models for all the calculations in this work since the periodic models for a tube junction are too large for standard DFT calculations, and a large supercell containing a short tube (or a tube junction) was constructed to model the chirality-changed epitaxial growth of SWCNTs. The inter-tube distance was set to be 10 ? to minimize the periodic image interactions for all calculations. For comparison, a monolayer graphene sheet with a 5,7-defect (or two 5,7-defects) was constructed to model the hypothetically chirality-changed growth of a SWCNT with an infinite diameter.

    3 Results and discussion

    It is intuitively easy to understand that the cloning growth of a SWCNT just grows the tube length along the direction of the tube axis by continuously adding carbon atoms at the open-end without inducing any defects, while the chirality-changed epitaxial growth for the SWCNTs inevitably induces topological defects at the tube junction position to change the tube chirality of (n, m) to (n′, m′). As for the chirality-changed epitaxial growth considered in this work, we only focus on the cases in which the tube diameters do not change too much, for example from (n, m) to (n±Δ, m?Δ) withΔ=1 and 2, since it is very difficult to enlarge or reduce the tube diameters in a typically epitaxial growth without catalyst at the open-end. As well demonstrated, at least one and two pentagon-heptagon topological defects have to be introduced for the (n,m)/(n±1, m?1) and (n,m)/(n±2, m?2) tube junctions, respectively[33]. In energetics, the topological 5,7-defects in sp2carbon materials like graphene and carbon nanotubes contribute the minimum energy gain to the total energy due to the zero net curvature change, which has been proved to be the dominant and thermodynamically favorable defects in the SWCNT junctions[34-36]and graphene grain boundary[37-39]. Following the rule proposed in ref. 31, the tube junctions of different SWCNTs with chirality changed from (n,m) to (n±1, m?1) and from (n, m) to (n±1, m?1) can be easily constructed.

    Fig. 1 presents the fully relaxed atomic structures of four tube junctions showing the chirality change for (10, 1) and (7, 5) tubes from (n, m) to (n±1, m?1). As clearly shown in Fig. 1, by inducing only one 5,7-defect, the tube chirality changes from initial (n, m) to (n±1, m?1) without an obvious diameter change for both (10, 1) and (7, 5) tubes. And such a topological 5,7-defect connects two tube segments with different chiralities, thus forming a tube junction.

    We expect that different SWCNTs need different energies to change their chiralities during the epitaxial growth. In order to check this, the energies needed for changing the chiralities of different SWCNTs are calculated based on the following equation,

    ΔE=(2×E(n1,m1)→(n2,m2)-E(n1,m1)-E(n2,m2))/2

    (1)

    where,E(n1,m1)→(n2,m2) is the total energy of an isolated tube junction of (n1,m1)/(n2,m2),E(n1,m1) andE(n2,m2) are the total energies of the correponding and defect-free SWCNTs with chiralities of (n1,m1) and (n2,m2), respectively. Therefore, the enengy (ΔE) needed for the chirality-unchanged epitaxial growth of a SWCNT should be zero according to Eq. (1). It should be also noted that the number of C and H atoms in an isolated tube junction should be exactly the same as the half number of C and H atoms in two corresponding SWCNTs to obtain the accurate energy change. For example, the number of C and H atoms in junction of (10, 1)/(11, 0) is 176 and 22, respectively, and the number of total C and H atoms of two correspondingly separated tubes (10, 1) and (11, 0) is 88 and 11, respectively.

    Fig. 1 Schematic cluster models of tube junctions showing the tube chirality changed from (a) (10, 1) to (11, 0), (b) (10, 1)to (9, 2), (c) (7, 5) to (8, 4), and (d) (7, 5) to (6, 6). The open-ends of all junctions are terminated by H atoms. The C and H atoms are represented by purple and blue balls, respectively. Those C atoms at the 5,7-defect sites are highlighted in green.

    Fig. 2 presents a plot of the calculated energy needed (ΔE) to change chirality from (n, m) to (n±1, m?1) for different SWCNTs as a function of the inverse of tube diameter. As we can see, the chirality change from (n, m) to (n±1, m?1) for different SWCNTs is an endothermal process due to an indispensable 5,7-defect introduced in this case. Clearly, the calculatedΔE for different SWCNTs due to the chirality change from (n, m) to (n±1, m?1) increases linearly with increasing the tube diameter, ranging from 1.1 eV for (5, 1) tube to 6.3 eV for an infinite large tube (graphene). This value (6.3 eV) of the formation energy of a single 5,7-defect in graphene is comparable to that in the previous work (7.5 eV)[37]. In order to better understand the nearly linear relationship between energies and tube diameters, we fit all the data plotted in Fig. 2 and obtained a linear relationship asE=-19.7/d+5.4. This is reasonable considering the fact that a small SWCNT has a larger curvature than the large ones, resulting in a larger formation energy and lower stability[9], thus it is more energetically feasible to introduce a 5,7-defect in small SWCNTs. Moreover, it is found that the energies needed to change the chirality of nAC tubes from (n, m) to (n±1, m?1) are about 0.2- 0.4 eV larger than those of nZZ ones with comparable diameters (Fig. 2), implying that it is more energetically difficult to change the chirality from (n, m) to (n±1, m?1) for nAC than nZZ tubes. It seems hard to understand why different tubes with the same diameter show different difficulties in changing their chiralities from (n, m) to (n±1, m?1). Specifically, why a nZZ tube needs less energy to change its chirality than a nAC tube with almost the same diameter during the epitaxial growth, considering that only one 5,7-defect is introduced and the tube diameter does not change too much in this case.

