• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cicada(Tibicen linnei)steers by force vectoring

    2016-11-14 03:41:51SamaneZeyghamiNidhinBabuHaiboDong

    Samane Zeyghami,Nidhin Babu,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA,22904,United States

    Cicada(Tibicen linnei)steers by force vectoring

    Samane Zeyghami,Nidhin Babu,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA,22904,United States

    H i G H L i G H T s

    ?Several free flights of cicada(Tibicen linnei)are studied(total of 42 wingbeats).

    ?Coordination between the aerodynamic force generation and change in flight path is investigated.

    ?Measurements and calculations show that the aerodynamic force is fixed to the body frame.

    ?Findings reveal that a simple force vectoring technique is used for steering all these flights.

    ?A similar strategy can be applied to the design of Micro Air Vehicles.

    A R T i C L Ei N F O

    Article history:

    Accepted 25 December 2015

    Available online 4 February 2016

    Cicada

    Free flight

    Force vectoring

    Aerial maneuver

    Force control

    To change flight direction,flying animals modulate aerodynamic force either relative to their bodies to generate torque about the center of mass,or relative to the flight path to produce centripetal force that curvesthetrajectory.Inemployingthelatter,thedirectionofaerodynamicforceremainsfixedinthebody frame and rotations of the body redirect the force.While both aforementioned techniques are essential for flight,it is critical to investigate how an animal balances the two to achieve aerial locomotion.Here,we measured wing and body kinematics of cicada(Tibicen linnei)in free flight,including flight periods of both little and substantial body reorientations.It is found that cicadas employ a common force vectoring techniquetoexecutealltheseflights.Weshowthatthedirectionofthehalf-strokeaveragedaerodynamic force relative to the body is independent of the body orientation,varying in a range of merely 20 deg. Despite directional limitation of the aerodynamic force,pitch and roll torque are generated by altering wing angle of attack and its mean position relative to the center of mass.This results in body rotations which redirect the wing force in the global frame and consequently change the flight trajectory.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Thecapacitytochangetheflighttrajectoryisessentialforaerial locomotion and survival of flying animals.To adjust the flight course,flying animals modulate the magnitude and orientation of aerodynamic force by altering their wing kinematics.Highly maneuverable insects such as dragonflies[1,2],damselflies[3]and fruit flies[4]are capable of adjusting the wing stroke plane angle as well as the orientation of the wing in this plane to achieve exceptional control over the aerodynamic force.The ability to change the force direction relative to the body allows these insects to generate aerodynamic torque about the center of mass for body reorientation.While this enhances the maneuverability of a flying animal,it imposes complexity to the wing biomechanics as well as the control system of the flight[5].Alternatively,measurements have shown that during banked turns flying insects and birds change the flight trajectory while maintaining the direction of aerodynamic force relative to their bodies.In these maneuvers,animals rely on whole-body rotations to redirect the force in the global frame.This strategy is referred to as force vectoring[5]and wasobservedinbankedturnsofinsects[6],bats[7]andbirds[5,8]. It was argued that force vectoring allows minimal modulations of the wing motion relative to the body[5].While this is beneficial forsimplifyingthewingbiomechanics,somedegreeofcontrolover theaerodynamic forcedirection relativetothebody isessential for stability and maneuverability[9].

    Understanding the coordination between the aerodynamic force production and the flight reorientation is fundamental to comprehending the aerial locomotion of the insects and birds. Previous measurements and investigations mostly focused on a single flight mode and therefore their conclusions cannot be generalizedtootherflightswithoutfurtherinvestigations.Herewe asked to what extend a flying animal alters the force orientation relativetoitsbodyinordertosteer.Topursuethisgoal,westudied a variety of flights of cicada(Tibicen linnei),including periods of little as well as substantial body reorientations,to examine theextent to which the aerodynamic force is modulated for achieving this range of flights.

    Fig.1.(a)Wing and body coordinate systems of cicada.(b)A selected sequence of images from the reconstructed wing and body motion of different flights.(c)Body kinematics of the cicada in different flights.(d)A sample wing tip trajectory of each flight.The dashed straight line shows the average stroke plane.

