• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy-Casimir method

    2016-11-14 03:41:49YulongYanBaozengYue

    Yulong Yan,Baozeng Yue

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy-Casimir method

    Yulong Yan,Baozeng Yue?

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    H i G H L i G H T s

    ?The mechanical model of the coupled spacecraft system is constructed.

    ?The nonlinear stability conditions are obtained by using the energy-Casimir method.

    ?The stability region of the coupled system is obtained in the parameter space.

    A R T i C L Ei N F O

    Article history:

    3 March 2016

    Accepted 4 March 2016

    Available online 24 March 2016

    Energy-Casimir method

    Liquid sloshing

    Nonlinear stability

    Flexible appendage

    The stability of partly liquid filled spacecraft with flexible attachment was investigated in this paper. Liquidsloshingdynamics wassimplifiedas thespring-massmodel,and flexibleattachmentwasmodeled as the linear shearing beam.The dynamic equations and Hamiltonian of the coupled spacecraft system were given by analyzing the rigid body,liquid fuel,and flexible appendage.Nonlinear stability conditions of the coupled spacecraft system were derived by computing the variation of Casimir function which was added to the Hamiltonian.The stable region of the parameter space was given and validated by numerical computation.Related results suggest that the change of inertia matrix,the length of flexible attachment,spacecraft spinning rate,and filled ratio of liquid fuel tank have strong influence on the stability of the spacecraft system.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The rapid development of aerospace industry requires modern spacecrafttocarrylargeamountsofliquidfuel,andthesizeofflexible attachments such as the solar panel,antennae,manipulator,is much bigger than before.The motion of the rigid body,liquid fuel,and flexible attachments constituted the complex dynamic system of spacecraft.Take the Cassini-Huygens as an example,which is an unmanned spacecraft sent to the planet Saturn[1].The spacecraftatlaunchweighed5712kg,whichincluded3132kgofpropellants.The flexible appendages of the spacecraft contained an 11-meter boom which was used to mount the magnetometer instrument and three other 10-meter rod-like booms which acted as the antennas for the radio plasma wave subsystem.The influence of liquid fuel and flexible attachments should be considered in modeling and analyzing of spacecraft dynamic system,while the weak nonlinear analysis based on perturbation theory was not appropriate for this situation.Related researches[2,3]show that complex nonlineardynamicbehaviorssuchasstatic,periodicmotion,quasiperiodic motion and chaos will be shown in the coupled spacecraft system,and the types of stable motion in-plane modes and outplane modes are different when the parameters of the external excitation varied.

    Energy-Casimir method can be viewed as a generalization of the classical Lagrange-Dirichlet method and was first proposed by Arnold[4]in studying the stability of stationary flows of perfect liquid.This method was widely used in stability analysis such as the rigid body with flexible appendage[5,6],liquid and plasmas[7].Casimir function[8]should be used when the energy-Casimir method was adopted in stability analysis. In this way,the conserved quantity can be captured by the Casimir function.In order to overcome the difficulty of constructing the Casimir function,energy-moment method was used to research the stability problems.Energy-moment method is a simplified method because the energy function and the moment map were employed in stability analysis.Simo[9]showed the stability of relative equilibria by the reduced energy-momentum method,and analyzed the nonlinear stability of three dimensional elasticity[10],coupled rigid bodies and geometricallyexact rods[11].This method has been extended into stability analysis of the rigid body with a spring-mass particle in the perfect liquid[12],underwater vehicle[13,14],nonholonomic system[15],and plasmas[16].

    The stability of the rigid body with flexible attachments can be analyzed by using energy-Casimir method.The dynamic equations of the rigid-flexible coupled system were derived by using Hamiltonian and Poisson bracket,and the stability of the coupled dynamic system was analyzed[6].The detailed derivations of the nonlinear stability of the rigid body with a linear shearing beam,and the stability conditions of the trivial and untrivial solutions were obtained[5].The rotation and translation motion of the rigid body with a cantilever beam was discussed by Kane[17],and centrifugal stiffening effect was first proposed.Coupled system which wasconstitutedbyaplanarrigidbodyandflexibleattachmentwas studied by Bloch[18],and the nonlinear stability of the equilibria of the equations was discussed.There are also some papers about attitude stability of liquid filled spacecraft.Nonlinear stability of asymmetrical rigid body with full liquid filled satellite was researched by using energy-Casimir method[19],while the self-spinning stability of full liquid filled satellite with flexible appendage was also studied by the same method[20].The attitude stability of partly liquid filled spacecraft was researched by using energy-Casimir methods,and the liquid sloshing dynamics was simplified as equivalent mass-spring mechanical model[21]and pendulum model[22]to analogue the liquid sloshing dynamics,the stability conditions,and stable region were also given.