    Fig. 2 The calculated energy change (ΔE in eV) of different SWCNTs due to the chirality change from (n, m) to (n±1, m?1)as a function of the inverse of tube diameter. Open triangle (square)and plus sign (cross) symbols indicate the change of tube chirality from (n, m) to (n+1, m-1) and (n-1, m+1), respectively.The data of ΔE (the formation energy of a 5, 7-defect) for graphene is also included in this figure to represent the SWCNT with an infinite diameter.

    For example, the diameter of (10, 1) tube changes from 8.3 to 8.6 and 8.0 ? after its chirality is changed to (11, 0) and (9, 2), respectively, and the (7, 5) tube changes its diameter from 8.2 to 8.3 and 8.1 ? after its chirality is changed to (8, 4) and (6, 6), respectively. However, as we can see from the atomic structures of tube junctions shown in Fig. 3a-d, the 5,7-defects show different orientations with the tube axis for different junctions, resulting in different intersection angles (θ) between the defect orientation and the tube axis. For example, the intersection angles for (9, 1) /(10, 0), (9, 1)/(8, 2), (7, 4)/(8, 3), and (7, 4)/(6, 5) junctions are 66°, 61°, 83°, and 79°, respectively. Fig. 3e shows the intersection angles (θ) of all (n, m) /(n±1, m?1) tube junctions involved in this work as a function of the inverse of tube diameter. Interestingly, it is found that the intersection angles of different (n, m)/(n±1, m?1) tube junctions for the nAC tubes are about 10°- 20° larger than those for the nZZ tubes. Therefore, more energies needed to change the chirality for nAC tubes than those for nZZ tubes (Fig. 2) can be ascribed to the largerθfor nAC tubes. Actually, it was reported that the larger intersection angle between the 5,7-defect and tube axis results in higher formation energies of the 5,7-defects in SWCNTs[40].

    Fig. 3 The fully relaxed atomic structures of four tube junctions showing the tube chirality change from (a) (9, 1) to (10, 0), (b) (9, 1)to (8, 2), (c) (7, 4) to (8, 3), and (d) (7, 4) to (6, 5), the intersection angles (θ) between the orientation of 5, 7-defect and the tube axis are highlighted by red dashed lines. (e) The plot of intersection angles of all (n, m) /(n±1, m?1) tube junctions for nZZ (nAC) tubes as function of the inverse of tube diameter.

    In addition to the cases of chirality change from (n, m) to (n±1, m?1) as discussed above, the chirality-changed epitaxial growth of SWCNTs with other chirality changes might occur if the energy inputs are large enough by severely altering the epitaxial growth condition. For the case of chirality change from (n, m) to (n±2, m?2), in which the diameter change of a (n, m) tube is larger than that in the case of chirality change from (n, m) to (n±1, m?1) and in consequence a larger energy is expected. In order to check this, we further calculate the energies needed to change the chirality from (n, m) to (n±2, m?2) for different SWCNTs. As reported in ref. 32 that at least two 5,7-defects have to be introduced into a SWCNT to change its chirality from (n, m) to (n±2, m?2). Following this speculation, we constructed the corresponding SWCNT junctions with the tube chirality change from (n, m) to (n±2, m?2) for different SWCNTs. Fig. 4 shows fully relaxed atomic structures of four SWCNT tube junctions showing the chirality change from (7, 3) to (9, 1). Obviouly, two 5,7-defects introduced to change tube chirality from (n, m) to (n±2, m?2) can be separated by different numbers of 6-member ring. As we can see in Fig. 4, the required energy for chirality change in this case increases with increasing the number of 6-member ring between two 5,7-defects. Thus, the tube junction with two adjacent 5,7-defects is the one that is most energetically stable. Actually, it was reported that the formation energy of a pair of 5,7-defects in SWCNTs increases with increasing the spacing distance between two 5,7-defects[41],well consistent with our theoretical results. Therefore, tube junctions with two adjacent 5,7-defects were used to study the energy changes of different SWCNTs with the chirality changed from (n, m) to (n±2, m?2) in this work.

    Fig. 4 The energy needed to change a (7, 3) to a (9, 1) tube as a function of the number of 6-member rings between two 5, 7-defects.The fully relaxed atomic structures of different junctions with different numbers of 6-member rings between two 5, 7-defects are also presented. The open-ends of all junctions are terminated by H atoms. The C and H atoms are represented by purple and blue balls, respectively. The C atoms at the 5, 7-defect sites are highlighted in green.

