• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    2016-11-14 03:41:41WenbinWngXiohuYngBinHnQinchengZhngXingfeiWngTinjinLu

    Wenbin Wng,Xiohu Yng,b,Bin Hn,c,Qincheng Zhng,d,?,Xingfei Wng,Tinjin Lu,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    Wenbin Wanga,Xiaohu Yanga,b,Bin Hana,c,Qiancheng Zhanga,d,?,Xiangfei Wanga,Tianjian Lua,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    H i G H L i G H T s

    ?Modeled effective thermal conductivity(ETC)of prismatic cellular metal honeycombs(PCMHs)with a wider porosity range(0.7~0.98).

    ?Proposed ligament thermal conduction efficiency(LTCE)to analyze the influence of ligament inclined angle.

    ?Utilized equivalent interaction angle(EIA)to assess the overall heat conduction ability of honeycombs.

    ?Optimized the design for either heat conduction or insulation applications.

    A R T i C L Ei N F O

    Article history:

    14 January 2016

    Accepted 19 January 2016

    Available online 20 February 2016

    Effective thermal conductivity

    Prismatic cellular metal honeycomb

    Ligament heat conduction efficiency

    Analytical design

    Equivalent interaction angle

    A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs(PCMHs)having different cell shapes is presented for thermal management applications.Based on the periodic topology of each PCMH,a unit cell(UC)for thermal transport analysis was selected to calculate its effective thermal conductivity.Without introducing any empirical coefficient,we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range(0.7~0.98)by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC.Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume.The concept of ligament heat conduction efficiency(LTCE)was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity(ETC). Based upon the proposed theory,a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow:relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Prismatic cellular metal honeycombs(PCMHs),as one kind of multifunctional lattice frame materials(LFMs),are of considerable interest in practical applications for their excellent performance in load bearing,acoustic/vibration damping,and thermal management[1-3].Generally,an interconnected network of solid struts and plates,as PCMH edges and faces,is integrated inside which a number of periodic prismatic voids arranged in one particular direction are formed.Through topological design of cell size and distributions,distinct cellular architectures as shown in Fig.1 may be constructed.Not only high specific stiffness/strength[4],but also multifunctional designs can be achieved with such PCMHs. For instance,in situations where a structure needs to carry simultaneously mechanical and thermal loads[5-8],PCMHs can be employed for active cooling applications such as multi-chip cooling(Fig.1(o))and jet blast deflecting[3].Alternatively,when the forced convective flow is stagnant[9,10],PCMHs may act as thermal insulation in thermal protection designs,e.g.,the skin layer of a re-entry vehicle.For these applications,it is essential to achieve distinctive target thermal function,either heat dissipation or insulation,via topological design.

    For heat dissipation/insulation applications,the effective thermal conductivity(ETC)of PCMH is a key material property.To estimate the ETC of PCMH saturated with different kinds of fluids(e.g.,air,water,or refrigerant),it is unlikely to employ conventional analytical approaches based on idealized assumptions,such as random homogenization[11]and phase symmetrical distribution[12],to obtain satisfactory predictions due to the complicated and heterogeneous topology of PCMH.Rather,resistance analysis of thermal-electrical networks shows flexible applicability,which has been recently applied to analyze thermal transport in a variety of porous materials,including open-or closed-cell foams[12-15],sintered metal fiber networks[16]and honeycombs[10,17].For example,based on the idealized non-twisted geometric model for wire-woven bulk Kagome(WBK)structures,Yang et al.[12]developed an analytical ETC model based on one-dimensional(1D)conduction for high porosity(>0.9)air-saturated WBK sandwiches,and empirically correlated the anisotropic ETC behavior of WBK using numerical simulations.However,few studies have been conducted either on ETC prediction for a wide range of PCMHs or thermal design of PCMHs having different functionalities.Besides,as most LFMs(including the PCMHs considered here)exhibit anisotropic topologies and a wide range of porosity,existing ETC models for porous media need to be revisited.Further,there is insufficient physical insight into thermal transport in such materials as well as the mechanisms of pore-level heat transport.