    In order to meet the precision requirement for modern liquid filled spacecraft with flexible appendages,the impact of rigid-flexible-liquid coupled effect on the spacecraft dynamics and control should be more carefully considered in detail.The equivalent mechanics models and computational fluid dynamics were often used to estimate the dynamic influence of propellant sloshing and attachment vibration on spacecraft[23].Hybridcoordinate and spring-mass equivalent model[24],smoothed particle hydrodynamics and absolute nodal coordinate formulation[25]can be utilized to model the spacecraft consisting of a liquid-filled rigid platform and some flexible appendages.There are also some control strategies,such as the variable structure controller[26],robust input shapers[27]for sloshing suppression of the coupled spacecraft system.The attitude maneuver of liquid-filled spacecraft with a cantilever appendage was studied by Yang[28]and the stability criteria of attitude maneuver were derived,while the sloshing liquid was modeled as a viscous pendulum.Relatedresearchesmentionedabovemainlyfocusedondynamical modeling and control scheme of the rigid-liquid-flexible coupledspacecraftsystem.However,itisfarawaytobecompletely solvedfortherigid-liquid-flexiblecoupleddynamicsproblem.For example,as we known,little attention has been devoted to the analytic solution of the stability of partly liquid filled spacecraft system with flexible attachment which plays an important role in the spacecraft dynamics analysis.Energy-Casimir method is an effective method to deal with the stability problem of spacecraft system,and the general stability conditions of the coupled spacecraft system can be obtained.

    This paper is concentrated on the stability of the rigid-liquidflexible coupled spacecraft dynamical system by the energy-Casimir method.The liquid fuel is modeled as a mass-spring mechanical model in order to consider lateral moving in one direction.For linear planar lateral liquid motion,this model is effective to describe linear dynamics of liquid motion and can be used to formulate the dynamic system behavior properly. The flexible attachment is simplified as a linear shearing beam. The framework of this article is this:The mechanical model of the coupled system is given,and dynamic equations and Hamilton function are deduced.Stability conditions were derivedby computing the variation of Casimir and energy function.The spin-rotation stability conditions of the coupled spacecraft system were given and the effectiveness of the theoretical derivation was verified by numerical simulation.Related results suggest that the change of inertia moment of rigid spacecraft,the length of beam,and filled ratio of the tank have strong influence on the stability of the coupled system.Conclusions were presented.

    Fig.1.Dynamic model of liquid filled spacecraft with flexible attachment.

    Fig.2.Equivalent mass-spring mechanical model of liquid fuel in spacecraft.

    The mechanical model of the spacecraft system with flexible attachment and ellipsoid tank is illustrated in Fig.1.In order to research the attitude stability of the coupled system,the body frame is centered at mass center O of the rigid spacecraft.The reference axes(e1,e2,e3)of the body frame are principal axes of rigid spacecraft and JH=diag(j11,j22,j33)denotes the inertia matrix of rigid spacecraft respect to the body frame.

    The equivalent mechanical model which was modeled as the mass-spring mechanical model is shown in Fig.2.Mass of sloshing liquid is represented byˉm,which is attached to the linear spring. The general position ofˉm is rˉm=(rm,0,a1)T,while the static position ofˉm is r′ˉm=(0,0,a1)T.Rest of the fuel mass mFis regarded as stationary,and its position is denoted by rF=(0,0,a2)T.

    The equivalent elastic force applied to moving mass can be denoted by fint=-k(rˉm-r′ˉm)=-?P/?(rˉm-r′ˉm),and k is the equivalent stiffness of the spring.Thus,the energy function of rigid-liquidcoupledsystemisthesumofkineticenergyandelastic potential energy of the spring.

    Next,the model of flexible attachment is considered in the subsequentparts.Theflexibleattachmentissimplifiedasthelinear shearing beam,and the beam is along the direction of e3-axis. The connection position between flexible attachment and rigid body can be represented by b=(0,0,b)T.The length of the beam is L and the uniform mass per unit length of the beam isρ0. The convected displacement and momentum density of the beam at point s are expressed as rb(s)andσ(s),respectively.K is the diagonal matrix of elastic coefficients of the shearing beam.The energy function of the beam can be represented by

    The boundary conditions of the beam are rb(0)=b=Hamiltonian of the coupled system can be given by Eqs.(3)and(4).

    The total angular momentum of the rigid and liquid parts of the spacecraft system can be defined asΠ =JS?- ˉmrˉm×(rˉm×?)+ ˉmrˉm×˙rˉm,and the linear momentum of sloshing mass is set as Pˉm=-ˉmrˉm×?+ ˉm˙rˉm.Thus,the dynamic equations of the coupled spacecraft system can be given.

    The energy and angular momentum of the coupled spacecraft system will be the conserved quantities if the coupled system without external forces or torques.Nonlinear stability of the coupled system will be researched by computing variations of the sum of Hamiltonian and Casimir function.The total angular momentum of the coupled spacecraft system can be expressed asSuppose thatC=‖α‖2,andCasimirfunctioncanbetakenasψ=ψC(C)/2. The first and second variation of Casimir function can be defined asThe expression of the sum of Hamiltonian and Casimir function is

    Firstly,the definitions will be given as follows:

    where f1is the energy function of rigid-liquid coupled system,and f2,f3are the kinetic energy and potential energy of the beam,respectively.The first variations of f1,f2,f3can be given by

    The first variation of Casimir function can be represented by

    The first variation of H+ψcan be derived from Eqs.(9)-(12)

    Next,the second variation of H+ψwill be computed.The second variation of f1can be obtained from Eq.(9).

    where(see Box I).

    Box I.

    Similarly,the second variations of f2,f3can be given from Eqs.(10)and(11).Suppose K is a diagonal matrix.The estimate of the upper bound can be derived by using Poincare-type inequality.

    where c=π2/4L2.Then,the second variation of Casimir function can be computed by Eq.(12).