    Similar to the case of chirality change from (n, m) to (n±1, m?1), the chirality change of SWCNTs from (n, m) to (n±2, m?2) are also found to be an endothermal process and the calculated energy changes of different SWCNTs considered in this work decrease linearly with decreasing the tube diameters (Fig. 5), ranging from 2.07 to 4.4 eV for tubes with diameters ranging from 5.7 to 10.5 ?. This linear relainship between the energy changes and tube diameters shown in Fig. 5 can be further described by an analytic linear equation as, Energy=-66.42/d+12.01. Interestingly, it is found that the required energies for chirality change of different SWCNTs from (n, m) to (n±2, m?2) are less than two times of those for SWCNTs with a similar diameter from (n, m) to (n±1, m?1). Considering that one 5,7-defect and two 5,7-defects are indispensably introduced to change the chirality of different SWCNTs from (n, m) to (n±1, m?1) and from (n, m) to (n±2, m?2), respectively, it seems that energy requirement for the former case should be about two times of that for the latter. However, it should be noted that two isolated 5,7-defects cause a larger lattice strain in SWCNTs than two adjacent 5,7-defects do. In fact, we found that the total energy of tube junction with two adjacent 5,7-defects is remarkably lower than that with two isolated ones for the same tube junction. For example, the total energy of the tube junction of (7, 3)/(9, 1) with two 5,7-defects separated by three 6-member rings was calculated to be 3.3 eV higher than that of the most stable one with two adjacent 5,7-defects (Fig. 4).

    Fig. 5 The calculated energy changes (ΔE in eV) of different SWCNTs due to the chirality change from (n, m) to (n±2, m?2)as a function of the inverse of tube diameter. The data of ΔE(the formation energy of a pair of neighboring 5, 7-defects)for graphene is also shown to represent the SWCNT with an infinite diameter.

    4 Conclusions

    In contrast to the chirality-unchanged epitaxial growth, the energy required is found to be several electron volts for the chirality-changed epitaxial growth of SWCNTs based on the DFT calculations. The energy needed for a chirality change of different SWCNTs decreases linearly with decreasing tube diameter. More energy is required for the nAC tubes to change the chirality from (n, m) to (n±1, m?1) than those for the nZZ tubes with the comparable diameters, due to a larger formation energy for 5,7-defects introduced in the nAC tubes. It is also found that the energy requirement to change the tube chirality from (n, m) to (n±2, m?2) is less than two times of those in the case of chirality change from (n, m) to (n±1, m?1) for SWCNTs with the comparable diameters, due to a less strain induced by two adjacent 5,7-defects than that by two isolated 5,7-defects. We believe that our DFT results may provide a better understanding on the chirality changed epitaxial growth of SWCNTs and guide the synthesis of single-chirality SWCNTs by an epitaxial growth in the future.

    Acknowledgements

    We acknowledge the support from Shenyang Supercomputing Center (CAS). Part of this work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A). We also acknowledge Dr. Bi-Lu Liu of University of Southern California for fruitful discussions.

    [1] Jorio A, Dresselhaus G, Dresselhaus M S. Carbon Nanotubes : Synthesis, Structure, Properties, and Applications[M]. Springer, Berlin, New York, 2001.

    [2] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules[J]. Appl Phys Lett, 1992, 60(18): 2204-2206.

    [3] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6680): 49-52.

    [4] Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530.

    [5] Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688): 1273-1276.

    [6] Deheer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270(5239): 1179-1180.

    [7] Kreupl F, Graham A P, Duesberg G S, et al. Carbon nanotubes in interconnect applications[J]. Microelectron Eng, 2002, 64(1-4): 399-408.

    [8] Cambre S, Wenseleers W, Goovaerts E, et al. Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy[J]. ACS Nano, 2010, 4(11): 6717-6724.

    [9] Kato K, SaitoS, Geometries. electronic structures and energetics of small-diameter single-walled carbon nanotubes[J]. Physica E, 2011, 43(3): 669-672.

    [10] Wang H, Yuan Y, Wei L, et al. Catalysts for chirality selective synthesis of single-walled carbon nanotubes[J]. Carbon, 2015, 81: 1-19.

    [11] Loebick C Z, Podila R, Reppert J, et al. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes[J]. J Am Chem Soc, 2010, 132(32): 11125-11131.

    [12] Li X L, Tu X M, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J Am Chem Soc, 2007, 129(51): 15770-15771.

    [13] He M S, Jiang H, Liu B L, et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles[J]. Sci Rep, 2013, 3: 1460(1)-1460(7).

    [14] Wang H, Wei L, Ren F, et al. Chiral-selective CoSO4/SiO2Catalyst for (9,8) single-walled carbon nanotube growth[J]. Acs Nano, 2013, 7(1): 614-626.

    [15] Dutta D, Chiang W H, Sankaran R M, et al. Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces[J]. Carbon, 2012, 50(10): 3766-3773.

