• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed H2/H∞Filter Design for Discrete-Time Switched Systems

    2020-02-29 14:19:18NezarAlyazidiandMagdiMahmoud
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Nezar M. Alyazidi and Magdi S. Mahmoud

    Abstract—This paper addresses an infinite horizon distributed HHH2/HHH∞filtering for discrete-time systems under conditions of bounded power and white stochastic signals. The filter algorithm is designed by computing a pair of gains namely the estimator and the coupling. Herein, we implement a filter to estimate unknown parameters such that the closed-loop multi-sensor accomplishes the desired performances of the proposed HHH2 and H∞H∞H∞schemes over a finite horizon. A switched strategy is implemented to switch between the states once the operation conditions have changed due to disturbances. It is shown that the stability of the overall filtering-error system with HHH2/HHH∞performance can be established if a piecewise-quadratic Lyapunov function is properly constructed. A simulation example is given to show the effectiveness of the proposed approach.

    I. INTRODUCTION

    DISTRIBUTED estimation is an important problem and has received a considerable focus in academia and industrial. Distributed estimation/filtering schemes are being frequently utilized for distributed multi-sensors due to their remarkable characteristics,such as flexibility,robustness,easy maintenance and diagnosis. A sensor network architecture typically comprises of spatially distributed sensing nodes,in which each node is collaborating with neighborhoods to perform the main tasks [1]-[4]. In the multi-sensor network,several communication links are emerging to enhance the network performance employing reliable routing techniques.Each individual sensor/filter within the network can estimate the dynamic of states in terms of its observations and its neighboring nodes observations as well. In particular, the system dynamics are often subjected to any sort of uncertainties.These uncertainties may be stochastic white noise or boundedpower signals.DistributedH2filter is immensely implemented to tackle well-known stochastic white signals by minimizing the performance cost measure. However, with bounded-power signals, a distributedH∞filter/estimator can be designed to tackle such uncertainties. Also, a mixedH2/H∞controller provides a powerful tool that can sustain the robustness and optimality for the uncertain plant.

    A survey on distributed Kalman estimations was reported in[5], in which various sorts of distributed Kalman filters have been clearly evaluated. The features of these Kalman filters were excellently reviewed and compared. The uncertainties in the system dynamics were considered to be stochastic processes with well-known statistical features in [5]. Centralized Kalman filtering/estimation has been utilized in distributed multi-sensor structure to handle disturbances and to estimate unknown parameters. This structure can provide a desired performance for a wide range of applications. However, once the centralized control node drops out, the entire system fails.To avoid such situation, advanced estimation structures (distributed/decentralized) are beneficially performed by employing local filters/controllers[6]-[8].The proposed structure has an effective design that comprises of distributed filter units, in which the failure of a single unit can be technically avoided by reconfiguration of the system structure, such as in [9]-[11].

    In [12], the stability of the filtering/estimation problem is sustained by claiming that the communication topology was time-invariant local information structure [13]. Additionally,a distributed Kalman filtering has been immensely utilized to treat stochastic signals with the assumptions that the system parameters and their statistical natures are well-known.However,the system parameters are not exactly identified and the statistical nature may be unknown, where the modeling of identification errors has considerable impacts on the classical Kalman filtering as well as stochastic disturbance [14].

    Over years, optimal control schemes suchH2controllers and robust schemes mainlyH∞controllers have been immensely introduced by several researchers [15]-[16].H2controller was smoothly utilized to tackle impulse disturbances and to ensure linear quadratic controllers performance, but it can not sustain the robustness in terms of irregular systems and parametric perturbations [17]. Typically, theH2is an optimal control methodology that has capability to minimize the objective cost of tracking error and actuation signal.MixedH2/H∞scheme has a supremacy over optimal and robust schemes in engineering practice because it can sustain the optimality and robustness against disturbances [18].H∞controller is applied to reduce the influence of disturbances.The desired of designing a mixedH2/H∞architecture is that theH2controller sustains the optimality in the occurrence of the worst-case disturbance, and its influence must be reduced to a tolerance level. The mixedH2/H∞schemes can provide performance better than theH2andH∞schemes when they are implemented alone [18]-[19]. A mixedH2/H∞controller was studied for stochastic plants in the occurrence of dependent disturbances [18]-[19]. TheH2/H∞scheme was firstly investigated in[20]as multi-objective optimization,and it has been broadly implemented in variety of applications[18], [19], [21]. Also, anH2/H∞frame was investigated for a linear perturbed model with a suboptimal controller utilizing a reduced order technique.