    Several cicadas(Tibicen linnei)were captured in Dayton,Ohio. A network of marker points were drawn on the wings which were later used to track the motion of the wings.Natural features of the body such the eyes were used to track the body motion. The recording area is equipped with three orthogonally placed Photron Fastcam SA3 60k high speed cameras synchronized to record at 1000 frames per second.After recording several flights of each individual,the wing and body length((35±2)mm and(30±1)mm for wing and body,respectively)as well as the body mass((1050±100)mg)were measured.All statistical results are presented as(mean±standard deviation(SD)).A manual 3D surface reconstruction technique was applied to the output from the cameras[10].The motion of the wings and the body were tracked at each frame(every millisecond)using all three orthogonal images.The reconstructed 3D surfaces of the wings and the body were then meshed using triangular grids[11].The location of mesh nodes were used to define the wing and the body kinematics.Kinematics of the body can be easily extracted by identifying the location of three points on the body that define a surface(not along a single line).We used the tail,head and the top-thorax points.To obtain rigid wing kinematics,the root mean squared plane of the wing was defined based on the position of the marker points on the wing at each frame.Since the fore and hind wing move together during flight,they were treated as one wing platform.The orientation of the rigid wing relative to the body was thenexpressedbythreeEulerangles;flapping,deviationandpitch. Theflappinganglerepresentstheforward-backwardmotionofthe wing.Deviation is up and downs motion of the wing with respect to its joint and pitch is the wing rotation about its hinge axis to the body(Fig.1a).

    Over 50 free flights of cicada were recorded during summers of 2011 and 2012.Different flight modes including forward flight,vertical takeoff,banked turn and Immelmann turns were captured among these flights.While the majority of these flights involve significant change in flight heading,we never observed a yaw turn as was reported in other insects and birds such as fruit flies[12],dragonflies[1],damselflies[3]and hummingbird[13].The flight heading change was executed via banked turns or Immelmann turns.To advance with our investigation on understanding the aerodynamics and flight mechanics of cicada free flight,we selected four representative flights composing total of 42 full wingbeats.A selected sequence of images of all these flights are shown in Fig.1b with the quantitative measurements of the body displacement and orientation being presented in Fig.1c.Flight 1,consists of two phases of moving on a straight line with a small body pitch angle and an average forward velocity of 1.88 m·s-1followed by a pitch up and deceleration of the forward velocity. Flight 2 is a banked-turn during which the flight heading changed by 150 deg.The body rolled to the left within the first two flapping stokes,reaching a 90 deg bank angle.The bank angle is very extreme compared to what was observed in turn flights of other insectssuchasfruitflies[4]andblowflies[14].Themaximumbody roll velocity approached 4000 deg·s-1in this phase.The turn is followed by a slow roll back and flying forward while maintaining the body orientation.Flight 3 resembles an Immelmann(or rolloff-the-top)turnwhichconsistsofanascendinghalf-loopfollowed by a fast roll.After takeoff and a short phase of forward flight,the cicada pitched up in a vertical loop,with mean radius of 0.9 body length,until it attained an upside down orientation with respect to the ground.The maximum pitch velocity exceeded 3000 deg·s-1and was reached at the early stages of pitching up phase.Subsequently,the cicada rolled to reposition the body in straight flight orientation.In flight 4,the cicada body pitched up from 0 to 90 deg within two wingbeats and continued to ascend while maintaining its orientation(body axis normal to the ground)for the next five wingbeats.The vertical velocity of the center of mass was 0.36 m·s-1during this phase.The initial phase was followed by a fast spinning which altered the body’s bank angle more than 180 deg.Rotations faster than 700 deg·s-1occurred about an axis which lies in the body’s frontal plane with the angle between rotation axis and the body normal being(92±22)deg.Several performance parameters of these flights are summarized in Table 1.

    Table 1 Performance parameters of different cicada flights.BL and WB stand for body length and wing beat,respectively.

    Fig.2.(a)Validation of the quasi-steady model with high fidelity simulations of cicada in forward flight[15].The orientations of FDS(b)and FUS(c)with respect to the normal to the body are colored differently for each flight.The angle between the force vector and the normal to the body is measured clockwise and the length of the arrow represents the magnitude of the normalized force.The clustering of the arrows in downstroke and upstroke shows that the orientation of the aerodynamic force relative to the body is independent of the body orientation.(d)The orientation of the aerodynamic force relative to the body normal vector is limited to the surface of a cone with the axis of the cone coinciding with the body normal and the angle of the cone of 17 and 135 deg for downstroke(green cone)and upstroke(blue cone),respectively.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    Despite the large body reorientation,the motion of the wings relative to the body was stereotypical among all the flights,with small flapping amplitude and fast rotations at the stroke reversal. The wing tip trajectories were oval shaped with the ratio of the minor to major axis lengths being 0.28±0.09(Fig.1d).The wing stroke plane angle is inclined with respect to the body with wings moving forward and downward in downstroke and backward and upward in upstroke.Despite the substantial changes in the body orientation,the variations in the stroke plane angle with respect to the body were small which implies these insects have little control over this angle.The average stroke planes angles with respect to the body remains relatively invariant;(47±12)deg(n=84).Besides slight variations in the wing stroke plane angle,theflappingamplitudeofthewinginthestrokeplaneaswellasthe mean flapping angle(the average location of the wing with respect to the center of mass)was modulated from one stroke to another. Flapping frequency varied slightly among the individuals as well as during the maneuver;(50.5±8.8)Hz(n=42).In addition,cicadas were able to adjust the ratio of the downstroke to upstroke duration between 0.6 and 1.4.Orientation of the wing surface with respect to the stroke plane was adjusted via modulating the wing pitch angle.The pitch angle of the wing is shallow in downstrokes but varies largely;(-7.1± 11.5)deg,whereas it is higher in upstrokes;(31.6±20.1)deg.