    From Eqs.(14)-(17),the second variation of H+ψis

    where

    Let P=2ψ′α?α+ψ′I,and the last term of Eq.(18)can be expanded as

    where

    The following expression can be calculated by expanding the last term of Eq.(21).

    Now the quadratic term ofδ?in Eq.(18)and the first term in Eq.(23)will be collected,then

    where

    Similarly,the second and third terms of Eq.(23)can be analyzed by the following definitions:

    Then

    Collect the second term of Eqs.(18)and(24)-(26),then

    The first three terms of Eq.(27)is positive obviously,and the last term of Eq.(27)will be examined.

    where(see Box II).

    Thus,the expression can be obtained from Eq.(29).

    where

    Summarizing above derivations,Eq.(18)can be represented by

    Suppose that Re4,Te2are the matrixes of R4,T2at the equilibrium,respectively.According to Eq.(31),the nonlinear stability theorem of the coupled spacecraft system can be expressed as:if the matrixes Re4,Te2are positive definite,then the coupled spacecraft system is nonlinear stability.

    ThestabilityofsolutionofEq.(6)willbediscussed.Agrawal[29]showed that if a steady-state solution exists,it can only be a rotation of the complete spacecraft,rigid body and propellant,like a rigid body,and for a body with flexible elements,the only stable spin axis is the axis of maximum moment of inertia. The equilibrium of the coupled spacecraft system is expressed as(?e,˙reˉm,reˉm,σe,reb),and the angular velocity is?e= ωe3e3.If the beamdoesnotstretch,thenreb(s)=(b+s)e3,σe(s)=0,0≤s≤l. Equilibrium of sloshing mass satisfied that rm=0,˙rm=0,i.e.the position of the sloshing massˉm is at rest position,and the velocity is zero.The angular momentum at the equilibrium isαe=j33ωe3e3,and the value ofψ′,ψ′at the equilibrium can be represented by

    In order to assure that Te2is positive definite,the following inequalities should be satisfied.

    Box II.

    Fig.3.Distribution of stable region in parameter space(j33,L),and the unshaded area represents the stable region.

    where

    By substituting the equilibrium into the matrix R4,we can get that matrix Re4is the semi-positive.The coupled spacecraft system is nonlinear stability if Eq.(33)are satisfied.Now the physical meaning of these conditions will be explained.The first two inequalities are conditions about the admissible rotation rates of the configuration,i.e.the angular frequency of the system should not exceed the modified characteristic transverse beam frequencies.The last two conditions are similar to the classical stable conditions on the stable axes of rotation for the rigid body,and the inertia should be modified due to liquid fuel and flexible attachments.If liquid fuel is ignored,the stability conditions will be consistent with related conclusions[5].

    The computational results will be given in the following parts. The corresponding parameters are given in Table 1.The unshaded area in Fig.3 represents the stable region in the parameter space(j33,L).It is illustrated in Fig.3 that the increase of the inertia of spacecraft will strengthen the stability of the coupled spacecraft system,while the increase of the length of the beam will weaken the stability of the coupled system.

    The effect of angular velocity to stability of the coupled spacecraft system was given in Fig.4,and the unshaded area in Fig.4 denotes the stable region.It is shown in Fig.4 that the increaseofangularvelocitywillweakenthestabilityofthecoupled system.

    The effect of the filled ratio of tank will be considered.The corresponding parameters are also given in Table 1.Suppose the maximum mass of the liquid fuel in the tank is mliquid=300 kg,and the mass of total liquid denotes as mtotal=mslosh+mrest,wheremslosh,mrestrepresentthemassofsloshingfuelandrestfuel,respectively.Setη=mtotal/mliquidas filled ratio of the fuel tank,and 0≤η≤1.According to the conclusions of sloshing liquid in the spherical tank by Bauer[30]and Dodge[31],the parameters of mslosh/mtotal,mrest/mtotal,a1,a2,and sloshing frequency as the filled ratio of the fuel tank varied can be given.

    Fig.4.Distribution of stable region in parameter space(ωe3,L),and the unshaded area represents the stable region.

    Fig.5.Distribution of stable region asηvaried,and the unshaded area represents the stable region.

    The stable region is shown as unshaded area in Fig.5,while the parameters of rigid spacecraft and flexible attachment are fixed. Stability of the coupled system will be weakened asηless than 0.3. This is related to the rapid increase of mslosh,and mslosh> mrest. The increase rate of mslosh,and mrestwill be almost same as 0.3≤η≤ 0.4,and the boundary of the stable and unstable region has no significant change in parameterη.The increase rate of mrestis rapid than mslosh,as 0.4≤η≤0.62,and the stability of the coupled spacecraft system will be gradually increased.The mass of rest liquid will be larger than that of the sloshing liquid when ηis bigger than 0.62,and the corresponding stable region will be growing rapidly.The results demonstrate that the increase ofmslosh,will reduce the stability of liquid-filled spacecraft,while the increaseofmrestwillstrengthenthestabilityofthecoupledsystem. This result is in agreement with the conclusions by Yue[21](2013)that increase of mslosh,will decrease the stability of liquid filled spacecraft.

    Table 1 Physical parameters for rigid-liquid-flexible coupled spacecraft system.