    Authors in [22] have introduced a distributedH2/H∞filtering in continuous time domain in the presence of bounded and white disturbances. In our work, we are focusing on anH2/H∞filtering design for discrete-time switched systems in the presence of bounded and white disturbances.

    In general, the operation points of power systems are changing faster due to electronic elements such as in wind turbine, or the operation points may change slowly due to different disturbance and, herein, a switching methodology can be utilized to switch between filter algorithms to estimate the dynamic of the state subject to the current operation points to accomplish the prescribed performance.In this paper,a linearized small signal wind turbine model is tested, in which the mixed filtering algorithm is implemented to estimate the unknown parameters and to attenuate the impact of the disturbances [23].

    This paper builds on the foregoing literatures and extends them further to the distributedH∞filtering problem for discrete-time systems. The contribution of this paper is as follows:

    1) It provides complete results of the infinite horizon distributedH2/H∞filtering design problem for discrete-time systems with bounded power stochastic signals.

    2) It formulates the filtering design solution as a two-step procedure, which presents a convenient computational load.

    3) A switched strategy is developed to sustain the stability of the system by switching the state according to the change in the operation conditions.

    4) It demonstrates the performance evaluation of the filter under external disturbances.

    The paper is arranged as follows.Section II introduces some basic definitions.Section III states the problem description and provides the mathematical foundation of the filtering problem.In Section IV, the distributed filtering problem and related issues are developed. Section V shows the practicability of the proposed filter scheme via computer simulation.

    II. PRELIMINARIES

    In this section, we present definitions that are needed in further development.

    A. Definitions

    Definition 1:Letnbe an integer anduk ∈Rqbe a discretetime real stochastic vector sequence associated with

    as the auto-correlation function.

    Definition 2:The Fourier transform ofRuu(n),or the power spectral density ofuk, is given by

    Definition 3:The 2-norm||x||2used for vector sequencexk ∈Rnis defined as

    The setL2refers to the space of mean square summable infinite vector sequences with

    In the sequel, a stationary stochastic vector signal is said to have bounded power ifRuu(n)andSωexist and this imply that

    III. PROBLEM STATEMENT

    Consider a dynamical model of a linear plant for distributed nodes over a communication topology:

    wherexk ∈Rndenotes the state,vk ∈Rm,wk ∈Rpare a bounded-power stationary signal and white noise respectively. (A,B,B1w) are constant matrices, andCi ∈Rq×n,Ei ∈Rq×m,Ewi ∈Rq×pare measurements stationary signals with bounded-power and white noise signals, respectively.is the measurement of nodei. LetZkbe the measurement vector to be estimated. Whereσikrepresents the switching signal among the states.The system(5)is observed by a sensor(node), which is one of distributedNnodes. In this structure,we assume a proposed communication framework that enables two-direction of information to follow.

    In this work, estimation/filtering units are utilized to estimate observationsxkfor each sensor. For instance, sensori,may use its own observations and its neighbors observations to estimate its dynamic to make an action. We can get the estimator law for each nodei.

    Remark 1:The designedH2/H∞filtering sustains the robustness under the influence of worst bounded stochastic signals by means ofH∞filtering and sustains the optimality under the influence of white stochastic signals by minimizingH2measure of the performance. In this sense, the states and the neighborhood information are not available to the estimator unit. As result, this mixed filtering scheme comprises of two phases. In the first phase, the estimator algorithm is required to estimate the unknown terms and coupled gains can be determined by solving the candidate Riccati equations. In the second stage, The coupled gains can sustain the stability of the closed loop systems.