    [16] Fouquet M, Bayer B C, Esconjauregui S, et al. Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst[J]. Phys Rev B, 2012, 85: 235411(1)-235411(7).

    [17] Liu B L, Ren W C, Li S S, et al. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J]. Chem Commu, 2012, 48(18): 2409-2411.

    [18] He M, Chernov A I, Fedotov P V, et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst[J]. J Am Chem Soc, 2010, 132(40): 13994-13996.

    [19] Wei L, Wang B, Goh T H, et al. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples[J]. J Phys Chem B, 2008, 112(10): 2771-2774.

    [20] Wang H, Wang B, Quek X Y, et al. Selective synthesis of (9, 8) single-walled carbon nanotubes on cobalt incorporated TUD-1 catalysts[J]. J Am Chem Soc, 2010, 132(47): 16747-16749.

    [21] Chiang W H, SankaranR M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat Mater, 2009, 8(11): 882-886.

    [22] Yang F, Wang X, Zhang D Q, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522-524.

    [23] Sanchez-Valencia J R, Dienel T, Groning O, et al. Controlled synthesis of single-chirality carbon nanotubes[J]. Nature, 2014, 512(7512): 61-64.

    [24] Lei Z X, Liu J, Wang J B, et al. The effects of catalyst structure and morphology on the growth of carbon nanotubes[J]. New Carbon Materials, 2003, 18(4): 271-276.

    [25] Song J L, Wang L, Feng S A, et al. Growth of carbon nanotubes by the catalytic decomposition of methane over Fe-Mo/Al2O3catalyst: Effect of temperature on tube structure[J]. New Carbon Materials, 2009, 24(4): 307-313.

    [26] Yao Y G, Feng C Q, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Lett, 2009, 9(4): 1673-1677.

    [27] Liu J, Wang C, Tu X M, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy[J]. Nat Commun, 2012, 3: 1199(1)-1199(7).

    [28] Yao Y G, Li Q W, Zhang J, et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions[J]. Nat Mater, 2007, 6(4): 283-286.

    [29] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.

    [30] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    [31] Blochl P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979.

    [32] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775.

    [33] Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes [M]. Imperial College Press, London, 1996.

    [34] Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: Nanotube heterojunctions[J]. Phys Rev Lett, 1996, 76(6): 971-974.

    [35] Ouyang M, Huang J L, Cheung C L, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions[J]. Science, 2001, 291(5501): 97-100.

    [36] Wei D C, LiuY Q. The intramolecular junctions of carbon nanotubes[J]. Adv Mater, 2008, 20(15): 2815-2841.

    [37] Yazyev O V, LouieS G. Topological defects in graphene: Dislocations and grain boundaries[J]. Phys Rev B, 2010, 81: 195420(1)-195420(7).

    [38] Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene[J]. Science, 2010, 330(6006): 946-948.

    [39] Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature, 2011, 469(7330): 389-392.

    [40] Zhou L G, Shi S Q. Formation energy of stone-wales defects in carbon nanotubes[J]. Appl Phys Lett, 2003, 83(6): 1222-1224.

    [41] Yuan Q H, Xu Z P, Yakobson B I, et al. Efficient defect healing in catalytic carbon nanotube growth[J]. Phys Rev Lett, 2012, 108: 245505(1)-245505(5).

    Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study

    SHEN Wei, LI Feng, LIU Chang, YIN Li-chang

    (ShenyangNationalLaboratoryforMaterialsScience,InstituteofMetalResearch,ChineseAcademyofSciences,Shenyang110016,China)

    The energetic of the change in the chirality of single-wall carbon nanotubes (SWCNTs)during epitaxial growth from (n, m) to (n±Δ, mΔ)(Δ=1, 2) was investigated by density functional theory calculations. The calculated energies for changing the chirality of different SWCNTs show a nearly linear decrease with decreasing tube diameter. In the case ofΔ=1, more energy input is needed for near armchair (nAC) SWCNTs to change their chiralities than those for near zigzag (nZZ) SWCNTs with comparable diameters, due to the larger formation energies of pentagon-heptagon defects (5,7-defects) introduced in the nAC-SWCNTs. These larger formation energies for the nAC-SWCNTs come from the larger angles between the orientation of a 5,7-defect and the tube axis than those for nZZ-SWCNTs. The topological connection oftwo adjacent 5,7-defects, which is indispensable for changing the chirality during growth in the case ofΔ=2, is found to be energetically most stable. The energies needed to change chirality in the case ofΔ=2 are calculated to be less than twice those in the case ofΔ=1 for SWCNTs with comparable diameters. These results may help us understand the change in chirality during the epitaxial growth of SWCNTs and guide the future synthesis of SWCNTs with a single-chirality .

    Single-walled carbon nanotube; Chirality-changed; Pentagon-heptagon defect; Epitaxial growth; Density functional theory

    National Natural Science Foundation of China (51272257, 51202255, 51472249).