    To probe the dynamics of these flight,we calculated the aerodynamic force generated by the wings,using a quasi-steady model[16,17].The accuracy of the method was examined by comparing our prediction with the aerodynamic lift calculated fromhighfidelityCFDsimulationsofacicadainforwardflight[15],shown in Fig.2a.Aerodynamic force was generated in both downstroke and upstroke.When flying forward(i.e.flight 1),the downstroke force carries out the entire weight supporting role whileupstrokeforceprovidesthepropulsion.Yet,theseroleswere found to be interchangeable when body reorients during the aerial maneuvers.For instance in both turning flights reported in this work,thedownstrokeforceprovidedthecentrifugalforcerequired for bending the flight path while the weight supporting role was mostlycarriedoutbyupstrokeforceduetotherotationofthewing strokeplanemovingwiththebody(Fig.3a).Tofurthervalidateour theory,weestimatedtheaveragecentripetalaccelerationinflights 2-4 using the average travel velocity and the radius of turn.The calculated values were below 9.2 m·s-2(<g)for all these flights,guaranteeing that the lift force is able to provide this acceleration.

    To quantify the variation of the aerodynamic force direction during flight,we calculated the angle between the averagedaerodynamic force in downstroke,F(xiàn)DS,and upstroke,F(xiàn)US,and the normal vector to the body for all 42 wingbeats.All forces were normalized by the body weight.The results are plotted in Fig.2b andc.Visualinspectionofthisfigureillustratesthattheorientation of the aerodynamic force in both downstroke and upstroke is restricted relative to the body,regardless of the body orientation. In particular,F(xiàn)DSmaintains a uniform orientation with respect to the body’s normal vector,with the angle between the two vectors being(17±7)deg.The angle between FUSand the body normal is(135±10)deg.These results show that cicada can only change the direction of the aerodynamic force vector in a restricted range in its body frame.In fact,the orientation of the aerodynamic force relative to the body normal is restricted to the surface of a cone with its axis coinciding with the body normal(Fig.2d).While a similar phenomenon was observed in banked turn of smaller insectssuchasfruitflies[4,6,18],houseflies[19]andblowflies[20],our results for the first time show that a wide range of flight modes can be achieved by force vectoring.This technique eliminates the need for altering the orientation of the force relative to the body and thus simplifies the design of the wing joint biomechanics.

    Fig.3.(a)The orientation of the average aerodynamic force(FDSand FUS),body normal vector(n)and the cicada body are shown within a consecutive downstroke and upstroke of flight 3.The flight path is shown with dashed lines and inside the curvature of the flight path is shaded.It is evident that due to the body orientation in the global frame,the downstroke force is relatively normal to the flight path,providing the centripetal force for curving the trajectory.On the other hand,the upstroke force has a large upward component that resists gravitational force.(b)Pitch-torque-producing wing tip trajectories of flight 4 are colored by the stroke averaged pitch torque generated by the wing.The cicada shifts the wing’s average position(shown by a closed circle with the same color as the tip trajectory)relative to the center of mass(black and white circle)to generate pitch torque.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    To change the movement trajectory,the orientation of the force relative to the flight path has to change.To investigate the mechanism by which cicadas redirect the force in the global frame,we examined the relative orientation of the rotation axis(for rotations faster than 700 deg·s-1)and the half-stroke-averaged force.Body rotations that occur about the force vector preserve the orientation of the force in the global frame and do not result in flight trajectory changes.On the contrary,rotations about an axis that deviates from aerodynamic force,redirects the force and thus alters the flight trajectory.Our results show that body rotations occur about an axis which predominantly redirects the aerodynamic force;the angles between the rotation axis and FDSand FUSwere(75±12)deg and(56±21)deg,respectively.

