• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage

    2022-11-21 09:28:54WenjunYan閆文君ZhishenJin金志燊ZhengyangLin林政揚(yáng)ShiyuZhou周詩(shī)瑜YonghaiDu杜永海YulongChen陳宇龍andHoupanZhou周后盤
    Chinese Physics B 2022年11期
    關(guān)鍵詞:金志

    Wenjun Yan(閆文君) Zhishen Jin(金志燊) Zhengyang Lin(林政揚(yáng)) Shiyu Zhou(周詩(shī)瑜)Yonghai Du(杜永海) Yulong Chen(陳宇龍) and Houpan Zhou(周后盤)

    1School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3Institute of Microelectronics,University of Macau,Avenida da Universidade,Taipa,Macau,China

    Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites,and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However,the traditional SnO2 sensor,with a single signal,cannot demonstrate intelligent multi-gas recognition. Here,a single dual-mode(direct and alternating current modes)SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2,released in different states of Li-ion batteries,together with principal component analysis(PCA)analysis. This work provides insight into the intelligent technology of single gas sensors.

    Keywords: gas sensors,single dual-mode,multivariable sensors,Li-batteries,early safety warning

    1. Introduction

    To alleviate ever-growing energy consumption, electrochemical energy storage technology has been a topic of wide concern in recent years.[1,2]In particular,lithium(Li)-ion batteries (LIBs) have dominated both electronics and automotive applications due to their high energy density and reduced cost.[1,2]Unfortunately, LIB safety issues have emerged due to the flammable organic electrolytes and the intrinsic thermal properties during charge and discharge,which could result in explosion and casualties.[3–6]For the development of largescale LIB energy storage equipment,effective safety warnings,as early as possible,are necessary and urgently required.

    The current battery management system (BMS) is regarded as a crucial LIB protection system, which can detect the voltage, state of charge (SOC), and external surface temperature of the battery cell. However, the BMS is unable to detect LIB safety issues in the early stages.[1,4]For example,the external voltage of a leaking battery could be kept at almost the same level as that of a pristine battery for several hours.[4]As reported, special gas detection of LIBs could detect LIB safety issues at an earlier stage.[1,4]In particular, H2, generated by the reaction of Li dendrites with a polymer binder,could be captured first, and over 10 min earlier than smoke and fire,in cases of LIB failure.[1]Furthermore,LIB failure is often associated with electrolyte leakage.[6,7]The main components of the LIBs’electrolyte are volatile and redox neutral solvents, such as dimethyl carbonate(DMC), diethyl carbonate(DEC),ethyl methyl carbonate(EMC)and propylene carbonate(PC).[4,8]

    As is well known, semiconductor sensors have been widely used for various hazardous and flammable gases in the internet of things (IoT) due to their high sensitivity, simple mechanism and real-time response.[9,10]However, selectivity has always been the bottleneck of semiconductor gas sensors,and further limits the recognizability and intelligentization of individual sensors. Combining sensors into arrays is a common method used to mitigate the poor selectivity of sensors,with up to thousands of individual sensors.[11]Obviously,sensor arrays cannot fulfill the convenience of sensors well.

    Recently, new multivariable gas sensors have been reported.[12,13]These multivariable sensors involve a sensing material and a multivariable transducer,to provide diverse and independent responses to different gases and to provide multigas recognition and rejection of interferences.[14,15]The measurable response signals of chemi-electrical sensors include current, capacitance, and resistance/impedance. In contrast to the single signal of DC resistive sensors, AC impedance sensors can provide a multidimensional response over a fitted frequency range, which results from the further extraction of parameters, including the dielectric constant, charge transfer resistance, double-layer capacitance and diffusion constant,and are attracting increasing attention.[6,16–18]AC sensors are characterized not only by low cost and a simple device configuration,but also by different frequencies producing various signals.[6]

    Herein,we use DC–AC dual mode to detect organic electrolytes and H2possibly venting from the failed LIBs, taking a SnO2-based sensor as an example. Multi-sensing parameters extracted from the DC current,as well as AC impedance,and the corresponding phase angle,dissipation factor and frequency data,are comprehensively analyzed. According to the principal component analysis (PCA) of multi-sensing parameters, clear discrimination of electrolyte vapors(DEC,DMC,and PC)and H2is proved,which could improve the accuracy and reliability of the LIBs’early safety warning system.