    The estimation error is defined byThen we can deduce the error dynamic as follows:

    whereA11, A12,toA1nrepresent a dynamic of each sensor,B11, B12,toB1nrepresent a control input of each sensor,B1w1, B1w2,toB1wnrepresent a input of each sensor, andG11, G12,toG1nare the coupling gains. Here, we can consider the difference of the estimates among neighbors as

    For the givenγ >0 andβ >0,we design the gain matricesKiandGisuch that:

    To study the performance ofH∞in the presence of external disturbancewk

    2) For anyif E[e(0)]=0

    It can be seen that, when the external disturbancewk ≡0,system (5) is stable. This corresponds to minimizing the following norm

    for the worst disturbancewk.

    To tackle the aforementioned problems, we consider the following standard assumptions:

    Assumption 1:All distributed sensors are connected through a network, in which communication constraints will not consider over the present work.

    Assumption 2:The pair (Ci,Ai) is detectable.

    Discrete-time algebraic Riccati equation (DARE) is in general utilized in optimal control and filtering issues when the model has full ranking matrices as [24].

    Assumption 3:

    has full row rank for allω ∈R

    Assumption 4:

    has full row rank for allω ∈R

    andare non-singular.

    IV. MAIN RESULTS

    The aim of this work is to develop a distributed filtering scheme such that the closed loop system is asymptotically stable and satisfies the prescribed necessary conditions.

    A. Filtering Design

    In this section, we consider a two-step procedure to the filtering design process:

    First, we calculate the expected of estimation error as.

    Using above (12), we deduce that:

    Lemma 1:Consider system (12). If E[e(0)]=0, then there exist positive-definite stabilizing solutionsandSi ≥0 to a discrete algebraic Riccati equation (DARE):

    The filter gain given by:

    is investigated such that the closed loop system is guaranteed asymptotically stable.

    Proof:The aim of localH∞filtering on each sensor is to tackle the impact of estimation error, and both disturbances.For analyzing theH∞performance, we consider a candidate cost function:

    whereγ >0, and the Lyapunov quadratic function is given by:

    Using (12), we arrive at:

    If there is no disturbance , i.e.,wik ≡0, we obtain:

    which means that the estimation error converges to zero for 0≤i ≤n. Hence, the closed loop systemis asymptotically stable. In this sense, it turns out that (10) is satisfied.

    whereS1kis the solution of the Lyapunov equation:

    To handle the distributed filtering problem by satisfying (10),we minimize the constrained systems (13) and (21) to obtain the estimator gainKi.To avoid the coupling problem by using(21), we consider the following equation

    The following result pertaining to the solution of the Lyapunov equation stands out:

    Lemma 2:If S1k andare the solutions of(21)and(22),respectively then tr

    To analyze the stability of the system, we examine the following state dynamics:

    By selecting a candidate Lyapunov function,

    It can be seen that the termsS1k+Sik ≥0,and.

    The previous lemma demonstrates thatis limited byS1k.By minimizing the constrained systems(13)and(22),

    Introduce the performance criterion:

    By figuring out the minimization issue minKi(tr(S1k)) for the constrained systems (13) and (26), the following result is established

    Proof:Doing a little algebra on (27) shows that

    Based on foregoing lemmas,we can establish the following theorem:

    Theorem 1:Consider the model(5)subject to the associated Assumptions 1-5. If there exist positive definite stabilizing solutionsPik,Si,to (13) and (26)-(29), respectively,then the distributed filters/estimators in (6) guarantee that the(10)is feasible.Moreover,we havewhere the estimator in (6) and gainsKi,Giare given in (14) and(30), respectively.

    Proof:By employing Lemma 2, the closed loop systemis asymptotically stable and the developed estimators ensure that (10) is feasible. By Lemmas

    In Theorem 1, the matricesandγsolving the coupled matrix (14)-(30) are readily obtained.

    Theorem 2:Consider the given model (5) subject to associated Assumptions 1-5, IfEi= 0 and there exist positive definite stabilizing solutionsPikandSi,andPiito (13)and (26)-(29), then the distributed estimators in (6) ensure thatis asymptotically stable, (10) is feasible, andwhere the estimator gainis defined in(6)and the controller gainKiis detailed as follows:

    We can observe that Theorem 2 has more relaxed conditions, and it considersandin which it simplifies the computing of the local observer and coupled gains, however, the disturbance is commonly presented in the observations.