    Despite the directional limitation of the aerodynamic force in the body frame,cicadas can generate rotations about the body roll and pitch axes.Roll torque was produced by asymmetrically varying the angle of attack of the bilateral wings.The magnitude of the roll torque was strongly correlated with the wing angle of attack(R2=0.6,n=84).Pitch torque was exerted by shifting the mean position of the wing to offset the force relative to the center of mass(Fig.3b),similar to the technique employed by fruit flies[21].Themagnitudeofthepitchtorquewasdirectlycorrelated with the average wing deviation angle(R2=0.63).Since,the downstroke force is normal to the cicada body,no significant yaw torque can be generated during this half of the flapping cycle. However,in upstroke,asymmetric bilateral wing kinematics can result in yaw torque generation.Our measurements show that the magnitude of the yaw velocity is smaller than that of pitch or roll velocity and oscillates within wingbeats,increasing in upstroke and decreasing in downstroke.

    We conclude that all the free flights studied here are governed by a unified force control strategy,despite the fact that they share little in common with regard to the body orientation and motion.Therestrictedvariationsintheorientationoftheaerodynamic forcerelativetothebodynecessitatesthebodytoreorientforredirecting the force and changing the flight path.Directional limitation of the aerodynamic force in the body frame also simplifies the mechanicsofthewinghinge,asitreducestheneedforimplementing complex alternations in the wing motion.The importance of these results is twofold;they clarify the aerodynamics and mechanics of cicada free flight,and they prove that force vectoring can be successfully implemented for designing large payload and yet maneuverable flapping wing micro air vehicles(MAVs).

    Acknowledgments

    This research is funded by the National Natural Science Foundation of China(1313217)and Air Force Office of Scientific Research(FA9550-12-1-007)monitored by Dr.Douglas Smith.

    [1]D.E.Alexander,Wind tunnel studies of turns by flying dragonflies,J.Exp.Biol. 122(1986)81-98.

    [2]C.Koehler,T.Wischgou,H.Dong,et al.,Vortex visualization in ultra low reynolds number insect flight,IEEE Trans.Vis.Comput.Graphics 17(2011)2071-2079.

    [3]S.Zeyghami,H.Dong,Coupling of the wings and the body dynamics enhances damselfly maneuverability,2015 arXiv:1502.06835,arXiv preprint.

    [4]S.N.Fry,R.Sayaman,M.H.Dickinson,The aerodynamics of free-flight maneuvers in drosophila,Science 300(2003)495-498.

    [5]I.G.Ros,L.C.Bassman,M.A.Badger,et al.,Pigeons steer like helicopters and generate down-and upstroke lift during low speed turns,Proc.Natl.Acad.Sci. 108(2011)19990-19995.

    [6]F.T.Muijres,M.J.Elzinga,J.M.Melis,et al.,F(xiàn)lies evade looming targets by executing rapid visually directed banked turns,Science 344(2014)172-177.

    [7]J.Iriarte-Díaz,S.M.Swartz,Kinematics of slow turn maneuvering in the fruit bat cynopterus brachyotis,J.Exp.Biol.211(2008)3478-3489.

    [8]T.Hedrick,A.Biewener,Low speed maneuvering flight of the rose-breasted cockatoo(Eolophus roseicapillus).I.Kinematic and neuromuscular control of turning,J.Exp.Biol.210(2007)1897-1911.

    [9]K.Y.Ma,P.Chirarattananon,S.B.Fuller,et al.,Controlled flight of a biologically inspired,insect-scale robot,Science 340(2013)603-607.

    [10]C.Koehler,Z.X.Liang,Z.Gaston,et al.,3D reconstruction and analysis of wing deformation in free-flying dragonflies,J.Exp.Biol.215(2012)3018-3027.

    [11]G.Liu,Y.Ren,J.Z.Zhu,et al.,Thrust producing mechanisms in ray-inspired underwater vehicle propulsion,Theor.Appl.Mech.Lett.5(2015)54-57.

    [12]A.J.Bergou,L.Ristroph,J.Guckenheimer,et al.,F(xiàn)ruit flies modulate passive wing pitching to generate in-flight turns,Phys.Rev.Lett.104(2010)148101.

    [13]T.L.Hedrick,B.Cheng,X.Deng,Wingbeat time and the scaling of passive rotational damping in flapping flight,Science 324(2009)252-255.