    2. Experimental details

    2.1. Material preparation and characterization

    The SnO2-based sensing material here was prepared by following Ref. [19]. Typically, 500 g of as-received SnO2micro-powder(2–5 μm in diameter,Jinxin Advanced Materials,China)was mixed with 1425 g deionized water under magnetic stirring, followed by addition of 75 g triethanolamine(Usolf Chemical, China)as a dispersant. Stirring and dispersion continued for 10 mins. Next,the mixture was ball-milled(WG-1L,Vgreen Nanometer Technology,China)for 2 h with balls 300 μm in diameter to produce a uniform dispersion. Finally, 1 g of tetraamminepalladium nitrate (H12N6O6Pd, Aladdin, China) was added to 12 g of the as-obtained dispersion. Consequently,the acquired stable nano-dispersion,with a solid content of 15%,was the Pd-dopped SnO2material utilized for this work.

    The morphologies of the as-prepared material were characterized using scanning electron microscopy (SEM, FEI Nanosem 430).Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with CuKαradiation(λ ≈1.54 ?A).

    2.2. Gas sensing experiment design

    A schematic of the bare sensor device with a pair of interdigital electrodes(IDEs)integrating a microheater is shown in Fig. S1a (supporting information). The microheater was fabricated based on silicon micro-electromechanical system(MEMS) technology, reported in our previous work.[20]The fabrication details are also described in the supporting information.The typical relationship of the heating temperature vs.the applied voltage of the microheater is shown in Fig. S1b.The complete sensor device was fabricated by facile dropcoating. Afterwards, the device was heated and maintained at 300°C for 7 days to promote SnO2deposition and device aging to obtain reliable testing data.

    The gas sensing tests were performed using a homemade system with an 8-L test chamber, as reported in our previous work.[21]For the analyte sensing test,a fitting concentration of the analyte(standard H2gas of 10×10-6mol/mol,and DMC,DEC and PC vapor) was injected into the chamber. All the sensing tests were taken at ambient temperature of about 25°C and 40%relative humidity,adjusted by an air conditioner and a humidifier. The heating temperature of the microheater was precisely controlled using a bias voltage applied by a Keithley 2602B source-meter. The sensor DC and AC signals were collected by a Keithley 2602B source-meter and a Keysight 1732C LCR meter, respectively. Principal component analysis(PCA)was calculated using the inbuilt library function of Python.

    3. Results and discussion

    3.1. Material analysis

    The SEM image in Fig. 1(a) shows the homogeneity of the as-prepared SnO2powder. The XRD pattern of the asprepared SnO2is shown in Fig. 1(b). Due to the tiny Pd additive, no obvious Pd peaks are detected. All the peaks are assigned to SnO2of tetragonal rutile (JCPDS No. 41-1445).The obvious peaks at 2θ= 26.7°, 33.9°, and 38°correspond to the (110), (101), and (200) planes of SnO2, respectively.Furthermore, the SnO2grain size is~30–40 nm, calculated according to the XRD data.

    Fig.1.(a)An SEM image,and(b)the XRD pattern of the as-prepared SnO2 powder.

    3.2. Gas sensing characteristics

    We chose DEC,DMC,PC and H2as analyte gases,which are mainly produced by failed Li batteries. And the gas sensing performances were investigated via the DC current signal,AC impedance,θand D signals at different frequencies. A similar AC signal response of an IDE sensor device has been reported in our previous work.[22]Figure 2 shows the relative DC and AC signal variations of one sensor device to various analyte concentrations(200,160,120,80,40,and 20 ppm of DEC,DMC,and PC,respectively;200,150,100,50,10,and 5 ppm of H2).

    Fig.2. Continuous response characteristics to different gases. DC current relative change(I/I0)to a)DEC,(b)DMC,(c)PC and(d)H2. AC impedance relative change(Z0/Z)at the frequency of 100 Hz to(e)DEC,(f)DMC,(g)PC,and(h)H2.AC impedance relative change(Z0/Z)and θ relative change(θ0/θ) at the frequency of 1 kHz to (i) DEC, (j) DMC, and (k) PC. AC impedance relative change (Z0/Z), θ relative change (θ0/θ), and D relative change(D/D0)at the frequency of 10 kHz to l)DEC,(m)DMC,(n)PC,and(o)H2. Here, I0 (Z0, θ0 and D0)and I (Z, θ and D)are the sensor DC current(AC impedance,phase angle,and dissipation factor)in ambient air and the real-time value in analyte gas,respectively.