    Fig.1.Cross-sectional view of PCHMs with different cell shapes:(a)square honeycomb-I;(b)square honeycomb-II;(c)uniform hexagonal honeycomb;(d)non-uniform hexagonal honeycomb;(e)diamond honeycomb-I;(f)diamond honeycomb-II;(g)diamond honeycomb-III;(h)diamond honeycomb-IV;(i)triangular honeycomb;(j)multilayered corrugations;(k)mixed triangular-square honeycomb;(l)Kagome-I;(m)Kagome-II;(n)Kagome-III;(o)schematic of multi-layered corrugated core heat exchanger for multi-chip cooling application.

    This study aims to calculate the ETCs of fourteen different types of fluid-saturated PCMH using a combined approach of analytical modeling and numerical simulation.The PCMHs are divided into layers so that the parallel model can be applied to explore the detailed mechanisms of solid-fluid heat exchange in each layer.Subsequently,to capture local two-dimensional(2D)heat conduction,these layers are treated with the series model using a simplistic approximate method.Further,to physically explain the mechanisms underlying the effect of ligament configuration on ETC,the concept of ligament heat conduction efficiency is proposed.

    With reference to Fig.2(a),consider a porous medium(e.g.,multi-layer corrugated panel)with periodical ligaments immergedinalowconductingfluidphase.Becauseofsymmetry,only one half of a whole corrugated cell is selected.The conventional series model of thermal-electric resistance model[18]takes theform of

    Fig.2.(a)Schematic of heat conduction process in multi-layer corrugated panel and(b)approximate model for 2D local heat conduction.θis inclination angle.

    where kedenotes the ETC of PCMH,and ke,1,ke,2,...,ke,nare the ETC of each layer(hi)which can be calculated using the parallel model of thermal-electric resistance,as

    Here,ksandkfarethethermalconductivitiesofsolidligamentsand saturating fluid,respectively;Vi,sand Viare the ligament-occupied volume and the volume of the total layer,respectively.

    BeforetakingfurtheractiontodeveloptheanalyticalETCmodel for PCMHs,the principle task is to determine the thermo-physical mechanisms underlying heat flow in both fluid and solid media. In general,depending upon the ratio of solid conductivity to fluid conductivity,there mainly exist three different mechanisms:(a)when ks? kf,heat conduction in solid flows along the solidligaments,while it flows perpendicular to the heating and cooling surfaces in fluid;(b)when ksand kfare comparable,heat flow is homogenized in the PCMH;(c)when ks? kf,heat flow in fluid becomes dominant,flowing approximately perpendicular to solid ligaments.Therefore,for porous metallic materials such as PCMHs,the thermal conductivity of solid ligaments is significantly larger than that of the saturating fluid,e.g.,ks/kf> 8000 and ks/kf>300 for air-and water-saturated aluminum PCMHs,respectively. As a result,heat flow in such PCMHs is mainly transported along the tortuous aluminum ligaments.Consequently,according to the Fourier law of heat conduction,a modified ETC for each layer of the PCMH is given by

    Based on the theory as outlined above,further analysis is needed to account for different cell distributions.As shown in Fig.2(a)for multi-layer corrugation,with the face sheet selected as layer 1,the direction of heat flow is perpendicular to it since constant temperature is imposed,and ke,1is equal to ksin this layer.In layer 2,heat mainly flows along the solid ligaments,but at the joint that connects different ligaments,local 2D conduction exists due to sudden change in heat conduction area.The effect of local2DconductionisnotsignificantforhighporosityPCMHs(ε>0.9).However,for lower porosity levels(0.7~0.9),the 2D effect on ETC is no longer negligible because the 2D effect increases with increasing joint section volume as the porosity is reduced.Because of the intrinsic complexity of calculating analytically the 2D effect,a numerical method can be utilized to decide the integration of heat conduction distance[19].To this end,a series of numerical simulations are carried out to estimate the integral mean thermal path through the‘corner’(local 2D conduction area).It is found that the equivalent heat conduction area and distance may be approximately determined by the middle line of the cross-section at the corner,e.g.,isothermals and heat flux of specific triangular case as illustrated in Fig.2(b).Therefore,the ETC of layer 2 may be expressed as