    This paper mainly concerns about the stability of the liquid filled spacecraft with flexible attachment.First,the model of the rigid-liquid-flexible coupled system was built,the total energy function and Casimir function were constructed by analyzing the Hamiltonian of each subsystem.Then,the equilibrium conditions for the coupled spacecraft system were obtained and nonlinear stability conditions were captured by using the energy-Casimir method.Finally,the numerical computations were conducted to verify the validity of the result presented.The computational results shown that the increase of inertia matrix will strengthen the stability of coupled system,and the increase of the length of beam and the spacecraft spinning rate will weaken the stability of coupled system,while the change of the filled ratio of liquid fuel tankhavecomplexinfluenceonthestabilityofcoupledliquidfilled flexible spacecraft system.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11472041,11532002),the Innovation Fund DesignatedforGraduateStudentsofBeijingInstituteofTechnology(2015CX10003),and the Research Fund for the Doctoral Program of Higher Education of China(20131101110002).

    [1]D.L.Matson,L.J.Spilker,J.Lebreton,The Cassini/Huygens mission to the Saturnian system,Space Sci.Rev.104(2002)1-58. http://dx.doi.org/10.1023/A:1023609211620.

    [2]B.Z.Yue,Nonlinear coupled dynamics of liquid-filled spherical container in microgravity,Appl.Math.Mech.Engl.29(2008)1085-1092. http://dx.doi.org/10.1007/s10483-008-0812-y.

    [3]M.Utsumi,A mechanical model for low-gravity sloshing in an axisymmetric tank,Trans.ASME,J.Appl.Mech.71(2004)724-730. http://dx.doi.org/10.1115/1.1794700.

    [4]V.I.Arnold,An a priori estimate in the theory of hydrodynamic stability,Izv. Vyssh.Uchebn.Zaved.Mat.5(1966)3-5.

    [5]T.A.Posbergh,P.S.Krishnaprasad,J.E.Marsden,Stability analysis of a rigid body with a flexible attachment using the energy-Casimir method,Commun. Contemp.Math.68(1987)253-273.

    [6]P.S.Krishnaprasad,J.E.Marsden,Hamiltonian structures and stability for rigid bodies with flexible attachments,Arch.Ration.Mech.Anal.98(1987)71-93.

    [7]D.D.Holm,J.E.Marsden,T.Ratiu,et al.,Nonlinear stability of fluid and plasma equilibria,Phys.Rep.115(1991)15-59. http://dx.doi.org/10.1007/BF01881678.

    [8]A.M.Bloch,J.Baillieul,P.Crouch,et al.,Nonholonomic Mechanics and Control,Springer,New York,2003.

    [9]J.C.Simo,D.Lewis,J.E.Marsden,Stability of relative equilibria.Part I:The reduced energy-momentum method,Arch.Ration.Mech.Anal.115(1991)15-59.http://dx.doi.org/10.1007/BF01881678.

    [10]J.C.Simo,T.A.Posbergh,J.E.Marsden,Stability of relative equilibria II: Three dimensional elasticity,Arch.Ration.Mech.Anal.115(1991)61-100. http://dx.doi.org/10.1007/BF01881679.

    [11]J.C.Simo,T.A.Posbergh,J.E.Marsden,Stability of coupled rigid body and geometrically exact rods:Block diagonalization and the energy-momentum method,Phys.Rep.193(1990)279-360.http://dx.doi.org/10.1016/0370-1573(90)90125-L.

    [12]C.A.Woolsey,Reduced Hamiltonian dynamics for a rigid body/mass particle system,J.Guid.Control Dyn.28(2005)131-138. http://dx.doi.org/10.2514/1.5409.

    [13]N.E.Leonard,J.E.Marsden,Stability and drift of underwater vehicle dynamics: Mechanical systems with rigid motion symmetry,Physica D 105(1997)130-162.http://dx.doi.org/10.1016/S0167-2789(97)83390-8.

    [14]N.E.Leonard,Stability of a bottom-heavy underwater vehicle,Automatica 33(1997)331-346.http://dx.doi.org/10.1016/S0005-1098(96)00176-8.

    [15]D.V.Zenkov,A.M.Bloch,J.E.Marsden,The energy-momentum method for the stability of non-holonomic systems,Dyn.Stab.Syst.13(1998)123-165. http://dx.doi.org/10.1080/02681119808806257.

    [16]G.Rein,J.Vukadinovic,P.Braasch,Nonlinear stability of stationary plasmas—an extension of the energy-Casimir method,Siam J.Appl.Math.59(1998)831-844.

    [17]T.R.Kane,R.Ryan,A.K.Banerjee,Dynamics of a cantilever beam attached to a moving base,J.Guid.Control Dyn.10(1987)139-151. http://dx.doi.org/10.2514/3.20195.

    [18]A.M.Bloch,Stability analysis of a rotating flexible system,Acta Appl.Math.15(1989)211-234.http://dx.doi.org/10.1007/BF00047531.

    [19]G.Cheng,Y.Z.Liu,Attitude stability of liquid-filled satellite with flexible appendage in gravitational field,Chin.J.Space Sci.17(1997)367-371.(in Chinese).

    [20]J.L.Kuang,K.L.Huang,The nonlinear stability of the liquid-filled satellite with four-flexible-attachments using the energy-Casimir method,Acta Aeronaut. Astronaut.Sin.15(1994)433-439(in Chinese).