    Under DC mode,upon exposure to each analyte,the sensor current increases rapidly, and then decreases back to the original baseline when the analyte is off. DEC, DMC, PC and H2are all electron donors. Each of the analytes adsorbed on the n-type SnO2surface could contribute electrons to the conduction band of SnO2, leading to an increase in the concentrations of the majority of electron carriers, consequently increasing the current of the SnO2device.

    Under AC mode at the frequency of 100 Hz, only an impedance response could be detected for each analyte. Notably, at AC frequency of 1 kHz, both impedance and phase angle (θ) responses to DEC, DMC, and PC are obvious, but no responses to H2. At AC frequency of 10 kHz, all the impedance,θ, and dissipation factor (D) responses to DEC,DMC, and PC are excellent, while only an impedance response to H2could be detected. Interestingly, the sensor impedance decreases quickly when exposed to each analyte,at different AC frequencies, and then quickly increases back to the original baseline when the analyte is off. Moreover,the phase angle has the same response and recovery trend, while theDhas the opposite response and recovery trend to each analyte. A detailed explanation will be given in the following section.

    Figure S2 shows that the gas response values increase as each analyte concentration increases. According to reported electrochemical gas sensors,the response could be empirically linearly expressed as[23]

    whereCrepresents the analyte concentration,andaandbare constants, depending on the type of gas sensor and sensing material. Figure 3 displays linear plots of logarithms of the response value as a function of the logarithms of each analyte concentration under different modes,except for the impedance response to H2at 10 kHz. A similar linear relationship is seen in a previous report.[24]The relative parameters(slope, intercept, andR2) of each fitting equation are summarized in Table 1.

    Fig.3. The relationship of response values vs. concentration in logarithmic terms for different gases. DEC:(a)DC current, (b)AC impedance at the frequency of 100 Hz,(c)AC impedance and θ at the frequency of 1 kHz,(d)AC impedance,θ and D at the frequency of 10 kHz. DMC:(e)DC current,(f) AC impedance at the frequency of 100 Hz, (g) AC impedance and θ at the frequency of 1 kHz, (h) AC impedance, θ and D at the frequency of 10 kHz. PC:(i)DC current, (j)AC impedance at the frequency of 100 Hz, (k)AC impedance and θ at the frequency of 1 kHz, (l)AC impedance, θ and D at the frequency of 10 kHz. H2: (m)DC current,(n)AC impedance at the frequency of 100 Hz,(o)AC impedance,θ and D at the frequency of 10 kHz. The symbols are response values;the lines are the fitting of response values vs. concentration.

    Table 1. Slope,intercept,and R2 values of the fitting equations of response vs. concentration for different gases under DC and AC dual modes.

    Moreover,a comparison of response values to different analytes(200 ppm DEC,DMC,PC,and H2)under different modes is shown in Fig. 4. Obviously, for different signal modes, the selectivity of the sensor to the various analytes is different. The different selectivity enables various analyte recognition using one device.

    Fig.4. A comparison of response values towards different gases under DC and AC modes(200 ppm DEC,DMC,PC and H2).

    In contrast to the operating principle of the DC current mode, the AC responses (includingZ0/Z,θ0/θ, andD/D0)are closely related to not only the conductivity of the sensing layer,but also the permittivity of the sensing material and analytes.[12]The equivalent circuit of the SnO2sensor with IDEs could be simply regarded as a typical Randles circuit,as depicted in Fig.5.Here,R1andC1represent the time-constant resistance and capacitance of the SnO2layer,respectively.The parallel circuit element(R2‖C2)corresponds to the resistance and capacitance of gas-dependent interfaces,which dominate the AC responses of the device.[12,25]The Warburg impedance,ascribed asZw,is as a result of the gas diffusion process,and only observed in the low-frequency regime(<10 kHz).[25–27]The imaginary and real parts of impedance can be described by

    whereεis the relative permittivity (dielectric constant),ε0is the vacuum permittivity,eis the electron charge,Ndis the majority carrier concentration,Eis the applied electrical potential,kis the Boltzmann constant,andTis the absolute temperature.