    In the third layer,because of its unique topology and the big differenceofETCbetweensolidandfluid,heatflowsperpendicular to the x-direction.Based on such characteristics of heat flow,ETC in this layer may be determined as

    Similarly,the rest of layers can all be treated.Substituting the ETCs of these layers into Eq.(1)gives the final prediction of ETC for a multi-layer corrugated panel.

    Next,to determine an optimal topology with high/low thermal conductivity along the x-direction of Fig.1,fourteen PCMHs with different distributions of cell shape and cell size are analyzed. These PCMHs may be fabricated using a variety of methods,such as assembling slotted sheets,bonding corrugated plates,direct extrusion,and thermal chemical processing[20-22].In the method of slotted sheets assembling,electro-discharge machining(EDM)is firstly applied to slot thin metal strips,which are thenglued or brazed together.Honeycombs with flat edges,such as square honeycomb and diamond structures,can be fabricated by this method.However,panels with bent edges like corrugated panels are typically processed by preparing corrugated plates first,followed by stacking these plates to form multi-layer structures. The extrusion and thermal chemical methods are usually utilized to process PCMHs in a single step.In Fig.1,the prismatic cellular materials all possess cell ligaments with uniform thickness except for the square honeycomb in Fig.1(d)that has two double thickness walls.Detailed expressions of ETC prediction for PCMHs are listed in Table 1.

    Fig.3.Boundary conditions and mesh details for multi-layer corrugated panel.

    To validate the analytical model and to further explore the physical process of heat transport in prismatic cellular materials,numerical simulations are carried out using the finite volume method(FVM)embedded into the commercially available software ANSYS-Fluent 14.5.Solid geometries for different PCMHs generated with SolidWorks are first meshed in ANSYS-ICEM 14.5 and then exported to ANSYS-Fluent 14.5 for steady-state heat conduction analysis.For illustration,F(xiàn)ig.3 depicts the boundary conditions and mesh details for a multi-layer corrugated panel. Constant temperature boundary conditions are applied on the upper and lower faces,while the other four faces are taken as symmetrical.

    Before proceeding further,a validation process is conducted. The ETCs of uniform hexagonal and triangular honeycombs are analytically modeled and numerically simulated,respectively.A comparison is made between the present predictions and the published numerical data[23].It is established that the present numerical analysis can not only reproduce existing simulation results(with a maximum deviation within 3.0%)but also achieve good agreement with the analytical predictions.

    Subsequently,analytical and numerical analyses are performed for the architectures shown in Fig.1 to explore the physical mechanismsofheatconductionindifferentPCMHs.Porosity,atthe first place,is considered to be a key factor in determining the ETC. Relatively high porosities in the range of 0.7~0.98 are considered,since the PCMHs within this porosity range have been extensively investigated for their high specific stiffness and strength.

    For square-I,square-II,uniform and non-uniform hexagon honeycombs,once porosity is determined,cell distribution is correspondingly decided.However,for the remaining PCMH structures of Fig.1,porosity is related to inclination angle of ligaments and ligament aspect ratio(t/l).To preclude the influence of inclination angle and to address specifically the effect of porosity,all the inclination angles are fixed at 60°.It can be observed from Fig.4 that,for all the structures considered,the ETC in either x-or y-direction increases with decreasing porosity.It needs to be pointed out thatthe ETCs are not linearly correlated with porosity.For sufficiently high porosities(ε>0.9),previous investigations[10,17]showed that the ETC exhibits a linear relationship with porosity,for heat conduction in thin solid ligaments could be approximately treated as 1D conduction.As the porosity is reduced,however,2D conduction in solid ligaments becomes remarkable.For instance,when the porosity is reduced to~0.7,ignoring such 2D heat conduction brings~20%deviation in ETC prediction.The effect of 2D heat con-duction on ETC prediction has been accounted for by the present model.Dividing a PCMH structure into sub-layers enables accurate depiction of heat conduction in each layer and efficient consideration of thermal interaction between fluid and solid.Besides,the concept of equivalent heat conduction distance and area proposedinthepresentstudyaccountsforlocalthermalconductionin solid,hence achieving a more accurate prediction(less than 4.6%)in comparison with the conventional 1D model.