    YIN Li-chang, Associate Professor. E-mail: lcyin@imr.ac.cn

    國家自然科學(xué)基金項(xiàng)目(51272257, 51202255, 51472249).

    尹利長,副研究員. E-mail: lcyin@imr.ac.cn

    作者介紹:諶 為,博士研究生. E-mail: weichen@imr.ac.cn

    1007-8827(2016)05-0525-07

    TQ127.1+1

    A

    Authorintroduction: SHEN Wei, Ph. D Candidate. E-mail: weichen@imr.ac.cn

    10.1016/S1872-5805(16)60030-6

    Receiveddate: 2016-07-29;Reviseddate: 2016-10-03

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    猜你喜歡
    生長
    野蠻生長
    碗蓮生長記
    小讀者(2021年2期)2021-03-29 05:03:48
    生長的樹
    自由生長的家
    美是不斷生長的
    快速生長劑
    共享出行不再“野蠻生長”
    生長在哪里的啟示
    野蠻生長
    NBA特刊(2018年21期)2018-11-24 02:48:04
    生長
    文苑(2018年22期)2018-11-19 02:54:14
    午夜福利乱码中文字幕| 男人舔女人的私密视频| 麻豆乱淫一区二区| 亚洲三区欧美一区| 一边摸一边做爽爽视频免费| 在线观看www视频免费| 蜜桃国产av成人99| 狠狠精品人妻久久久久久综合| 女的被弄到高潮叫床怎么办| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 久久久久久人妻| 亚洲精品国产av蜜桃| avwww免费| kizo精华| 女人久久www免费人成看片| 女人久久www免费人成看片| 婷婷色av中文字幕| 久久韩国三级中文字幕| av不卡在线播放| 日日爽夜夜爽网站| 18禁裸乳无遮挡动漫免费视频| 又大又黄又爽视频免费| 一区二区av电影网| 亚洲欧洲国产日韩| 国产成人免费观看mmmm| 日韩av免费高清视频| 欧美少妇被猛烈插入视频| 国产视频首页在线观看| 久久久国产一区二区| 熟女少妇亚洲综合色aaa.| 国产一区二区 视频在线| 色视频在线一区二区三区| av不卡在线播放| 亚洲欧美激情在线| 999精品在线视频| 亚洲精品一区蜜桃| 精品视频人人做人人爽| 国产精品国产av在线观看| 亚洲,欧美,日韩| 亚洲成av片中文字幕在线观看| 亚洲国产日韩一区二区| 你懂的网址亚洲精品在线观看| 欧美精品人与动牲交sv欧美| 成人手机av| 亚洲伊人久久精品综合| 国产激情久久老熟女| 欧美日韩视频高清一区二区三区二| av卡一久久| 男人爽女人下面视频在线观看| 亚洲精品成人av观看孕妇| 欧美 日韩 精品 国产| videos熟女内射| av视频免费观看在线观看| 国产探花极品一区二区| 99国产综合亚洲精品| 成年美女黄网站色视频大全免费| a级毛片在线看网站| 毛片一级片免费看久久久久| 久热爱精品视频在线9| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| 老熟女久久久| 99热网站在线观看| 国产成人精品福利久久| 男女国产视频网站| 日韩人妻精品一区2区三区| 亚洲国产欧美日韩在线播放| 老熟女久久久| 精品国产一区二区三区四区第35| 国产午夜精品一二区理论片| 九草在线视频观看| av.在线天堂| 汤姆久久久久久久影院中文字幕| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 我的亚洲天堂| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 日日啪夜夜爽| 国产精品久久久人人做人人爽| 国产在线免费精品| 久久人妻熟女aⅴ| 成年人免费黄色播放视频| 女人久久www免费人成看片| 青春草国产在线视频| 高清在线视频一区二区三区| 日韩视频在线欧美| 高清欧美精品videossex| 麻豆乱淫一区二区| a 毛片基地| 亚洲欧洲日产国产| 一级毛片电影观看| 色吧在线观看| 中文字幕人妻熟女乱码| 菩萨蛮人人尽说江南好唐韦庄| 90打野战视频偷拍视频| 色94色欧美一区二区| 男女下面插进去视频免费观看| 亚洲精品aⅴ在线观看| 99香蕉大伊视频| 肉色欧美久久久久久久蜜桃| 国产黄色免费在线视频| 中文天堂在线官网| 两性夫妻黄色片| 亚洲精品自拍成人| 精品国产露脸久久av麻豆| 亚洲精品aⅴ在线观看| 中文字幕人妻熟女乱码| 国产野战对白在线观看| 18禁观看日本| 亚洲av欧美aⅴ国产| 一边摸一边做爽爽视频免费| 99香蕉大伊视频| 亚洲一级一片aⅴ在线观看| 久久午夜综合久久蜜桃| 亚洲婷婷狠狠爱综合网| 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看| 国产精品久久久人人做人人爽| 香蕉丝袜av| 青春草视频在线免费观看| 人人妻人人爽人人添夜夜欢视频| 