    The phase angle (θ) can be calculated by the following equation:

    Upon exposure to the analytes of electron donors, under AC modes, electrons will contribute to the SnO2surface due to analyte adsorption,and will result in a decrease in the gasdependent interface resistanceR2. Beyond this,changes in the dielectric properties of analyte-dependent interfaces in a fixed frequency could also contribute to the impedance responses,according to Eqs. (1)–(4). The permittivities of DEC, DMC,PC and H2are 2.805, 3.107, 64.92 and 1, respectively.[29]Based on reports, the gas-dependent interface capacitanceC2mainly relies on the dielectric constants of analytes.[25,30]Hence,C2has no significant effect on the AC responses of SnO2to DEC and DMC, due to their low permittivities. But for PC with high permittivity,C2generates an obvious AC response improvement,except for theθresponse at 10 kHz.

    Fig. 5. The AC equivalent circuit of the SnO2 sensor. R0 represents phase constant contact resistance. The parallel circuit element(R1‖C1)represents capacitance and resistance of the SnO2 sensing layer. The parallel element(R2 ‖C2) is the equivalent resistance and capacitance of the analyte-gasdependent interface. The Warburg impedance is described as the Zw.

    Furthermore, the only detectedZresponse to each analyte at 100 Hz indicates that electronic resistance properties of gas-dependent interfaces mainly controls the sensing response. When the frequency increased to 1 kHz, an obvious capacitance effect appears, resulting in the detectedZandθresponse;when the frequency further increased to 10 kHz,an additionalDresponse could be detected with more capacitance effect(Figs.2–3).

    Interestingly, the impedance response of H2at 100 Hz was increased dramatically compared to the DC current response, although the permittivity of H2is also small. According to previous reports, it is proposed that the chemical species induced by H2adsorption enhances the AC impedance response at the low frequency of 100 Hz, via generation of a polarization potential in the H2–SnO2interface.[12,31,32]When the AC frequency increases to 1 kHz, no AC impedancerelated parameter responses to H2could be detected. A similar sharp response decrement with the frequency increasing has previously been reported.[31,32]When the AC frequency further increases to 10 kHz,quick diffusion of H2plays an important role,with more capacitor effects(Zw)due to the small molecular size, resulting in a non-linear impedance response to concentration.

    3.3. Principal component analysis

    PCA is a commonly used effective method in exploratory data analysis and classification. In the present work, differences in the various parameter responses to each analyte provide the possibility of multi-gas recognition based on one device. Utilizing Python and the PCA function in the Sklearn Library,the database was projected into a 2D plane.Visualization in a two-dimensional graph in Fig.6 reveals that the electrolyte vapors and H2are actually and clearly discriminated.The mathematic derivation in the PCA code is attached in the supporting information. The cumulative variance of the principal components of over 97%(PC1 90.48%and PC2 6.52%)indicates that the major information is maintained from the raw database.

    Fig.6. (a)PCA-assisted classification and regression of electrolyte vapors(red dots)and H2(black dots). (b)Nine characteristic values of the covariance matrix for PCA.

    4. Conclusions

    In summary, smart and clear classification of electrolyte vapors and H2has been realized using a single common SnO2sensor,by combining DC current signals and AC impedancerelated signals.Due to the dielectric properties of analytes,the SnO2sensing layer, and the analyte adsorption on the SnO2surface, diverse sensing parameters were obtained under DC and AC dual test modes, which enable the single sensor to build signature-difference patterns for tested gases via PCA analysis. The accurate distinction of electrolyte vapors and H2would contribute to the monitoring of the operating conditions of LIBs. This robust method for the classification and recognition of various chemical vapors using an individual device paves the way toward applications in intelligent identification of multi-gas with very few sensors.

    Acknowledgements

    This research was supported by the Zhejiang Science and Technology Foundation(Grant No.LQ20F040006).