    Table 1 Porosity(ε)and relevant items in Eqs.(1)and(3)for ETC along x-direction of selected PCMHs.

    Fig.4.Analytical predictions of ETCs for selected honeycombs in:(a)x-direction;(b)y-direction.

    Table 2 Analytical and numerical predictions of ETC in x-and y-directions for PCMHs of Fig.1.

    To design a porous material/structure for practical applications,the aspect ratio and inclination angle of ligaments as well as cell shape are the key morphological parameters to be considered. For thermal management with high ETC,the main principle is to put effective materials(metals)along the heat flux direction.In a lattice truss structure,the cell ligaments may be categorized into three maintypes:parallel,perpendicular,and inclinedto heat flow direction with an intersection angle of(90°-θ).If the ligaments are placed perpendicular to heat flow direction,they compose a series system together with the surrounding fluid,of which the ETC may be expressed as 1/ke= εs/ks+εf/kf.In comparison,if the ligaments are parallel to heat flow,a parallel model may be utilized to predict the ETC,as ke=εsks+εfkf.The parallel system provides a heat path in solid with maximum heat conduction area and shortest heat transfer distance.With increasing rotation of the ligaments from the parallel system,the distance for heat conduction increases while the heat conduction area decreases,until a series system is formed.According to Fourier’s law,we may have two arguments for a certain metallic ligament saturated in fluid.The superior thermal path for a single ligament is parallel to heat flux(parallel model for highest ETC),which possesses the highestthermalconductionefficiency,yieldingtheupperboundof ETC.On the contrary,if the ligament is perpendicular to heat flow(seriesmodelforlowestETC),ithasthelowestthermal conduction efficiency,resulting in the lower bound of ETC.

    From the results of Fig.4 and Table 2 it can be seen that,for a fixed inclination angle of 60°for all the PCMHs,the diamond-I of Fig.1(e)provides superior thermal conduction,while the multilayer corrugation of Fig.1(j)provides superior thermal insulation. For PCMHs having identical inclination angle,all the ligaments in diamond-I are configured with an intersection angle of 30° to heat flow:that is,no ligament is placed normal to heat flow. Consequently,diamond-IhasthehighestETCamongallthePCMHs investigated;see Fig.4(a)and Table 2.In diamond-II,some of its ligaments are placed normal to heat flow,leading to a reduced ETC along the x-direction compared with its parent structure,i.e.,diamond-I.In diamond-III and diamond-IV,as a few parallel ligaments are placed along the heat conduction direction,their ETCs are higher than that of diamond-II.

    Based on the physical mechanism of heat conduction,it is worthy to understand the particularly low ETC of multilayer corrugation.Given the distinct difference between fluid and metal as well as the special design of the joint,heat in this structure is forced to conduct along not only the inclined ligaments but also the‘series’ligaments,increasing dramatically the heat conduction distance.Compared to triangular structures as well as other competing honeycombs,the significant increase of heat conduction distance in the multi-layer corrugation reduces considerably its ETC.

    To further reveal the physical mechanisms,the concept of ligament thermal conduction efficiency(LTCE)is proposed to explain the reason why PCMHs with identical porosity exhibit different ETCs,as shown in Fig.4 and Table 2.Quantitatively,LTCE is defined here asη=sin2θe,θebeing the equivalent interaction angle(EIA)of a whole UC,which may be calculated by solving equation ke= (sin2θe)εsks+(1-εs)kfafter obtaining the ETC of a PCMH using the present analytical model.For diamond-I withθfixedat60°,thereexistsonlyonekindofligaments,i.e.,ligaments with an inclination angle of 60°.However,its EIA(θe)along the xdirection is calculated to be 59.2°.This is understandable because,at the joint,heat conduction area in the solid is reduced and hence the thermal conduction ability is decreased,which is reflected as a decrease in EIA.Thus,the presence of joints leads to reduced LTCE in PCMHs.