    [14]C.Schilstra,J.H.Hateren,Blowfly flight and optic flow.I.Thorax kinematics and flight dynamics,J.Exp.Biol.202(1999)1481-1490.

    [15]H.Wan,H.Dong,K.Gai,Computational investigation of cicada aerodynamics in forward flight,J.R.Soc.Interface 12(2015)20141116.

    [16]G.J.Berman,Z.J.Wang,Energy-minimizing kinematics in hovering insect flight,J.Fluid Mech.582(2007)153-168.

    [17]M.Ghommem,D.Garcia,V.M.Calo,Enclosure enhancement of flight performance,Theor.Appl.Mech.Lett.4(2014)062003.

    [18]K.G.G?tz,C.Wehrhahn,Optomotor control of the force of flight in drosophila and musca,Biol.Cybernet.51(1984)129-134.

    [19]H.Wagner,F(xiàn)light performance and visual control of flight of the free-flying housefly(MuscadomesticaL.)I.Organizationoftheflightmotor,Philos.Trans. R.Soc.B 312(1986)527-551.

    [20]C.Schilstra,J.Hateren,Blowfly flight and optic flow.I.Thorax kinematics and flight dynamics,J.Exp.Biol.202(1999)1481-1490.

    [21]J.Zanker,On the mechanism of speed and altitude control in drosophila melanogaster,Physiol.Entomol.13(1988)351-361.

    17 November 2015

    .

    E-mail address:haibo.dong@virginia.edu(H.Dong).

    http://dx.doi.org/10.1016/j.taml.2015.12.006

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Biomechanics and Interdiscipline