    [21]B.Z.Yue,A.Salman,X.J.Song,Casimir method for attitude stability analysis of liquid-filled spacecraft,Sci.Sinica.Ser.A.43(2013)401-406. http://dx.doi.org/10.1360/132012-689.in Chinese.

    [22]A.Salman,B.Z.Yue,Bifurcation and stability analysis of the Hamiltonian casimir model of liquid sloshing,Chin.Phys.Lett.29(2012)060501. http://dx.doi.org/10.1088/0256-307X/29/6/060501.

    [23]K.Dong,N.M.Qi,X.L.Wang,et al.,Dynamic influence of propellant sloshing estimation using hybrid:Mechanical analogy and CFD,Trans.Japan Soc. Aeronaut.Space.Sci.52(2009)144-151.

    [24]Y.H.Jia,S.J.Xu,R.Nie,Modeling and dynamics analysis of liquid-filled flexible spacecraft,J.Beijing Univ.Aeronaut.Astronaut.29(2003)35-38.(in Chinese).

    [25]W.Hu,Q.Tian,H.Y.Hu,Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method,Nonlinear Dyn.75(2014)653-671.http://dx.doi.org/10.1007/s11071-013-1093-3.

    [26]D.L.Peng,Dynamic model and variable structure control for flexible fuel-filled spacecraft,IEEE Pap.(2006)2067-2071. http://dx.doi.org/10.1109/TENCON.2005.301029.

    [27]B.Pridgen,K.Bai,W.Singhose,Shaping container motion for multimode and robust slosh suppression,J.Spacecr.Rockets 50(2013)440-448. http://dx.doi.org/10.2514/1.A32137.

    [28]D.D.Yang,B.Z.Yue,W.J.Wu,etal.,Attitudemaneuverofliquid-filledspacecraft with a flexible appendage by momentum wheel,Acta Mech.Sin.28(2012)543-550.http://dx.doi.org/10.1007/s10409-012-0060-4.

    [29]B.N.Agrawal,Stability of spinning spacecraft with partially liquid-filled tanks,J.Guid Control.Dyn.5(1982)344-350.http://dx.doi.org/10.2514/3.56181.

    [30]H.F.Bauer,W.Eidel,Liquid oscillations in a prolate spheroidal container,in:Nasa Sti/Recon Technical Report N,1988.

    [31]F.T.Dodge,Thenewdynamicbehaviorofliquidsinmovingcontainers,in:Nasa Sti/Recon Technical Report N,2000.

    5 January 2016

    .

    E-mail address:bzyue@bit.edu.cn(B.Yue).