    The authors acknowledge L. M. for help with the SEM and XRD characterizations. Yan W.J.acknowledges the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    猜你喜歡
    金志
    Robust free-space optical frequency transfer in time-varying link distances conditions
    從炮兵團(tuán)戰(zhàn)士到關(guān)愛團(tuán)團(tuán)長(zhǎng)
    基于AquaCrop模型的茶葉產(chǎn)量和開采期預(yù)報(bào)*
    5次赴朝尋找,他要把父親帶回家
    婦女生活(2021年1期)2021-02-23 02:38:04
    金志文發(fā)行最新EP專輯《路遙知馬力》
    青年歌聲(2017年9期)2017-03-15 03:33:36
    韓劇迷傷別“奶奶專業(yè)戶”
    會(huì)變的云姑娘
    金志文的向日葵愛情
    閱讀(2013年3期)2013-04-23 03:31:34
    乘火車
    乘火車
    边亲边吃奶的免费视频| 日本黄大片高清| 极品少妇高潮喷水抽搐| 日日啪夜夜爽| 成人亚洲精品av一区二区| 久热久热在线精品观看| 极品教师在线视频| 嘟嘟电影网在线观看| 女人被狂操c到高潮| 一区二区三区乱码不卡18| 免费观看无遮挡的男女| 在现免费观看毛片| 国产亚洲av嫩草精品影院| 国产麻豆成人av免费视频| 乱人视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久久国产一区二区| 亚洲精品色激情综合| 久久精品综合一区二区三区| 国产精品三级大全| 日韩av免费高清视频| 亚洲欧美日韩无卡精品| 又大又黄又爽视频免费| 精品一区二区免费观看| 又粗又硬又长又爽又黄的视频| 日韩不卡一区二区三区视频在线| 婷婷色综合大香蕉| 日韩精品有码人妻一区| 精品国产一区二区三区久久久樱花 | 亚洲av电影在线观看一区二区三区 | 亚洲av国产av综合av卡| av在线亚洲专区| 亚洲人成网站高清观看| 成年女人在线观看亚洲视频 | 国产大屁股一区二区在线视频| av线在线观看网站| 久久精品熟女亚洲av麻豆精品 | 欧美不卡视频在线免费观看| 看十八女毛片水多多多| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦中文免费视频观看日本| 精品一区在线观看国产| 亚洲欧洲日产国产| 国产综合精华液| 淫秽高清视频在线观看| 亚洲av成人av| 婷婷色综合大香蕉| 国国产精品蜜臀av免费| 777米奇影视久久| 日韩av免费高清视频| 国产成人a∨麻豆精品| 欧美一区二区亚洲| 亚洲精品久久午夜乱码| 欧美成人一区二区免费高清观看| 日韩av免费高清视频| 国国产精品蜜臀av免费| 免费大片18禁| 天天躁日日操中文字幕| 国产麻豆成人av免费视频| 午夜激情欧美在线| 日本三级黄在线观看| 亚洲最大成人手机在线| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影| 一级毛片 在线播放| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品v在线| 91午夜精品亚洲一区二区三区| 国产av在哪里看| 哪个播放器可以免费观看大片| 男女下面进入的视频免费午夜| 亚洲国产欧美在线一区| 日本av手机在线免费观看| 久久97久久精品| 精品一区二区三区视频在线| av国产久精品久网站免费入址| 春色校园在线视频观看| 国内精品宾馆在线| 亚洲国产精品成人久久小说| 久久精品国产亚洲网站| 99热这里只有精品一区| 蜜桃亚洲精品一区二区三区| 国产91av在线免费观看| 成人欧美大片| 丝瓜视频免费看黄片| 又爽又黄无遮挡网站| 午夜精品国产一区二区电影 | 亚洲av免费高清在线观看| 天堂俺去俺来也www色官网 | 边亲边吃奶的免费视频| 26uuu在线亚洲综合色| 国产亚洲91精品色在线| 最近中文字幕高清免费大全6| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 美女被艹到高潮喷水动态| 国产男女超爽视频在线观看| 国产午夜精品久久久久久一区二区三区| or卡值多少钱| 高清欧美精品videossex| 亚洲人与动物交配视频| 亚洲欧美成人精品一区二区| 3wmmmm亚洲av在线观看| videossex国产| 国产一区有黄有色的免费视频 | 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 免费观看精品视频网站| av在线观看视频网站免费| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 99久久九九国产精品国产免费| 久久这里只有精品中国| 99久国产av精品国产电影| av专区在线播放| 神马国产精品三级电影在线观看| 欧美激情在线99| 高清在线视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 