    日韩精品青青久久久久久| 韩国高清视频一区二区三区| 亚洲av福利一区| 亚洲激情五月婷婷啪啪| 蜜桃亚洲精品一区二区三区| 日韩亚洲欧美综合| 99九九线精品视频在线观看视频| 日韩三级伦理在线观看| 91aial.com中文字幕在线观看| 欧美一区二区精品小视频在线| 国产一区二区三区av在线| 久久久久久久久大av| 色综合亚洲欧美另类图片| 高清日韩中文字幕在线| a级毛片免费高清观看在线播放| 美女内射精品一级片tv| 久久人人爽人人片av| 可以在线观看毛片的网站| 搞女人的毛片| 午夜福利在线在线| 九九久久精品国产亚洲av麻豆| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 久久草成人影院| 国产免费又黄又爽又色| 精品久久久久久久人妻蜜臀av| 精品国产一区二区三区久久久樱花 | 中文字幕免费在线视频6| 国产成人a区在线观看| 18禁动态无遮挡网站| 国产激情偷乱视频一区二区| 国产老妇女一区| 国产爱豆传媒在线观看| 九色成人免费人妻av| 一区二区三区四区激情视频| 国产精品久久久久久久久免| 国产精品电影一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲成人中文字幕在线播放| 变态另类丝袜制服| 国产精品女同一区二区软件| 美女高潮的动态| 日本一本二区三区精品| 日本黄色视频三级网站网址| av免费观看日本| 亚洲av福利一区| 老司机影院成人| 亚洲av不卡在线观看| 国产 一区 欧美 日韩| av福利片在线观看| av播播在线观看一区| 亚洲精品乱久久久久久| 99久久精品国产国产毛片| 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 亚洲成人av在线免费| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久 | 国产成人a∨麻豆精品| 99热这里只有精品一区| videossex国产| 久久6这里有精品| 中文字幕熟女人妻在线| 国产亚洲最大av| 国产黄片视频在线免费观看| 99九九线精品视频在线观看视频| 淫秽高清视频在线观看| 久久久久久久午夜电影| 成人无遮挡网站| 99久国产av精品| 国产欧美日韩精品一区二区| 亚洲中文字幕日韩| 99热网站在线观看| 亚洲aⅴ乱码一区二区在线播放| 51国产日韩欧美| 成人午夜精彩视频在线观看| 色网站视频免费| 亚洲综合色惰| 在现免费观看毛片| 直男gayav资源| 熟妇人妻久久中文字幕3abv| 国产单亲对白刺激| 欧美性感艳星| 久久久久久久久大av| 亚洲欧美日韩无卡精品| 亚洲电影在线观看av| 成人亚洲欧美一区二区av| 小蜜桃在线观看免费完整版高清| 亚洲成av人片在线播放无| 少妇的逼水好多| 成人欧美大片| 十八禁国产超污无遮挡网站| 丝袜喷水一区| 亚洲精华国产精华液的使用体验| 天堂av国产一区二区熟女人妻| 一级黄色大片毛片| av免费观看日本| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99 | 中文字幕av在线有码专区| 看黄色毛片网站| 边亲边吃奶的免费视频| 久久精品人妻少妇| 床上黄色一级片| 亚洲欧美一区二区三区国产| 亚洲在线观看片| h日本视频在线播放| www.色视频.com| 成人午夜高清在线视频| 99久久人妻综合| 不卡视频在线观看欧美| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 亚洲欧美精品专区久久| 男女边吃奶边做爰视频| 亚洲国产精品成人久久小说| 午夜视频国产福利| 久久久亚洲精品成人影院| 99热网站在线观看| 国产成人aa在线观看| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久 | 一级毛片aaaaaa免费看小| 精品不卡国产一区二区三区| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 成人亚洲精品av一区二区| 亚洲无线观看免费| 亚洲伊人久久精品综合 | 亚洲高清免费不卡视频| 成人美女网站在线观看视频| 午夜福利在线观看免费完整高清在| 少妇的逼好多水| 久久久色成人| 国产精品不卡视频一区二区| 国产亚洲5aaaaa淫片| 亚洲欧洲日产国产| 国产单亲对白刺激| 人妻制服诱惑在线中文字幕| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美在线一区| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 日韩,欧美,国产一区二区三区 | 一级毛片我不卡| 超碰97精品在线观看| 免费无遮挡裸体视频| 免费观看a级毛片全部| 免费电影在线观看免费观看| 一级毛片我不卡| 又爽又黄a免费视频| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 亚洲av成人精品一二三区| 免费搜索国产男女视频| 亚洲精品一区蜜桃| 22中文网久久字幕| 亚洲国产欧美人成| 亚洲美女搞黄在线观看| 三级经典国产精品| 中文在线观看免费www的网站| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 中文字幕av成人在线电影| 嫩草影院新地址| 女人被狂操c到高潮| 尾随美女入室| 久久久久久伊人网av| 一区二区三区乱码不卡18| av在线老鸭窝| 日韩一本色道免费dvd| 欧美一区二区国产精品久久精品| 18禁动态无遮挡网站| 国产毛片a区久久久久| av在线蜜桃| av在线天堂中文字幕| 六月丁香七月| av线在线观看网站| 黄色日韩在线| 我要看日韩黄色一级片| 国产视频内射| 国产av码专区亚洲av| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 国内精品一区二区在线观看| 日本与韩国留学比较| 国产精品女同一区二区软件| 亚洲图色成人| 熟女电影av网| 精品久久久久久久久av| 亚洲av电影不卡..