    Consider reliable communications channels over the network where the information can be exchanged regularly.Thus Assumptions 1-5 are required. In what follows, we direct attention to the situation where Assumptions 1-5 can be relaxed. For sensori, we let the vectorbe a collection of the measurementyiand its neighbors measurementyiforcan be written in the following form

    Then relaxed assumptions are given as:

    Assumption 6:The pairis detectable.

    Assumption 7:

    Assumption 8:

    Assumption 9:is non-singular.

    In terms of the observations(32),we haveandWe assumeandUsing aforementioned assumptions,we deduce that:

    Theorem 3:Consider the model (5) subject to Assumptions 1 and 6-9. If there exist matrix solutionsPik >0 to (13)andSi ≥0, andto (26)-(29) respectively, then the distributed estimators in (6) guarantee that the closed-loop matrixis asymptotically stable, (10) is achieved.

    Theorem 4:Consider the model given in (5) subject to Assumptions 1 and 6-9. IfEi= 0 and there exist positive solutionsPik >0 to (13) andSi ≥0,andto(26)-(29)respectively,then the distributed estimators in(6)sustain that the closed loop matrixis asymptotically stable, (10) is achieved.

    B. Relaxed H2/H∞Filtering

    In this sense, Lemma 2 can be rephrased as:

    Lemma 4:For system (12), if E[e(0)]=0, then there exist positive-definite stabilizing solutionsandSi ≥0 to the DARE:

    We examine the gain of the form:

    The filter gain is selected so that the closed loop systemis asymptotically stable.

    Proof:Let= E(eik) andVik=We obtain

    Using above equations, we deduce:

    Ifwe deduce:

    Here, we study theH2performance (7). Since the closed loop matrixis Hurwitz, we can deduce that:

    LetSidenote the solution of the subsequent Lyapunov equation

    Lemma 5:IfSiis the solution of (38), thenwhereis the solution of

    Since the closed-loop systemis Hurwitz,Siis positive semi-definite. Sinceis a positive definite solution of (33), we assure thatAiis generally Hurwitz.Utilizing equations (38) and (39), we deduce:

    LetSirepresent the solution of the subsequent equation:

    Deploying the consequence from (33) and (42), we have:

    Lemma 6:Consider system(12).If E[ei(0)]=0,then there exists a positive-definite stabilizing solutionandSi ≥0 to a discrete-time Algebraic Riccati equation (DARE):

    It follows from Lemma 6 that we can minimize cost function under (43). The Lyapunov function is given by:

    Simple computation yields:

    By minimizingtrSi, we setand deduce the gain matrix:

    To fulfill the previous outcomes,we introduce the following theorem:

    Theorem 5:Consider system(5).Given Assumptions(1-5),if

    wherewith2i=has a positive definite stabilizing solution,the distributed filter(6)with the estimator gain designed by (47) and the coupling gain:

    Then the closed-loop systemis Hurwitz, (10) is satisfied, and

    Proof:The gainKiis given by (47), the equation in (48)can be rearranged as (43). Subsequently from the proof of Lemma 4, it can be clearly noted thatis Hurwitz.This means that(10)is satisfied.The(50)has been developed in Lemma 4. ■

    Remark 2:From Theorem 5,it can be seen that the estimator gainKirelies on the solution of the DARE (43). Theorem 5 can provide overcomes easier than Theorem 1. Additionally,theH2performance in Theorem 5 is smaller than Theorem 1. In these sense, the former theorem can provide handy computing forH2performance and gain matrices.

    If own and neighbor measurements are available for filtering/estimation unit, we deduce:

    Theorem 6:For the given system (5), subject to associated Assumptions (1-9), if

    V. NUMERICAL SIMULATION

    In this section,we give a simulation example to illustrate the effectiveness of the developed methods. Consider the model(5) described as follows. In this example, we applied the proposed scheme for a discretized wind turbine mode. The original wind turbine model is given in [25], as:

    The measurements of distributed sensors are :

    And the disturbance is given as:

    In this framework, each sensor (node) has access to information from different neighbors. Furthermore, it can be substantiated that Assumptions(1-5)are achieved.The developed distributedH2/H∞filters are successfully implemented to tackle the relaxedH2/H∞in the presence of external disturbances.