日韩制服丝袜自拍偷拍| 欧美乱码精品一区二区三区| 美国免费a级毛片| 久久久久国产精品人妻一区二区| 欧美 亚洲 国产 日韩一| a 毛片基地| 涩涩av久久男人的天堂| 最近2019中文字幕mv第一页| 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 999久久久国产精品视频| 波多野结衣一区麻豆| 中文字幕亚洲精品专区| 国产一区二区激情短视频 | 亚洲精品国产av成人精品| 麻豆精品久久久久久蜜桃| 欧美少妇被猛烈插入视频| videos熟女内射| 亚洲精品国产色婷婷电影| 亚洲国产毛片av蜜桃av| xxxhd国产人妻xxx| 国产精品国产三级专区第一集| 飞空精品影院首页| 天天操日日干夜夜撸| 在线观看国产h片| 最近最新中文字幕大全免费视频 | 午夜免费观看性视频| 国产亚洲精品第一综合不卡| 一级毛片电影观看| 亚洲专区中文字幕在线 | 日日啪夜夜爽| 久久久久精品久久久久真实原创| 男人添女人高潮全过程视频| 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 亚洲国产欧美在线一区| 亚洲在久久综合| 各种免费的搞黄视频| 久久久久精品人妻al黑| 日韩免费高清中文字幕av| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯 | 亚洲欧美中文字幕日韩二区| 国产男女内射视频| 在线 av 中文字幕| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 国产亚洲午夜精品一区二区久久| 久久韩国三级中文字幕| 国产熟女午夜一区二区三区| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 亚洲精品成人av观看孕妇| 精品人妻一区二区三区麻豆| 18禁国产床啪视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边做爽爽视频免费| 日韩一卡2卡3卡4卡2021年| a级毛片在线看网站| 亚洲精品一区蜜桃| 亚洲国产av影院在线观看| 中文字幕人妻丝袜一区二区 | 男女边吃奶边做爰视频| kizo精华| 天美传媒精品一区二区| 国产精品国产三级专区第一集| 少妇人妻 视频| 美女福利国产在线| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 成人黄色视频免费在线看| 99精国产麻豆久久婷婷| 国产av码专区亚洲av| kizo精华| 日韩精品免费视频一区二区三区| 99九九在线精品视频| 中国国产av一级| 国产亚洲av片在线观看秒播厂| 精品少妇内射三级| 日日撸夜夜添| 可以免费在线观看a视频的电影网站 | 亚洲精品av麻豆狂野| 亚洲精品美女久久久久99蜜臀 | 好男人视频免费观看在线| 桃花免费在线播放| 国产一区二区激情短视频 | 久久婷婷青草| 91精品国产国语对白视频| 久久久久精品人妻al黑| www.精华液| 菩萨蛮人人尽说江南好唐韦庄| 这个男人来自地球电影免费观看 | 国产伦理片在线播放av一区| 亚洲精品视频女| 精品人妻一区二区三区麻豆| 日本欧美国产在线视频| 日本vs欧美在线观看视频| xxx大片免费视频| 欧美日韩亚洲综合一区二区三区_| 色视频在线一区二区三区| 午夜福利乱码中文字幕| 高清欧美精品videossex| 亚洲 欧美一区二区三区| 亚洲欧美精品自产自拍| 男人爽女人下面视频在线观看| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 99re6热这里在线精品视频| av在线播放精品| 黑丝袜美女国产一区| 深夜精品福利| 老司机影院成人| 日韩一区二区三区影片| 亚洲婷婷狠狠爱综合网| a级毛片黄视频| 色视频在线一区二区三区| 又大又爽又粗| 国产欧美亚洲国产| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲日本最大视频资源| 一级片免费观看大全| 日韩,欧美,国产一区二区三区| 乱人伦中国视频| 成年av动漫网址| 国产精品一二三区在线看| 国产av国产精品国产| 男女边摸边吃奶| 一区二区三区四区激情视频| 国产片特级美女逼逼视频| 欧美精品一区二区免费开放| 国产免费又黄又爽又色| 国产成人免费观看mmmm| 久久人妻熟女aⅴ| 伊人久久国产一区二区| 亚洲精品第二区| 在线观看国产h片| 国产日韩一区二区三区精品不卡| 久久精品亚洲av国产电影网| 性高湖久久久久久久久免费观看| 色网站视频免费| 亚洲中文av在线| 国产免费一区二区三区四区乱码| 美女主播在线视频| 只有这里有精品99| 综合色丁香网| 黑人猛操日本美女一级片| 国产片内射在线| 亚洲国产欧美在线一区| 国产极品天堂在线| 十八禁网站网址无遮挡| 亚洲成国产人片在线观看| 成人免费观看视频高清| 一级,二级,三级黄色视频| 免费人妻精品一区二区三区视频| 国产精品.