在线观看| 色网站视频免费| 日韩强制内射视频| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 99在线人妻在线中文字幕| 亚洲国产色片| 国产毛片a区久久久久| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 国产老妇女一区| 美女国产视频在线观看| 青春草国产在线视频| 成人美女网站在线观看视频| 日本色播在线视频| 一边摸一边抽搐一进一小说| 日韩在线高清观看一区二区三区| 亚洲国产精品sss在线观看| 久久久成人免费电影| 国产淫片久久久久久久久| 赤兔流量卡办理| 亚洲伊人久久精品综合 | 亚洲精品456在线播放app| 99久久九九国产精品国产免费| 亚洲欧美成人综合另类久久久 | 国产激情偷乱视频一区二区| 少妇丰满av| 嫩草影院入口| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 乱人视频在线观看| 久久人妻av系列| 国内精品美女久久久久久| 亚洲欧美成人综合另类久久久 | 特级一级黄色大片| 免费播放大片免费观看视频在线观看 | 国产精品久久视频播放| 亚洲人成网站在线观看播放| 久久精品夜夜夜夜夜久久蜜豆| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 亚洲av福利一区| 青春草国产在线视频| 成人欧美大片| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看| 亚洲国产精品合色在线| 99久久中文字幕三级久久日本| 久久久国产成人精品二区| 国产精品一区二区三区四区免费观看| 一级毛片电影观看 | 女人久久www免费人成看片 | 亚洲国产最新在线播放| 日本一本二区三区精品| 亚洲欧美精品专区久久| 97热精品久久久久久| 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看 | 成人av在线播放网站| 国产伦精品一区二区三区四那| 最新中文字幕久久久久| 午夜精品在线福利| 免费黄网站久久成人精品| 中文字幕av成人在线电影| 搡老妇女老女人老熟妇| 欧美变态另类bdsm刘玥| 欧美bdsm另类| 免费黄色在线免费观看| 国产精品国产高清国产av| or卡值多少钱| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 久久精品久久精品一区二区三区| 真实男女啪啪啪动态图| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 国产精品.久久久| 精品午夜福利在线看| 热99re8久久精品国产| av.在线天堂| 变态另类丝袜制服| 99热6这里只有精品| 一级黄色大片毛片| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o | 狠狠狠狠99中文字幕| 高清在线视频一区二区三区 | 少妇裸体淫交视频免费看高清| 国产乱来视频区| 国产黄片美女视频| 精品午夜福利在线看| 久久精品国产亚洲av天美| 午夜福利网站1000一区二区三区| 午夜福利网站1000一区二区三区| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 日韩三级伦理在线观看| 又爽又黄a免费视频| 网址你懂的国产日韩在线| 又粗又硬又长又爽又黄的视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲丝袜综合中文字幕| 中文天堂在线官网| 亚洲四区av| 麻豆成人av视频| a级毛片免费高清观看在线播放| 久久久久久久国产电影| 97人妻精品一区二区三区麻豆| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区 | 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 男人和女人高潮做爰伦理| 黄色日韩在线| 我要看日韩黄色一级片| 久久久久久久亚洲中文字幕| av国产免费在线观看| 建设人人有责人人尽责人人享有的 | 26uuu在线亚洲综合色| 男插女下体视频免费在线播放| 黄色一级大片看看| 精品久久国产蜜桃| 国产色婷婷99| 看非洲黑人一级黄片| 成年免费大片在线观看| 身体一侧抽搐| 亚洲国产最新在线播放| 亚洲欧美日韩东京热| 嫩草影院精品99| 国产在视频线在精品| 国产 一区精品| 久99久视频精品免费| 人妻制服诱惑在线中文字幕| 久久6这里有精品| 成人欧美大片| 国产一区二区在线av高清观看| 久热久热在线精品观看| 蜜臀久久99精品久久宅男| 18禁裸乳无遮挡免费网站照片| 99热这里只有精品一区| 哪个播放器可以免费观看大片| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花 | 国产精品.久久久| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 国产真实乱freesex| 午夜福利在线观看免费完整高清在| 狠狠狠狠99中文字幕| 亚洲图色成人| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| ponron亚洲| 丝袜美腿在线中文| 三级经典国产精品| 青青草视频在线视频观看| 在线播放无遮挡| 97超视频在线观看视频| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 国产在视频线精品| 黄色日韩在线| 少妇的逼好多水| 级片在线观看| 日本午夜av视频| 极品教师在线视频| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 日本黄色片子视频| 亚洲欧美精品专区久久| 最近2019中文字幕mv第一页| 神马国产精品三级电影在线观看| 午夜爱爱视频在线播放| 日日啪夜夜撸| 亚洲国产色片| 又粗又爽又猛毛片免费看| 午夜福利在线观看吧| 在线a可以看的网站| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 国产不卡一卡二| 国产亚洲av嫩草精品影院| 99视频精品全部免费 在线| 嫩草影院新地址| 亚洲最大成人中文| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 色视频www国产| 人妻夜夜爽99麻豆av| 亚洲五月天丁香| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 91午夜精品亚洲一区二区三区| 亚洲综合精品二区| av在线蜜桃| 熟女人妻精品中文字幕| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影小说 | 日本黄色视频三级网站网址| 六月丁香七月| 色综合色国产| 久久99热这里只频精品6学生 | 色噜噜av男人的天堂激情| 51国产日韩欧美| 国产av在哪里看| 老司机影院成人| 两个人的视频大全免费| 国模一区二区三区四区视频| 国产精品1区2区在线观看.