    Fig.5.Influence of ligament inclination angle(θin Fig.2)on ETC of selected honeycombs:(a)x-direction;(b)y-direction.

    Table 3 Influence of ligament inclination angle on EIA of triangular honeycomb with a porosity of 0.8.

    Relative to diamond-I,other PCMHs have more complicated cellular topologies.In these PCMHs,a variety of ligaments with different inclination angles exist,forming a competing system that finally determines the ETC.Figure 5 presents the effect of ligament inclination angle upon ETC for PCMHs having identical porosity(0.8).Except those PCMHs having fixed inclination angle(square-I,square-II,uniform hexagon and non-uniform hexagon honeycombs),the ETC along the x-direction increases withincreasinginclinationangle(θinFig.2).Forafixedinclination angle(albeit less than 45°),square-II is the most favorable PCMH for heat conduction.Otherwise,diamond-I or diamond-IV is the preferable choice.

    We have explained in previous sections the difference of ETC between different PCMHs.In this section,we demonstrate further that,as the inclination angle is increased,the ETC increases.The physical mechanism for this change is that there is more heat conduction material in a parallel system increases,whereas less metallic material is present in its counterpart series system.As previously discussed,placing more materials in a series system(i.e.,perpendicular to the heating surfaces)is beneficial for heat conduction,resulting in increased ETC.Based on the present theory for ligament heat conduction efficiency,the variation trend of ETC in the y-direction as a function of inclination angle(Fig.5(b))may be understood as well.Besides,Table 3 presents the EIA of triangular honeycomb for selected inclination angles. As the inclination angle is increased,the EIA increases along the x-direction but decreases along the y-direction.Therefore,for those PCMHs with angle flexibility,increasing the inclination angle enhances conductivity along the x-direction and reduces conductivity along the y-direction.

    In summary,the effective thermal conductivities of fourteen different types of prismatic cellular metal honeycomb saturated with fluid are calculated,both numerically and analytically.A parallel-series thermal-electric network model based on unit cell topology is developed.The model is verified within a wide porosity range(0.7~0.98)by considering local 2D heat conduction and interactive effect between fluid and solid.The model is then utilized to analyze and design thermal conduction/insulation honeycomb structures.For thermal conduction,the fundamental principle is to place more metals along the heat flux direction. For thermal insulation,the multilayered corrugation is preferable because its unique structure enables elongated heat conduction distance.For a given cellular topology,the LTCE may serve as a quantitative parameter to identify competing mechanisms of heat conductionindifferenttypesofcellligament.WithlargeLTCEs,the overall competing effect of cell ligaments enhances the conduction ability of a honeycomb;otherwise,the structure is favorable for thermal insulation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(51506160,11472208,11472209),China Post-Doctoral Science Foundation Project(2015M580845),the FundamentalResearchFundsforXi’anJiaotongUniversity(xjj2015102),and the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01).

    [1]Q.C.Zhang,X.H.Yang,P.Li,et al.,Bioinspired engineering of honeycomb structure—using nature to inspire human innovation,Prog.Mater.Sci.74(2015)332-400.

    [2]A.G.Evans,J.W.Hutchinson,N.A.Fleck,et al.,The topological design of multifunctional cellular metals,Prog.Mater.Sci.46(2001)309-327.

    [3]T.J.Lu,D.P.He,C.Q.Chen,et al.,The multi-functionality of ultra-light porous metals and their applications,Adv.Mech.36(2006)517-535(in Chinese).

    [4]L.J.Gibson,M.F.Ashby,Cellular Solids:Structure and Properties,Cambridge University Press,1997.