超碰97精品在线观看| 欧美激情久久久久久爽电影| 亚洲av免费在线观看| 久99久视频精品免费| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 久久这里有精品视频免费| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| h日本视频在线播放| 99久久中文字幕三级久久日本| 五月天丁香电影| 看黄色毛片网站| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 久久久久久久亚洲中文字幕| 男人舔奶头视频| 午夜亚洲福利在线播放| 欧美成人午夜免费资源| 中文天堂在线官网| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 日韩av不卡免费在线播放| 亚洲内射少妇av| 在线免费十八禁| 欧美+日韩+精品| 亚洲怡红院男人天堂| 在线 av 中文字幕| 人妻一区二区av| 婷婷六月久久综合丁香| 国产黄色视频一区二区在线观看| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 三级毛片av免费| 免费大片黄手机在线观看| 日日撸夜夜添| 国产麻豆成人av免费视频| 久久鲁丝午夜福利片| 国产 亚洲一区二区三区 | 丰满少妇做爰视频| 精品久久久久久久人妻蜜臀av| 亚洲精品成人久久久久久| 一级毛片我不卡| 久久这里有精品视频免费| 精华霜和精华液先用哪个| 插阴视频在线观看视频| 在线播放无遮挡| 精品久久久久久电影网| 国产成人aa在线观看| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 熟女电影av网| 一个人免费在线观看电影| 伊人久久国产一区二区| 亚洲av中文av极速乱| 欧美激情在线99| 国产色婷婷99| 又大又黄又爽视频免费| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 午夜激情久久久久久久| 午夜精品国产一区二区电影 | 亚洲真实伦在线观看| 少妇猛男粗大的猛烈进出视频 | 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 国产成人a区在线观看| 国产精品无大码| 18禁裸乳无遮挡免费网站照片| 波多野结衣巨乳人妻| 日韩精品有码人妻一区| 久久精品夜色国产| 大陆偷拍与自拍| 亚洲最大成人av| 精品亚洲乱码少妇综合久久| 久久99蜜桃精品久久| 一本久久精品| 伦精品一区二区三区| 日韩大片免费观看网站| 成年免费大片在线观看| 永久网站在线| 国产精品久久久久久av不卡| 国产又色又爽无遮挡免| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 偷拍熟女少妇极品色| av在线老鸭窝| 又大又黄又爽视频免费| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| 青春草视频在线免费观看| av国产免费在线观看| 在现免费观看毛片| 三级经典国产精品| 偷拍熟女少妇极品色| 99热这里只有是精品50| 日韩中字成人| 久久久久性生活片| 亚洲欧美一区二区三区黑人 | 欧美xxⅹ黑人| av卡一久久| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 欧美 日韩 精品 国产| 午夜福利在线观看免费完整高清在| 免费看美女性在线毛片视频| 99久久精品一区二区三区| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 一个人免费在线观看电影| 国产探花在线观看一区二区| 97超视频在线观看视频| 欧美极品一区二区三区四区| 亚洲欧美精品专区久久| 国产人妻一区二区三区在| 成年版毛片免费区| 日韩强制内射视频| 成人综合一区亚洲| 日本wwww免费看| 国产视频内射| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 九草在线视频观看| av在线天堂中文字幕| av在线老鸭窝| 国产成人免费观看mmmm| 中文字幕制服av| 国产乱人视频| 精品欧美国产一区二区三| 亚洲最大成人中文| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 免费看日本二区| 中文字幕av成人在线电影| 最近手机中文字幕大全| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 中文字幕久久专区| 久久久成人免费电影| 女人被狂操c到高潮| 在线观看av片永久免费下载| 国产亚洲av嫩草精品影院| 国产成人精品福利久久| 欧美日韩视频高清一区二区三区二| 啦啦啦韩国在线观看视频| 精品一区二区免费观看| 午夜福利成人在线免费观看| 欧美日韩在线观看h| 国产成人aa在线观看| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 色哟哟·www| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 