久久久| 人体艺术视频欧美日本| 欧美激情高清一区二区三区 | 欧美日韩综合久久久久久| 国产免费又黄又爽又色| 叶爱在线成人免费视频播放| 精品久久久久久电影网| 中文天堂在线官网| 国产人伦9x9x在线观看| 欧美日韩福利视频一区二区| 久久99精品国语久久久| 午夜福利乱码中文字幕| 欧美日韩国产mv在线观看视频| 黑人猛操日本美女一级片| 中文字幕高清在线视频| 十八禁人妻一区二区| 老汉色av国产亚洲站长工具| 两个人免费观看高清视频| 91精品三级在线观看| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 夫妻性生交免费视频一级片| 侵犯人妻中文字幕一二三四区| 黑人猛操日本美女一级片| 黄色视频不卡| 伦理电影大哥的女人| 欧美中文综合在线视频| 亚洲精品国产一区二区精华液| 人人妻人人添人人爽欧美一区卜| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 亚洲av综合色区一区| 国产成人精品在线电影| 国产女主播在线喷水免费视频网站| 成人亚洲精品一区在线观看| 2021少妇久久久久久久久久久| 亚洲专区中文字幕在线 | 免费女性裸体啪啪无遮挡网站| www.自偷自拍.com| 日韩制服骚丝袜av| 在线观看国产h片| 别揉我奶头~嗯~啊~动态视频 | 性色av一级| 桃花免费在线播放| 最黄视频免费看| av一本久久久久| av在线app专区| 黄色一级大片看看| 亚洲伊人久久精品综合| 伊人久久大香线蕉亚洲五| 欧美中文综合在线视频| av女优亚洲男人天堂| 欧美在线一区亚洲| 欧美xxⅹ黑人| 街头女战士在线观看网站| 国产成人精品在线电影| 日本欧美视频一区| 日韩制服丝袜自拍偷拍| 高清在线视频一区二区三区| 丝袜在线中文字幕| 97精品久久久久久久久久精品| 卡戴珊不雅视频在线播放| 午夜日韩欧美国产| 色网站视频免费| 久久国产精品男人的天堂亚洲| 亚洲人成网站在线观看播放| 免费在线观看视频国产中文字幕亚洲 | 国产免费一区二区三区四区乱码| 国产爽快片一区二区三区| 一二三四中文在线观看免费高清| 精品福利永久在线观看| 伊人亚洲综合成人网| 男人添女人高潮全过程视频| 亚洲美女搞黄在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲一码二码三码区别大吗| 人妻一区二区av| 99国产精品免费福利视频| 中文字幕人妻丝袜制服| av不卡在线播放| 亚洲五月色婷婷综合| 老司机靠b影院| 久久影院123| 亚洲天堂av无毛| 另类亚洲欧美激情| 国产爽快片一区二区三区| 赤兔流量卡办理| 熟妇人妻不卡中文字幕| 国产精品一区二区精品视频观看| 黄色 视频免费看| 国产精品99久久99久久久不卡 | 国产成人免费观看mmmm| 久久97久久精品| 婷婷成人精品国产| 另类精品久久| 亚洲七黄色美女视频| 欧美精品一区二区免费开放| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 丰满迷人的少妇在线观看| 男女边吃奶边做爰视频| 卡戴珊不雅视频在线播放| 一二三四中文在线观看免费高清| 国产乱来视频区| 成人漫画全彩无遮挡| 操美女的视频在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲成人免费av在线播放| 国产精品香港三级国产av潘金莲 | 国产精品无大码| 亚洲欧美激情在线| 久久久国产欧美日韩av| 哪个播放器可以免费观看大片| 老汉色av国产亚洲站长工具| 人人妻人人澡人人爽人人夜夜| 成年美女黄网站色视频大全免费| 色婷婷av一区二区三区视频| 国产激情久久老熟女| 日本猛色少妇xxxxx猛交久久| 国产极品粉嫩免费观看在线| 男人舔女人的私密视频| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影 | 精品久久久精品久久久| 黑人猛操日本美女一级片| 女人被躁到高潮嗷嗷叫费观| 麻豆精品久久久久久蜜桃| 少妇 在线观看| 日韩免费高清中文字幕av| 中文字幕制服av| 男女床上黄色一级片免费看| 母亲3免费完整高清在线观看| 又大又黄又爽视频免费| 亚洲精品aⅴ在线观看| 免费人妻精品一区二区三区视频| 各种免费的搞黄视频| 中文字幕人妻熟女乱码| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线观看一区二区三区| 日韩中文字幕视频在线看片| 最近2019中文字幕mv第一页| 亚洲国产看品久久| 在线免费观看不下载黄p国产| 欧美少妇被猛烈插入视频| 男人爽女人下面视频在线观看| 国产成人系列免费观看| 人体艺术视频欧美日本| 黄色视频不卡| 亚洲av国产av综合av卡| 午夜老司机福利片| 多毛熟女@视频| 国产片特级美女逼逼视频| 老司机深夜福利视频在线观看 | 免费看av在线观看网站| 麻豆乱淫一区二区| 免费黄频网站在线观看国产| 人人妻,人人澡人人爽秒播 | 亚洲国产精品一区二区三区在线| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 国产av码专区亚洲av| 亚洲精品久久久久久婷婷小说| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 国产老妇伦熟女老妇高清| 一级毛片电影观看| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 精品人妻在线不人妻| 永久免费av网站大全| 久久免费观看电影| 90打野战视频偷拍视频| 精品少妇黑人巨大在线播放| 日本午夜av视频| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 亚洲精品成人av观看孕妇| 少妇人妻精品综合一区二区| 新久久久久国产一级毛片| 咕卡用的链子| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 少妇人妻 视频| 国产福利在线免费观看视频| 亚洲国产欧美日韩在线播放| 极品少妇高潮喷水抽搐| h视频一区二区三区| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 精品国产一区二区久久| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| www.