    http://dx.doi.org/10.1016/j.taml.2016.03.001

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Dynamics and Control

    中文字幕人妻丝袜制服| 欧美精品人与动牲交sv欧美| 天堂中文最新版在线下载| 看免费成人av毛片| 欧美丝袜亚洲另类| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 久久久久久久大尺度免费视频| 亚洲精品日本国产第一区| 国内揄拍国产精品人妻在线| www.av在线官网国产| 丝瓜视频免费看黄片| 18禁在线无遮挡免费观看视频| 99久久精品热视频| 免费观看在线日韩| 日韩精品免费视频一区二区三区 | 国产精品久久久久久av不卡| 各种免费的搞黄视频| 99久久精品一区二区三区| 亚洲人与动物交配视频| 亚洲欧洲日产国产| 26uuu在线亚洲综合色| 久久国产精品大桥未久av | 亚洲精品亚洲一区二区| 全区人妻精品视频| 国产精品不卡视频一区二区| 国产成人午夜福利电影在线观看| 亚洲人成网站在线播| 王馨瑶露胸无遮挡在线观看| 国国产精品蜜臀av免费| 99热网站在线观看| 一本—道久久a久久精品蜜桃钙片| 少妇人妻久久综合中文| 中文天堂在线官网| 你懂的网址亚洲精品在线观看| 少妇被粗大的猛进出69影院 | 欧美 日韩 精品 国产| 国产成人a∨麻豆精品| 夫妻午夜视频| 亚洲伊人久久精品综合| 亚洲一区二区三区欧美精品| a级片在线免费高清观看视频| 狠狠精品人妻久久久久久综合| 午夜福利视频精品| xxx大片免费视频| 久久99蜜桃精品久久| 交换朋友夫妻互换小说| 人人妻人人看人人澡| 亚洲图色成人| 国产69精品久久久久777片| 午夜福利影视在线免费观看| 美女xxoo啪啪120秒动态图| 有码 亚洲区| 色婷婷av一区二区三区视频| 婷婷色综合大香蕉| 久久久精品免费免费高清| 超碰97精品在线观看| 中国国产av一级| 永久免费av网站大全| 欧美97在线视频| 国产精品伦人一区二区| 久久久久人妻精品一区果冻| 亚洲电影在线观看av| 高清毛片免费看| 国产精品久久久久久久久免| 国产无遮挡羞羞视频在线观看| 99久久综合免费| 精品久久久久久久久亚洲| 成年女人在线观看亚洲视频| 国产在视频线精品| 久久久久久伊人网av| 欧美xxⅹ黑人| 一级爰片在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品秋霞免费鲁丝片| 女人久久www免费人成看片| 少妇精品久久久久久久| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片 | 色视频www国产| 男男h啪啪无遮挡| 久久精品国产自在天天线| 在线精品无人区一区二区三| a级毛色黄片| 国产在视频线精品| 爱豆传媒免费全集在线观看| 国产熟女午夜一区二区三区 | 亚洲av成人精品一区久久| 免费在线观看成人毛片| 日韩三级伦理在线观看| 国产黄片美女视频| 高清在线视频一区二区三区| 狂野欧美激情性bbbbbb| 日韩大片免费观看网站| 免费观看av网站的网址| 欧美高清成人免费视频www| 国产91av在线免费观看| 观看美女的网站| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 国产在线男女| 久久99热6这里只有精品| 偷拍熟女少妇极品色| 青春草视频在线免费观看| 春色校园在线视频观看| 国产亚洲91精品色在线| 久久女婷五月综合色啪小说| 午夜激情福利司机影院| 少妇人妻一区二区三区视频| 国产探花极品一区二区| 日韩视频在线欧美| 亚洲精品日本国产第一区| 黑人猛操日本美女一级片| 亚洲精品日韩av片在线观看| 精品熟女少妇av免费看| 久久久a久久爽久久v久久| 夜夜骑夜夜射夜夜干| videossex国产| 十分钟在线观看高清视频www | 色哟哟·www| 亚洲精品亚洲一区二区| 欧美最新免费一区二区三区| 亚洲在久久综合| 久久久久久久久久久丰满| 国产精品久久久久久精品电影小说| 天美传媒精品一区二区| 人人妻人人澡人人看| 日本免费在线观看一区| 大陆偷拍与自拍| 日韩精品免费视频一区二区三区 | 亚洲成人一二三区av| 日韩成人av中文字幕在线观看| 91久久精品国产一区二区三区| 中文欧美无线码| 国产欧美亚洲国产| 人妻 亚洲 视频| 国产乱人偷精品视频| 日韩亚洲欧美综合| 国产日韩一区二区三区精品不卡 | 亚洲第一av免费看| 99国产精品免费福利视频| 国产欧美亚洲国产| 亚洲人成网站在线播| av在线播放精品| 成人黄色视频免费在线看| 熟女电影av网| 久久精品国产亚洲av天美| 欧美少妇被猛烈插入视频| 熟女电影av网| 熟女av电影| 乱系列少妇在线播放| www.色视频.com| 黄色一级大片看看| 久久99热6这里只有精品| 午夜老司机福利剧场| 又大又黄又爽视频免费| av有码第一页| 熟妇人妻不卡中文字幕| 嫩草影院入口| 国产 一区精品| 熟女av电影| 51国产日韩欧美| 日日爽夜夜爽网站| 18禁在线播放成人免费| 午夜福利在线观看免费完整高清在| 男人狂女人下面高潮的视频| 日韩亚洲欧美综合| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 美女国产视频在线观看| 亚洲精品一二三| 看十八女毛片水多多多| 色视频www国产| 久久99热这里只频精品6学生| 草草在线视频免费看| 国产一区二区三区av在线| 十八禁网站网址无遮挡 | 亚洲精华国产精华液的使用体验| 国产日韩欧美视频二区| 啦啦啦中文免费视频观看日本| 我要看日韩黄色一级片| 自拍偷自拍亚洲精品老妇| 国产一区二区三区综合在线观看 | 我的女老师完整版在线观看| 内射极品少妇av片p| 性色av一级| 久久久久精品性色| 丰满迷人的少妇在线观看| 亚洲美女黄色视频免费看| h视频一区二区三区| 国产高清三级在线| 一级毛片我不卡| 日韩伦理黄色片| 欧美最新免费一区二区三区| 国产在线免费精品| 亚洲人与动物交配视频| 国产一区亚洲一区在线观看| 中文字幕人妻丝袜制服| 男女无遮挡免费网站观看| 国产美女午夜福利| 深夜a级毛片| 看免费成人av毛片| 99九九线精品视频在线观看视频| 一边亲一边摸免费视频| freevideosex欧美| 99国产精品免费福利视频| 