| 观看美女的网站| 欧美变态另类bdsm刘玥| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 国产一区二区在线观看日韩| 别揉我奶头 嗯啊视频| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影 | 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 免费看av在线观看网站| 免费观看a级毛片全部| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| a级毛色黄片| 亚洲国产精品合色在线| 久久韩国三级中文字幕| 亚洲丝袜综合中文字幕| 亚洲精品久久久久久婷婷小说 | 免费无遮挡裸体视频| 好男人视频免费观看在线| 天天一区二区日本电影三级| 久久午夜福利片| 日韩一区二区视频免费看| 亚洲av成人av| 国产 一区 欧美 日韩| 国产一区二区三区av在线| 国产视频内射| 91狼人影院| a级毛片免费高清观看在线播放| 91狼人影院| 国产免费视频播放在线视频 | 日韩欧美 国产精品| 亚洲欧美一区二区三区国产| 少妇人妻一区二区三区视频| 国产69精品久久久久777片| 最新中文字幕久久久久| 亚洲国产成人一精品久久久| 免费不卡的大黄色大毛片视频在线观看 | 最近手机中文字幕大全| 三级国产精品欧美在线观看| 99在线视频只有这里精品首页| 一个人看的www免费观看视频| 国产黄片视频在线免费观看| 最近最新中文字幕大全电影3| 有码 亚洲区| 欧美日本视频| 国产精品精品国产色婷婷| 精品酒店卫生间| 亚洲精品456在线播放app| 日韩一本色道免费dvd| av女优亚洲男人天堂| 2021天堂中文幕一二区在线观| 中文字幕精品亚洲无线码一区| 中文欧美无线码| 99热这里只有是精品在线观看| 精华霜和精华液先用哪个| 嘟嘟电影网在线观看| 99久久精品热视频| 男女那种视频在线观看| 舔av片在线| 麻豆一二三区av精品| 深爱激情五月婷婷| 国产精品不卡视频一区二区| 六月丁香七月| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 人体艺术视频欧美日本| 狂野欧美白嫩少妇大欣赏| 亚洲精品aⅴ在线观看| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 国产高清三级在线| 七月丁香在线播放| 国产又色又爽无遮挡免| av免费在线看不卡| 国产高清三级在线| 精品一区在线观看国产| 97超碰精品成人国产| 在线观看免费高清a一片| 少妇高潮的动态图| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 婷婷成人精品国产| 只有这里有精品99| av在线app专区| 草草在线视频免费看| 国产又爽黄色视频| 亚洲精品日韩在线中文字幕| 黄色 视频免费看| 国产极品天堂在线| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 亚洲精品456在线播放app| 成人国语在线视频| 国产爽快片一区二区三区| 一级毛片 在线播放| 精品一区二区三区视频在线| 两性夫妻黄色片 | 国产男女超爽视频在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品 国内视频| 最近的中文字幕免费完整| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 啦啦啦视频在线资源免费观看| 欧美激情国产日韩精品一区| 又黄又粗又硬又大视频| 黄色配什么色好看| 热99国产精品久久久久久7| 90打野战视频偷拍视频| 热99国产精品久久久久久7| 国产精品无大码| 超碰97精品在线观看| 18禁裸乳无遮挡动漫免费视频| 一级爰片在线观看| xxxhd国产人妻xxx| 成人免费观看视频高清| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 乱人伦中国视频| 中国三级夫妇交换| 宅男免费午夜| 精品一区在线观看国产| 久久国产精品大桥未久av| 精品少妇久久久久久888优播| 精品酒店卫生间| 一级片'在线观看视频| 精品视频人人做人人爽| 亚洲精品日韩在线中文字幕| 一级,二级,三级黄色视频| 毛片一级片免费看久久久久| www.av在线官网国产| 久久午夜综合久久蜜桃| 亚洲欧美成人精品一区二区| 精品久久蜜臀av无| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 热re99久久精品国产66热6| 99国产精品免费福利视频| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区 | 国产精品熟女久久久久浪| 又黄又爽又刺激的免费视频.| 国产 一区精品| 免费黄色在线免费观看| 日韩人妻精品一区2区三区| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精| 免费观看a级毛片全部| 国产精品一区www在线观看| 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看| 久久ye,这里只有精品| 一级爰片在线观看| 午夜激情久久久久久久| 亚洲少妇的诱惑av| 人人妻人人澡人人看| av线在线观看网站| 91aial.com中文字幕在线观看| 在线观看免费高清a一片| 91精品三级在线观看| 国产高清国产精品国产三级| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 国产麻豆69| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 在线看a的网站| 卡戴珊不雅视频在线播放| 18禁国产床啪视频网站| 丰满乱子伦码专区| 蜜桃在线观看..| 2018国产大陆天天弄谢| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频 | 国产深夜福利视频在线观看| 又大又黄又爽视频免费| 婷婷成人精品国产| 亚洲国产精品专区欧美| 国产xxxxx性猛交| 亚洲国产精品一区三区| 永久免费av网站大全| 在线观看www视频免费| 国产男人的电影天堂91| 丝袜在线中文字幕| 男女高潮啪啪啪动态图| 人妻一区二区av| 在线 av 中文字幕| 国产一区二区在线观看av| 免费少妇av软件| 美女内射精品一级片tv| 免费av不卡在线播放| 亚洲国产色片| 久久这里只有精品19|