自偷自拍.com| 国产一区二区三区综合在线观看| av.在线天堂| 精品国产一区二区久久| 欧美亚洲日本最大视频资源| 18禁动态无遮挡网站| 亚洲精品第二区| 国产成人午夜福利电影在线观看| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| a 毛片基地| 成人亚洲欧美一区二区av| 欧美国产精品一级二级三级| 最近最新中文字幕免费大全7| 精品久久蜜臀av无| 免费观看性生交大片5| 9191精品国产免费久久| 69精品国产乱码久久久| 国产97色在线日韩免费| xxxhd国产人妻xxx| 精品国产国语对白av| 亚洲成人一二三区av| 黄片小视频在线播放| 中文字幕人妻丝袜一区二区 | 国产在线一区二区三区精| a级毛片在线看网站| 亚洲视频免费观看视频| 激情视频va一区二区三区| 精品国产一区二区三区久久久樱花| 别揉我奶头~嗯~啊~动态视频 | 别揉我奶头~嗯~啊~动态视频 | 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 9191精品国产免费久久| 丝袜美足系列| 亚洲三区欧美一区| 精品少妇一区二区三区视频日本电影 | 韩国av在线不卡| 国产在线免费精品| 免费看不卡的av| 日韩免费高清中文字幕av| 久久久国产欧美日韩av| 亚洲成人一二三区av| 亚洲欧美成人精品一区二区| 国产亚洲欧美精品永久| 国产成人欧美在线观看 | 国产毛片在线视频| 亚洲av日韩精品久久久久久密 | 99热全是精品| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 王馨瑶露胸无遮挡在线观看| 亚洲人成77777在线视频| 看免费成人av毛片| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区| 在线观看人妻少妇| 久久天躁狠狠躁夜夜2o2o | 七月丁香在线播放| 制服人妻中文乱码| 咕卡用的链子| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲 | 中文字幕最新亚洲高清| 日韩成人av中文字幕在线观看| 国产熟女午夜一区二区三区| 日本欧美国产在线视频| av不卡在线播放| 国产精品成人在线| 亚洲欧美成人综合另类久久久| 黄频高清免费视频| 久久久久精品国产欧美久久久 | 亚洲美女视频黄频| 亚洲五月色婷婷综合| 国产一区有黄有色的免费视频| 国产高清不卡午夜福利| 免费观看av网站的网址| 久久久久视频综合| 一二三四中文在线观看免费高清| 777久久人妻少妇嫩草av网站| 亚洲成人av在线免费| 国产精品无大码| 人人妻人人爽人人添夜夜欢视频| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 久久99一区二区三区| 精品第一国产精品| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 最新在线观看一区二区三区 | av线在线观看网站| 亚洲国产精品一区二区三区在线| 国产高清不卡午夜福利| 街头女战士在线观看网站| 两个人看的免费小视频| 美女中出高潮动态图| 少妇人妻 视频| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费| 热re99久久国产66热| 欧美人与善性xxx| 亚洲人成电影观看| 国产 精品1| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美| 91aial.com中文字幕在线观看| 黄频高清免费视频| 狂野欧美激情性xxxx| 亚洲国产看品久久| 中文字幕人妻丝袜制服| av免费观看日本| 久久人人爽av亚洲精品天堂| 1024香蕉在线观看| 精品一区二区三区四区五区乱码 | 日日啪夜夜爽| 免费女性裸体啪啪无遮挡网站| 一级a爱视频在线免费观看| 午夜福利网站1000一区二区三区| 亚洲精品久久午夜乱码| 乱人伦中国视频| 日韩,欧美,国产一区二区三区| 999精品在线视频| 欧美日韩成人在线一区二区| 婷婷色麻豆天堂久久| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 亚洲一码二码三码区别大吗| 老司机影院成人| 日韩大码丰满熟妇| 一本大道久久a久久精品| 午夜影院在线不卡| 欧美另类一区| h视频一区二区三区| 男女之事视频高清在线观看 | 国产精品久久久av美女十八| 久久久精品94久久精品| 秋霞伦理黄片| 久热这里只有精品99| av免费观看日本|