    By selectingand, and carrying out DARE(48), we deduce

    The estimator gains are given:

    While the coupling gains:

    Figs.1-3 show the efficiency of the proposed filtering scheme against the bounded disturbance. It is noticed from Fig.3 that the error system is asymptotically stable when,and the filtering scheme has the capability to attenuate the bounded disturbance impacts. Figs.1 and 2 represent the actual and estimated states for one sensor. It can also be confirmed that the closed-loop matrixis Hurwitz.TheH2performance is bounded by

    Fig.1. Dynamic response of actual states.

    VI. CONCLUSION

    AnH2/H∞filtering technique is proposed to estimate states and to attenuate the influence of external disturbances of discrete-time systems. Under the condition of stochastic and bounded power signals, the filtering strategyH2/H∞is selected based on the two step computing procedure to determine the estimator and coupling gains. A switched strategy is implemented to switch the states once the operation conditions have changed. Then, the stability of the overall system in terms ofH2/H∞performance is established using candidate switched Lyapunov functions.Simulation example is given to show the effectiveness of the proposed approach. The proposed filtering structure showed robustness against the stochastic and bounded power signals.

    Fig.2. Dynamic response of estimation states.

    Fig.3. Dynamic response of estimation error.

    国产午夜精品论理片| 香蕉av资源在线| 欧美一区二区亚洲| 三级毛片av免费| 久久人妻av系列| 99国产精品一区二区三区| 日韩精品青青久久久久久| 男女床上黄色一级片免费看| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆 | 在线观看美女被高潮喷水网站 | 亚洲 欧美 日韩 在线 免费| 国产精品,欧美在线| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| .国产精品久久| 亚洲精品成人久久久久久| 最近视频中文字幕2019在线8| 亚洲av免费高清在线观看| 亚洲第一电影网av| 日本成人三级电影网站| 丰满人妻一区二区三区视频av| 一区二区三区四区激情视频 | 久久精品国产清高在天天线| 久久性视频一级片| 免费在线观看日本一区| av在线蜜桃| 亚洲,欧美精品.| 久久午夜福利片| 日韩欧美在线二视频| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 少妇裸体淫交视频免费看高清| 很黄的视频免费| 国产激情偷乱视频一区二区| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 熟女人妻精品中文字幕| 在线播放无遮挡| 91午夜精品亚洲一区二区三区 | bbb黄色大片| 亚洲三级黄色毛片| 国产三级中文精品| 日韩欧美免费精品| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 一进一出抽搐动态| 免费在线观看日本一区| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 中文字幕人成人乱码亚洲影| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 国产精品国产高清国产av| 丁香欧美五月| 久久天躁狠狠躁夜夜2o2o| 直男gayav资源| 一个人看的www免费观看视频| 久久精品国产自在天天线| 亚洲av熟女| 婷婷丁香在线五月| 日本熟妇午夜| 久久久成人免费电影| 嫩草影院入口| 高清在线国产一区| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三| 日本一二三区视频观看| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 久久国产精品影院| 