日韩欧美一区视频在线观看 | 曰老女人黄片| 嫩草影院入口| 一本—道久久a久久精品蜜桃钙片| 国产欧美亚洲国产| 久久精品久久久久久久性| 少妇人妻久久综合中文| 男女啪啪激烈高潮av片| 黄色欧美视频在线观看| 下体分泌物呈黄色| 久久午夜福利片| 狂野欧美激情性xxxx在线观看| 观看av在线不卡| 久久狼人影院| 如何舔出高潮| 一级a做视频免费观看| 国产精品一区二区性色av| 天天操日日干夜夜撸| 久久久久国产网址| 午夜精品国产一区二区电影| av免费在线看不卡| 亚洲伊人久久精品综合| 午夜福利网站1000一区二区三区| 精品视频人人做人人爽| 国产色爽女视频免费观看| 亚洲精品成人av观看孕妇| 国产精品无大码| 免费播放大片免费观看视频在线观看| 午夜福利在线观看免费完整高清在| av有码第一页| 国产在线免费精品| a级片在线免费高清观看视频| 观看免费一级毛片| 99热这里只有是精品在线观看| 久久 成人 亚洲| 偷拍熟女少妇极品色| 99久久中文字幕三级久久日本| 在线观看免费日韩欧美大片 | 亚洲精品自拍成人| 日本黄大片高清| 国产又色又爽无遮挡免| 黑人巨大精品欧美一区二区蜜桃 | 高清黄色对白视频在线免费看 | 国产午夜精品久久久久久一区二区三区| av.在线天堂| 岛国毛片在线播放| 免费看不卡的av| 精品一品国产午夜福利视频| 亚洲国产精品国产精品| 国产视频内射| 少妇 在线观看| 日本黄色片子视频| 亚洲成人一二三区av| 亚洲国产最新在线播放| 久久午夜综合久久蜜桃| 久久久精品94久久精品| 26uuu在线亚洲综合色| 国产在线免费精品| 永久网站在线| 亚洲成色77777| 午夜福利,免费看| av视频免费观看在线观看| 午夜精品国产一区二区电影| 乱人伦中国视频| 亚洲av综合色区一区| 国产精品一区www在线观看| 国产黄色视频一区二区在线观看| 久久久久视频综合| 日本wwww免费看| 亚洲国产欧美在线一区| 男女边摸边吃奶| 国产精品偷伦视频观看了| 我的老师免费观看完整版| 十八禁网站网址无遮挡 | 国产一区二区三区综合在线观看 | 国产成人精品福利久久| 日本黄色片子视频| 最近手机中文字幕大全| 99久久综合免费| 偷拍熟女少妇极品色| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 人人妻人人看人人澡| 亚洲成人手机| www.色视频.com| 在线观看国产h片| 美女主播在线视频| 午夜福利在线观看免费完整高清在| 国产女主播在线喷水免费视频网站| 免费看不卡的av| 狠狠精品人妻久久久久久综合| 日本黄色片子视频| 国产视频首页在线观看| 国产精品一区二区三区四区免费观看| 久久久久久久久久久丰满| 少妇人妻精品综合一区二区| 免费久久久久久久精品成人欧美视频 | 午夜福利,免费看| 内地一区二区视频在线| 女的被弄到高潮叫床怎么办| 国产中年淑女户外野战色| 少妇人妻一区二区三区视频| 成人国产麻豆网| 人妻制服诱惑在线中文字幕| av线在线观看网站| 中文在线观看免费www的网站| 国产爽快片一区二区三区| 日韩电影二区| 中文字幕久久专区| av黄色大香蕉| av在线老鸭窝| 青春草国产在线视频| 欧美97在线视频| 精品视频人人做人人爽| 熟妇人妻不卡中文字幕| 国产精品蜜桃在线观看| 香蕉精品网在线| 十八禁高潮呻吟视频 | 最近手机中文字幕大全| 国内精品宾馆在线| 在现免费观看毛片| 久久精品国产亚洲av天美| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 国产精品伦人一区二区| 超碰97精品在线观看| 97精品久久久久久久久久精品| 丝袜脚勾引网站| 国产免费又黄又爽又色| av专区在线播放| 亚洲,欧美,日韩| 亚洲欧美成人精品一区二区| 国产成人精品一,二区| 少妇被粗大的猛进出69影院 | 欧美 亚洲 国产 日韩一| 午夜激情久久久久久久| 大陆偷拍与自拍| 99视频精品全部免费 在线| 精品亚洲乱码少妇综合久久| 精品99又大又爽又粗少妇毛片| 免费少妇av软件| 国产69精品久久久久777片| 91精品国产国语对白视频| 能在线免费看毛片的网站| 国产精品三级大全| 伦理电影免费视频| 久久久精品94久久精品| 国产日韩一区二区三区精品不卡 | 免费播放大片免费观看视频在线观看| 少妇丰满av| 七月丁香在线播放| 欧美性感艳星| 在线观看美女被高潮喷水网站| 2021少妇久久久久久久久久久| 18禁在线无遮挡免费观看视频| av国产久精品久网站免费入址| 中文字幕精品免费在线观看视频 | 性高湖久久久久久久久免费观看| 特大巨黑吊av在线直播| 少妇熟女欧美另类| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 亚洲综合色惰| 少妇猛男粗大的猛烈进出视频| 热re99久久国产66热| 建设人人有责人人尽责人人享有的| 欧美xxxx性猛交bbbb| 亚洲第一av免费看| 女的被弄到高潮叫床怎么办| 中文字幕制服av| 亚洲av在线观看美女高潮| 免费看日本二区| 丝袜喷水一区| 日韩一区二区视频免费看| 内地一区二区视频在线| 国产日韩欧美视频二区| 国产中年淑女户外野战色| 99久久人妻综合| 日本91视频免费播放| 看免费成人av毛片| 看免费成人av毛片| 在线观看免费日韩欧美大片 | 国国产精品蜜臀av免费| 少妇猛男粗大的猛烈进出视频| 久久97久久精品| 国模一区二区三区四区视频| 人妻人人澡人人爽人人| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区国产| 精品一区在线观看国产| 国精品久久久久久国模美| 黄色怎么调成土黄色| 久久青草综合色| a 毛片基地| 久久精品久久精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品一区www在线观看| 三级国产精品片| 九九爱精品视频在线观看| av视频免费观看在线观看| 美女中出高潮动态图| 免费看不卡的av| 亚洲经典国产精华液单| 午夜福利网站1000一区二区三区| 久久久久久久久大av| 美女国产视频在线观看| 国产av国产精品国产| av卡一久久| 如何舔出高潮| 国产黄色视频一区二区在线观看| 成年av动漫网址| 少妇被粗大的猛进出69影院 | 亚洲av成人精品一二三区| 精品久久久久久久久av| 亚洲国产色片| 国产乱人偷精品视频| 