    [5]C.C.Seepersad,B.Dempsey,J.K.Allen,et al.,Design of multifunctional honeycomb materials,AIAA J.42(2004)1025-1033.

    [6]C.C.Seepersad,R.S.Kumar,J.K.Allen,et al.,Multifunctional design of prismatic cellular materials,J.Comput-Aided.Mater.11(2004)163-181.

    [7]D.F.Wu,A.F.Zhou,L.M.Zheng,et al.,Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments,Theor.Appl.Mech.Lett.4(2014)021004.

    [8]S.T.Liu,Y.C.Zhang,L.Peng,New analytical model for heat transfer efficiency of metallic honeycomb structures,Int.J.Heat Mass Transfer 51(2008)6254-6258.

    [9]C.T.Hsu,P.Cheng,K.W.Wong,Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media,Int.J.Heat Mass Transfer 37(1994)2751-2759.

    [10]T.J.Lu,Heat transfer efficiency of metal honeycombs,Int.J.Heat Mass Transfer 42(1999)2031-2040.

    [11]T.H.Bauer,A general analytical approach toward the thermal conductivity of porous media,Int.J.Heat Mass Transfer 36(1993)4181-4191.

    [12]X.H.Yang,J.X.Bai,J.J.Kang,etal.,Effectivethermalconductivityofwire-woven bulk Kagome sandwich panels,Theor.Appl.Mech.Lett.4(2014)051010.

    [13]X.H.Yang,J.J.Kuang,T.J.Lu,et al.,A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams,J.Phys.D Appl.Phys.46(2013)255302-255307.

    [14]X.H.Yang,T.J.Lu,T.Kim,Effective thermal conductivity modelling for closedcell porous media with analytical shape factors,Transp.Porous Media 100(2013)211-224.

    [15]X.H.Yang,J.X.Bai,H.B.Yan,et al.,An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams,Transp.Porous Media 102(2014)403-426.

    [16]Z.G.Qu,T.S.Wang,W.Q.Tao,et al.,A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid,Heat Mass Transfer 48(2012)1385-1395.

    [17]S.Gu,T.J.Lu,A.G.Evans,On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity,Int.J.Heat Mass Transfer 44(2001)2163-2175.

    [18]J.C.Maxwell,ATreatiseonElectricityandMagnetism,ClarendonPress,Oxford,1881.

    [19]X.H.Yang,T.J.Lu,T.Kim,Thermal stretching in two-phase porous media: Physical basis for Maxwell model,Theor.Appl.Mech.Lett.3(2013)57-61.

    [20]H.N.Wadley,Multifunctional periodic cellular metals,Philos.T.R.Soc.A 364(2006)31-68.

    [21]J.K.Cochran,K.J.Lee,D.L.McDowell,et al.Multifunctional metallic honeycombs by thermal chemical processing,in:Proceedings of Processing and Properties of Lightweight Cellular Metals and Structures,2002,pp.127-136.

    [22]F.C?té,V.S.Deshpande,N.A.Fleck,et al.,The out-of-plane compressive behavior of metallic honeycombs,Mater.Sci.Eng.A 380(2004)272-280.

    [23]S.Hyun,S.Torquato,Optimal and manufacturable two-dimensional,Kagomelike cellular solids,J.Mater.Res.17(2002)137-144.

    29 September 2015

    at:MOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China.

    E-mail addresses:zqc111999@xjtu.edu.cn(Q.Zhang),tjlu@xjtu.edu.cn(T.Lu).