国产精品,欧美在线| 久久九九热精品免费| 精品久久久久久久久久免费视频| 每晚都被弄得嗷嗷叫到高潮| 欧美性猛交╳xxx乱大交人| 在线看三级毛片| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 中文在线观看免费www的网站| 九九在线视频观看精品| 色综合站精品国产| 国产v大片淫在线免费观看| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 国产美女午夜福利| 久久精品91蜜桃| 免费电影在线观看免费观看| 久久久国产成人免费| 国产在线男女| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 亚洲内射少妇av| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 欧美又色又爽又黄视频| 男女之事视频高清在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av不卡久久| 日韩有码中文字幕| 亚洲欧美日韩东京热| 国产不卡一卡二| 欧美成人a在线观看| 国产av一区在线观看免费| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 一级黄片播放器| 一个人看视频在线观看www免费| 亚洲成人中文字幕在线播放| 禁无遮挡网站| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 免费在线观看日本一区| 婷婷色综合大香蕉| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 国内少妇人妻偷人精品xxx网站| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 青草久久国产| 欧美国产日韩亚洲一区| 国产高清视频在线播放一区| 一个人免费在线观看电影| 午夜福利成人在线免费观看| 国内精品美女久久久久久| a级毛片免费高清观看在线播放| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久久久久| 婷婷亚洲欧美| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 天堂网av新在线| 久久欧美精品欧美久久欧美| 亚洲精华国产精华精| 十八禁国产超污无遮挡网站| 日韩成人在线观看一区二区三区| 一本一本综合久久| 757午夜福利合集在线观看| 午夜a级毛片| 午夜免费激情av| 美女被艹到高潮喷水动态| 精品人妻1区二区| 岛国在线免费视频观看| 日本一本二区三区精品| 深夜a级毛片| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 亚洲自拍偷在线| 欧美性感艳星| 老女人水多毛片| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 长腿黑丝高跟| 免费在线观看亚洲国产| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 深爱激情五月婷婷| 国产成人a区在线观看| 亚洲专区中文字幕在线| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| 精品人妻视频免费看| 色播亚洲综合网| 怎么达到女性高潮| 亚洲国产精品999在线| 性色avwww在线观看| 久久久久久久久中文| 欧美在线黄色| av女优亚洲男人天堂| 国产伦一二天堂av在线观看| 亚洲18禁久久av| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美| 如何舔出高潮| 国产三级中文精品| 免费观看的影片在线观看| 中文字幕高清在线视频| 搡女人真爽免费视频火全软件 | 国产私拍福利视频在线观看| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 51午夜福利影视在线观看| 日本一本二区三区精品| 欧美bdsm另类| 在线看三级毛片| 搞女人的毛片| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久 | 亚洲精品粉嫩美女一区| 我要搜黄色片| 国产视频内射| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 深夜精品福利| 毛片女人毛片| 天堂网av新在线| 午夜福利在线观看免费完整高清在 | 久久亚洲精品不卡| 亚洲欧美日韩卡通动漫| 校园春色视频在线观看| 免费av不卡在线播放| 国产精品三级大全| 观看免费一级毛片| 国产高清激情床上av| 久久久国产成人免费| 国产毛片a区久久久久| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 一本一本综合久久| 天天一区二区日本电影三级| 黄色女人牲交| 亚洲五月婷婷丁香| 日韩成人在线观看一区二区三区| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆 | 亚洲国产欧美人成| 美女高潮的动态| 天天一区二区日本电影三级| 日韩中字成人| 毛片一级片免费看久久久久 | 国产精品美女特级片免费视频播放器| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 欧美成人性av电影在线观看| av黄色大香蕉| 成人特级黄色片久久久久久久| 黄色女人牲交| 国产成人aa在线观看| 国产亚洲精品av在线| 搡老岳熟女国产| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 午夜福利在线在线| 两个人视频免费观看高清| 