赤兔流量卡办理| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 九九久久精品国产亚洲av麻豆| 国产亚洲最大av| 久久久久久久精品精品| 国产亚洲一区二区精品| 高清毛片免费看| 国产深夜福利视频在线观看| 天堂俺去俺来也www色官网| 久久精品熟女亚洲av麻豆精品| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 免费观看在线日韩| 搡女人真爽免费视频火全软件| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 一级毛片我不卡| 纯流量卡能插随身wifi吗| kizo精华| 亚洲精品,欧美精品| 九色成人免费人妻av| videossex国产| 精品久久久噜噜| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 一级毛片 在线播放| 啦啦啦视频在线资源免费观看| 少妇熟女欧美另类| .国产精品久久| 成人亚洲精品一区在线观看| 男女无遮挡免费网站观看| 乱人伦中国视频| 亚洲精品一二三| 在线天堂最新版资源| 久久久久久久久久久久大奶| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 偷拍熟女少妇极品色| 国产成人aa在线观看| 老女人水多毛片| 少妇高潮的动态图| 久久久亚洲精品成人影院| 精品午夜福利在线看| 午夜91福利影院| 99热这里只有精品一区| av视频免费观看在线观看| 一级毛片黄色毛片免费观看视频| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 日本欧美国产在线视频| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 亚洲成色77777| 男女边摸边吃奶| 国产成人精品婷婷| 在线 av 中文字幕| 丝瓜视频免费看黄片| 18+在线观看网站| 美女大奶头黄色视频| 国产精品国产三级国产av玫瑰| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 欧美成人午夜免费资源| 中文在线观看免费www的网站| 成年人免费黄色播放视频 | 七月丁香在线播放| xxx大片免费视频| 久久午夜福利片| 久久久久久人妻| 国产成人freesex在线| 亚洲经典国产精华液单| 搡女人真爽免费视频火全软件| 十分钟在线观看高清视频www | www.av在线官网国产| 免费观看a级毛片全部| 少妇人妻久久综合中文| 日本av手机在线免费观看| 最近手机中文字幕大全| 亚洲av综合色区一区| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 久久久a久久爽久久v久久| 日韩av在线免费看完整版不卡| 中国三级夫妇交换| 亚洲va在线va天堂va国产| 午夜激情福利司机影院| av在线老鸭窝| 亚洲成色77777| 只有这里有精品99| 少妇人妻久久综合中文| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 国产日韩欧美在线精品| 午夜福利网站1000一区二区三区| xxx大片免费视频| 夜夜骑夜夜射夜夜干| 日本欧美视频一区| 国产免费福利视频在线观看| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 一级毛片久久久久久久久女| 国产精品久久久久久av不卡| 啦啦啦啦在线视频资源| 国产又色又爽无遮挡免| 久久99精品国语久久久| 搡老乐熟女国产| 久久久久久久久久久丰满| 午夜免费观看性视频| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 在线观看www视频免费| 老女人水多毛片| 大话2 男鬼变身卡| 黄片无遮挡物在线观看| 人人澡人人妻人| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 国产高清有码在线观看视频| 大又大粗又爽又黄少妇毛片口| 欧美亚洲 丝袜 人妻 在线| 26uuu在线亚洲综合色| 日日爽夜夜爽网站| 日本91视频免费播放| 91午夜精品亚洲一区二区三区| 综合色丁香网| 国产中年淑女户外野战色| av有码第一页| 国产一区亚洲一区在线观看| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 插阴视频在线观看视频| 亚洲人成网站在线观看播放| 美女国产视频在线观看| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 久久午夜综合久久蜜桃| 大又大粗又爽又黄少妇毛片口| 国产精品秋霞免费鲁丝片| 亚洲av不卡在线观看| 只有这里有精品99| 国产 精品1| 欧美精品一区二区大全| 国模一区二区三区四区视频| 午夜福利,免费看| 久久久精品94久久精品| 在线观看一区二区三区激情| 五月伊人婷婷丁香| 一级黄片播放器| 亚洲第一区二区三区不卡| 少妇猛男粗大的猛烈进出视频| 精品人妻熟女毛片av久久网站| av一本久久久久| 一级毛片aaaaaa免费看小| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 美女国产视频在线观看| 久久久国产欧美日韩av| 国产成人免费观看mmmm| 自线自在国产av| 国产极品粉嫩免费观看在线 | 亚洲第一区二区三区不卡| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 亚洲欧洲精品一区二区精品久久久 | 热re99久久国产66热| 日本黄色日本黄色录像| 久久人人爽av亚洲精品天堂| 国产成人freesex在线| 18禁在线播放成人免费| 少妇被粗大的猛进出69影院 | 亚洲国产色片| 永久免费av网站大全| 老司机影院成人| 免费观看在线日韩| 男人爽女人下面视频在线观看| 国产有黄有色有爽视频| 人妻人人澡人人爽人人| 亚洲av日韩在线播放| 老司机影院成人| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 国产永久视频网站| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 久久99蜜桃精品久久|