欧美 日韩 精品 国产| 亚洲精品久久久久久婷婷小说| 久久久久网色| 身体一侧抽搐| 日韩亚洲欧美综合| 国产熟女欧美一区二区| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂 | 色综合亚洲欧美另类图片| 成年av动漫网址| 看十八女毛片水多多多| 精品久久久久久电影网| 禁无遮挡网站| 日韩电影二区| 国产伦精品一区二区三区四那| 日韩人妻高清精品专区| 免费大片黄手机在线观看| 免费高清在线观看视频在线观看| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 成人欧美大片| 亚洲精品aⅴ在线观看| 久久6这里有精品| 久久久久久久亚洲中文字幕| 国产一级毛片七仙女欲春2| 国内揄拍国产精品人妻在线| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| www.av在线官网国产| 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 中文字幕久久专区| 久久久久久久久大av| 国产淫片久久久久久久久| kizo精华| 色综合亚洲欧美另类图片| 成年人午夜在线观看视频 | 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 国产精品伦人一区二区| 亚洲成色77777| 日韩三级伦理在线观看| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 国产女主播在线喷水免费视频网站 | 激情五月婷婷亚洲| 免费看av在线观看网站| 免费看不卡的av| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 国产伦一二天堂av在线观看| 一级片'在线观看视频| 国产片特级美女逼逼视频| 国产在线男女| 中文字幕av成人在线电影| 久久97久久精品| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 看非洲黑人一级黄片| 人妻少妇偷人精品九色| 免费无遮挡裸体视频| av又黄又爽大尺度在线免费看| 男人狂女人下面高潮的视频| 免费观看在线日韩| 最近中文字幕高清免费大全6| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 国产精品一区二区在线观看99 | 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 久久6这里有精品| 亚洲欧美精品自产自拍| 免费黄频网站在线观看国产| 婷婷色麻豆天堂久久| 日本-黄色视频高清免费观看| 亚洲av日韩在线播放| 亚洲精华国产精华液的使用体验| 内地一区二区视频在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久免费精品人妻一区二区| 亚洲精品自拍成人| 国产精品av视频在线免费观看| 搡老乐熟女国产| 久久久久九九精品影院| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 国产一区二区三区综合在线观看 | 一级a做视频免费观看| 成人一区二区视频在线观看| 国产精品三级大全| 久久久久久久久中文| 亚洲18禁久久av| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 少妇的逼好多水| 啦啦啦韩国在线观看视频| 国产成人精品婷婷| 可以在线观看毛片的网站| 亚洲18禁久久av| 日本一本二区三区精品| 久久精品久久久久久噜噜老黄| 99久国产av精品| av国产免费在线观看| 色视频www国产| 中文字幕av成人在线电影| 美女内射精品一级片tv| 国产成人精品福利久久| 免费观看性生交大片5| 不卡视频在线观看欧美| 亚洲av一区综合| 国产成人一区二区在线| 欧美一区二区亚洲| 岛国毛片在线播放| 精品久久久精品久久久| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 三级国产精品欧美在线观看| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 亚洲综合精品二区| 两个人视频免费观看高清| 美女高潮的动态| 内射极品少妇av片p| 岛国毛片在线播放| 国产极品天堂在线| 亚洲av男天堂| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 欧美三级亚洲精品| 综合色av麻豆| 成年av动漫网址| 国产免费福利视频在线观看| 国产精品国产三级专区第一集| 嫩草影院精品99| 高清视频免费观看一区二区 | 国产欧美日韩精品一区二区| 中国国产av一级| 91狼人影院| 日日干狠狠操夜夜爽| 人人妻人人澡人人爽人人夜夜 | 久久精品国产亚洲av涩爱| 久久久精品欧美日韩精品| 在线免费观看不下载黄p国产| 在线观看美女被高潮喷水网站| 免费不卡的大黄色大毛片视频在线观看 | 久久精品人妻少妇| 热99在线观看视频| 国产乱人偷精品视频| 大话2 男鬼变身卡| 久久精品国产鲁丝片午夜精品| 日韩成人伦理影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产 