欧美成人免费av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲精品粉嫩美女一区| 中文字幕免费在线视频6| 九九在线视频观看精品| 欧美bdsm另类| 久久久久九九精品影院| 久久久精品大字幕| 日本免费一区二区三区高清不卡| 精品久久国产蜜桃| 国产精品久久久久久久久免 | 九九久久精品国产亚洲av麻豆| 亚洲精品久久国产高清桃花| 亚洲天堂国产精品一区在线| 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 久久性视频一级片| 十八禁国产超污无遮挡网站| av在线蜜桃| 色综合站精品国产| 99热6这里只有精品| 中文资源天堂在线| 少妇人妻一区二区三区视频| 成人午夜高清在线视频| 亚洲avbb在线观看| 99视频精品全部免费 在线| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 高清日韩中文字幕在线| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 欧美乱妇无乱码| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 亚洲第一电影网av| 九九久久精品国产亚洲av麻豆| 欧美丝袜亚洲另类 | 深夜精品福利| 国产高清三级在线| 免费电影在线观看免费观看| 中文字幕人妻熟人妻熟丝袜美| www日本黄色视频网| aaaaa片日本免费| 国产高清视频在线播放一区| 麻豆成人午夜福利视频| 一区二区三区激情视频| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 我要搜黄色片| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 国产探花在线观看一区二区| 亚洲av成人av| 脱女人内裤的视频| 国产黄a三级三级三级人| 国产精品永久免费网站| 久久精品久久久久久噜噜老黄 | 久久精品国产亚洲av涩爱 | 在线a可以看的网站| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 国产伦人伦偷精品视频| 国产精品亚洲美女久久久| 久久久久久大精品| 麻豆一二三区av精品| 99热只有精品国产| 久久国产精品人妻蜜桃| 宅男免费午夜| 老司机福利观看| 日韩欧美精品v在线| 少妇人妻精品综合一区二区 | a在线观看视频网站| 亚洲色图av天堂| 一个人免费在线观看电影| netflix在线观看网站| 有码 亚洲区| 成人美女网站在线观看视频| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 深夜精品福利| 国产精品亚洲av一区麻豆| 午夜日韩欧美国产| 日韩欧美在线乱码| 色在线成人网| 99久久无色码亚洲精品果冻| 又黄又爽又刺激的免费视频.| 国产爱豆传媒在线观看| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 成年女人看的毛片在线观看| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 欧美三级亚洲精品| 亚洲性夜色夜夜综合| 国产久久久一区二区三区| 精品一区二区三区视频在线观看免费| 色哟哟·www| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 禁无遮挡网站| 1000部很黄的大片| 国产人妻一区二区三区在| 不卡一级毛片| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久 | 男女之事视频高清在线观看| 黄色一级大片看看| 欧美黑人巨大hd| 精品福利观看| 十八禁人妻一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 老鸭窝网址在线观看| 一个人看的www免费观看视频| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 午夜老司机福利剧场| 成人欧美大片| www.色视频.com| 老司机午夜十八禁免费视频| 久久香蕉精品热| 听说在线观看完整版免费高清| 九色国产91popny在线| 成人av一区二区三区在线看| 一区二区三区四区激情视频 | 亚洲美女黄片视频| 少妇人妻精品综合一区二区 | 最近在线观看免费完整版| 999久久久精品免费观看国产| 国产精品嫩草影院av在线观看 | 18禁黄网站禁片免费观看直播| 99久国产av精品| 18禁黄网站禁片免费观看直播| 老司机福利观看| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 我的女老师完整版在线观看| 午夜精品一区二区三区免费看| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| 露出奶头的视频| 国产熟女xx| 我要搜黄色片| 国产黄片美女视频| 高清毛片免费观看视频网站| 一进一出抽搐gif免费好疼| 简卡轻食公司| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 亚洲成人精品中文字幕电影| 三级毛片av免费| 国产视频一区二区在线看| 日韩高清综合在线| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 久久久久久久久中文| 深爱激情五月婷婷| 亚洲色图av天堂| 日韩高清综合在线| 成人毛片a级毛片在线播放| 久99久视频精品免费| 国产精品影院久久| 人妻久久中文字幕网| 热99在线观看视频| 欧美一级a爱片免费观看看| 有码 亚洲区| 国产精品不卡视频一区二区 | 亚洲人成网站在线播放欧美日韩| 午夜精品久久久久久毛片777| 男人舔奶头视频| 首页视频小说图片口味搜索| 在线观看一区二区三区| 又黄又爽又刺激的免费视频.