亚洲一区二区三区 | 精品久久久久久久久久久久久| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 欧美激情久久久久久爽电影| 精品熟女少妇av免费看| 亚洲第一区二区三区不卡| 五月玫瑰六月丁香| 最近的中文字幕免费完整| 亚洲无线观看免费| 免费播放大片免费观看视频在线观看| 偷拍熟女少妇极品色| 亚洲成人一二三区av| 99re6热这里在线精品视频| 我的女老师完整版在线观看| 日本一二三区视频观看| 夜夜爽夜夜爽视频| 亚洲乱码一区二区免费版| 精品久久久精品久久久| 亚洲天堂国产精品一区在线| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 免费看不卡的av| 一夜夜www| 国产精品一区二区在线观看99 | 联通29元200g的流量卡| 青春草亚洲视频在线观看| 看免费成人av毛片| 国产在视频线精品| 亚洲精品日韩在线中文字幕| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 欧美变态另类bdsm刘玥| av在线播放精品| 亚洲第一区二区三区不卡| 99热全是精品| 热99在线观看视频| 午夜免费观看性视频| 我要看日韩黄色一级片| 久久久久久久久久人人人人人人| 欧美xxxx性猛交bbbb| 亚洲欧美精品专区久久| 老女人水多毛片| 色综合站精品国产| www.av在线官网国产| 一本一本综合久久| 婷婷色麻豆天堂久久| 内地一区二区视频在线| 有码 亚洲区| 人妻制服诱惑在线中文字幕| 禁无遮挡网站| av播播在线观看一区| 亚洲av在线观看美女高潮| 美女黄网站色视频| 国产午夜精品论理片| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 晚上一个人看的免费电影| 97超视频在线观看视频| 久久久久久久久中文| 91精品伊人久久大香线蕉| 国产高潮美女av| 又爽又黄无遮挡网站| 美女黄网站色视频| 麻豆成人av视频| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av| 国产v大片淫在线免费观看| 亚洲精品色激情综合| 久久久久免费精品人妻一区二区| 亚洲精品国产av成人精品| 午夜福利在线在线| 国产在视频线在精品| 精品一区在线观看国产| 国产精品一区二区在线观看99 | 精品熟女少妇av免费看| 亚洲一区高清亚洲精品| av免费在线看不卡| 国产伦一二天堂av在线观看| 毛片女人毛片| 国产三级在线视频| 久久久久久久亚洲中文字幕| 免费大片18禁| 免费观看av网站的网址| 日本黄色片子视频| 国产成年人精品一区二区| 麻豆成人av视频| 亚洲最大成人手机在线| 国产 一区精品| 亚洲在线观看片| 免费观看性生交大片5| 人妻夜夜爽99麻豆av| 国产v大片淫在线免费观看| 欧美精品国产亚洲| 国内精品一区二区在线观看| 中文乱码字字幕精品一区二区三区 | 好男人视频免费观看在线| 国产黄色免费在线视频| 99久久人妻综合| 日本猛色少妇xxxxx猛交久久| 亚洲色图av天堂| 久99久视频精品免费| 久久这里只有精品中国| 亚洲精华国产精华液的使用体验| 久久久久九九精品影院| 亚洲熟女精品中文字幕| 精品久久久噜噜| 69人妻影院| 午夜福利网站1000一区二区三区| 久久久久久久国产电影| 国产精品日韩av在线免费观看| 国产精品.久久久| 水蜜桃什么品种好| 亚洲怡红院男人天堂| 亚洲在线自拍视频| 2018国产大陆天天弄谢| 久久久久久久国产电影| 成人欧美大片| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| av在线天堂中文字幕| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 秋霞伦理黄片| 听说在线观看完整版免费高清| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| av在线亚洲专区| 亚洲国产欧美人成| 可以在线观看毛片的网站| 欧美一区二区亚洲| 免费av不卡在线播放| 18禁裸乳无遮挡免费网站照片| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 国产精品一区二区三区四区免费观看| 视频中文字幕在线观看| 免费大片黄手机在线观看| 大片免费播放器 马上看| 国产av码专区亚洲av| 老司机影院成人| 国产亚洲5aaaaa淫片| 高清毛片免费看| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 能在线免费看毛片的网站| 国产亚洲5aaaaa淫片| 成人综合一区亚洲| 国产高清国产精品国产三级 | 免费少妇av软件| 国产成人a∨麻豆精品| 大话2 男鬼变身卡| av线在线观看网站| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 久久久久久久国产电影| 国产成人精品婷婷| 亚洲性久久影院| av卡一久久| 午夜福利在线观看免费完整高清在| 最近2019中文字幕mv第一页| 婷婷色综合大香蕉| 久久久久性生活片| 只有这里有精品99|