| 国产成人福利小说| 亚洲国产日韩欧美精品在线观看| 69人妻影院| 亚洲精品一卡2卡三卡4卡5卡| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 特大巨黑吊av在线直播| 国产精品免费一区二区三区在线| 日日夜夜操网爽| 黄色视频,在线免费观看| 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 国产免费一级a男人的天堂| 国产麻豆成人av免费视频| 久久人人精品亚洲av| 亚洲久久久久久中文字幕| 亚洲,欧美精品.| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 欧美激情国产日韩精品一区| 精品久久久久久久末码| 亚洲成人久久性| 99热这里只有是精品在线观看 | 亚洲在线观看片| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| h日本视频在线播放| 99riav亚洲国产免费| 国产精品综合久久久久久久免费| 两人在一起打扑克的视频| 色噜噜av男人的天堂激情| 久久人妻av系列| a级毛片免费高清观看在线播放| 老司机深夜福利视频在线观看| 久久午夜福利片| 成人av一区二区三区在线看| 国产单亲对白刺激| 美女黄网站色视频| 在线播放无遮挡| 啪啪无遮挡十八禁网站| 亚洲成人久久性| 国产69精品久久久久777片| avwww免费| 日本一本二区三区精品| av在线天堂中文字幕| 亚洲av二区三区四区| 国产欧美日韩一区二区精品| 亚洲欧美日韩无卡精品| 老女人水多毛片| 色综合站精品国产| 成年版毛片免费区| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 尤物成人国产欧美一区二区三区| 久久久久久久午夜电影| 成年版毛片免费区| 欧美日韩福利视频一区二区| eeuss影院久久| 观看免费一级毛片| 极品教师在线免费播放| 欧美区成人在线视频| 热99re8久久精品国产| 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 俄罗斯特黄特色一大片| 99视频精品全部免费 在线| 国产成人av教育| 自拍偷自拍亚洲精品老妇| 高清在线国产一区| 90打野战视频偷拍视频| av福利片在线观看| 久9热在线精品视频| 日韩欧美精品v在线| 乱码一卡2卡4卡精品| 亚洲av电影在线进入| 亚洲av二区三区四区| 久99久视频精品免费| 色噜噜av男人的天堂激情| 免费观看精品视频网站| 国产伦人伦偷精品视频| 成年女人看的毛片在线观看| 国产精品亚洲av一区麻豆| 黄片小视频在线播放| 91九色精品人成在线观看| 日韩欧美精品免费久久 | 国内久久婷婷六月综合欲色啪| 久久中文看片网| 精品久久久久久久久久免费视频| 波多野结衣高清作品| 久久久久精品国产欧美久久久| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 99久久精品热视频| 亚洲第一电影网av| 亚洲av.av天堂| 观看免费一级毛片| 五月玫瑰六月丁香| av专区在线播放| 欧美日韩中文字幕国产精品一区二区三区| 欧美潮喷喷水| 亚洲无线在线观看| 99久久99久久久精品蜜桃| 欧美性感艳星| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 国产毛片a区久久久久| 亚洲精品影视一区二区三区av| 欧美日韩综合久久久久久 | 观看美女的网站| 欧美日韩瑟瑟在线播放| 丝袜美腿在线中文| 黄色日韩在线| 性色avwww在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久九九热精品免费| 午夜影院日韩av| 久久久久久久亚洲中文字幕 | 全区人妻精品视频| 国产亚洲欧美98| 亚洲av免费在线观看| 国产伦一二天堂av在线观看| 亚洲最大成人手机在线| 日韩欧美精品v在线| 日韩大尺度精品在线看网址| 91在线精品国自产拍蜜月| 国产一区二区三区视频了| 老司机午夜福利在线观看视频| 亚洲精品色激情综合| 成人高潮视频无遮挡免费网站| 简卡轻食公司| 精品一区二区免费观看| 久久久久免费精品人妻一区二区| 亚洲欧美清纯卡通| 午夜影院日韩av| 天堂网av新在线| 欧美在线一区亚洲| 欧美又色又爽又黄视频| 真实男女啪啪啪动态图| 最后的刺客免费高清国语| 亚洲乱码一区二区免费版| 观看免费一级毛片| 91在线精品国自产拍蜜月| 久久热精品热| 午夜久久久久精精品| 偷拍熟女少妇极品色| 人妻夜夜爽99麻豆av| 日韩欧美在线二视频| 乱人视频在线观看| 夜夜看夜夜爽夜夜摸| 婷婷丁香在线五月| 成人特级av手机在线观看| 国产亚洲精品久久久久久毛片| 一级av片app| 国产一区二区在线av高清观看| h日本视频在线播放| 国产视频内射| 国产欧美日韩精品亚洲av| 看十八女毛片水多多多| 99久久精品国产亚洲精品| 日韩欧美三级三区| 欧美激情久久久久久爽电影| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 亚洲一区二区三区不卡视频| av女优亚洲男人天堂| 热99在线观看视频| 免费av观看视频| 日韩欧美精品免费久久 | 亚洲av成人精品一区久久| 最近中文字幕高清免费大全6 | 久久精品夜夜夜夜夜久久蜜豆| 国产精品不卡视频一区二区 | 精品人妻视频免费看| 免费一级毛片在线播放高清视频| 18禁裸乳无遮挡免费网站照片| 97人妻精品一区二区三区麻豆| 午夜视频国产福利| 青草久久国产| 久久亚洲精品不卡| 91九色精品人成在线观看| 亚洲国产色片| 丰满的人妻完整版| 亚洲欧美日韩东京热|