    http://dx.doi.org/10.1016/j.taml.2016.01.003

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Solid Mechanics

    国产精品久久久av美女十八| 搡老妇女老女人老熟妇| 好男人在线观看高清免费视频 | 免费在线观看视频国产中文字幕亚洲| 一进一出抽搐gif免费好疼| av视频免费观看在线观看| 午夜福利免费观看在线| 麻豆国产av国片精品| 午夜久久久在线观看| 国产熟女xx| 国产亚洲av高清不卡| 国产成人系列免费观看| 欧美日韩乱码在线| www国产在线视频色| 久久国产亚洲av麻豆专区| 精品不卡国产一区二区三区| 国产一区在线观看成人免费| 99国产综合亚洲精品| 国产欧美日韩综合在线一区二区| 亚洲在线自拍视频| 久久香蕉精品热| 美女免费视频网站| 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲色图综合在线观看| 精品一区二区三区视频在线观看免费| 免费在线观看完整版高清| 人成视频在线观看免费观看| 欧美中文日本在线观看视频| 精品久久久精品久久久| 久久久久亚洲av毛片大全| 亚洲久久久国产精品| 国产精品久久久久久人妻精品电影| 欧美色欧美亚洲另类二区 | 国产伦人伦偷精品视频| 免费不卡黄色视频| 国产精品亚洲美女久久久| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品成人综合色| 久久久国产成人精品二区| 男男h啪啪无遮挡| 麻豆久久精品国产亚洲av| 国产一卡二卡三卡精品| 又大又爽又粗| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 午夜福利一区二区在线看| 69av精品久久久久久| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 国产精品亚洲美女久久久| 欧美日本亚洲视频在线播放| 88av欧美| 国产精品久久视频播放| 亚洲第一电影网av| 国产精品一区二区精品视频观看| 亚洲国产精品sss在线观看| 国产精品日韩av在线免费观看 | 亚洲少妇的诱惑av| 久久久久久大精品| 国产亚洲欧美98| 国产成人精品久久二区二区免费| 好男人电影高清在线观看| 天堂√8在线中文| 亚洲成av人片免费观看| 国产精品电影一区二区三区| 国产一区二区三区视频了| 精品乱码久久久久久99久播| a在线观看视频网站| 亚洲国产中文字幕在线视频| 欧美精品亚洲一区二区| 十八禁网站免费在线| 欧美成狂野欧美在线观看| xxx96com| 好男人电影高清在线观看| 90打野战视频偷拍视频| 成人三级做爰电影| 老司机在亚洲福利影院| 岛国视频午夜一区免费看| 91国产中文字幕| 黄片播放在线免费| 久久人人97超碰香蕉20202| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 国产99久久九九免费精品| 亚洲国产欧美日韩在线播放| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 91精品三级在线观看| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 亚洲一区二区三区色噜噜| 亚洲久久久国产精品| 久9热在线精品视频| 国产1区2区3区精品| 自线自在国产av| 国产亚洲欧美在线一区二区| 性少妇av在线| av电影中文网址| 免费看a级黄色片| 国产精品av久久久久免费| 亚洲一区高清亚洲精品| 少妇 在线观看| 黄片小视频在线播放| 久久久久九九精品影院| 麻豆一二三区av精品| 日韩欧美国产一区二区入口| 国产av精品麻豆| 久久久国产成人精品二区| 手机成人av网站| 久久婷婷人人爽人人干人人爱 | 婷婷精品国产亚洲av在线| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 亚洲午夜理论影院| 亚洲第一av免费看| 老鸭窝网址在线观看| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 国产av精品麻豆| 可以免费在线观看a视频的电影网站| 搞女人的毛片| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 精品国产亚洲在线| 亚洲中文av在线| 亚洲欧美激情综合另类| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 这个男人来自地球电影免费观看| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 黑丝袜美女国产一区| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 亚洲午夜理论影院| 国产免费av片在线观看野外av| 这个男人来自地球电影免费观看| 一区二区三区国产精品乱码| 午夜影院日韩av| 99国产精品一区二区蜜桃av| 多毛熟女@视频| 在线观看www视频免费| 亚洲av美国av| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 欧美在线黄色| 久久久国产成人免费| 中文字幕高清在线视频| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 免费看十八禁软件| 精品国产乱子伦一区二区三区| 日本五十路高清| 亚洲av第一区精品v没综合| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区中文字幕在线| 亚洲久久久国产精品| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 黄色视频不卡| 午夜福利成人在线免费观看| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 久久婷婷人人爽人人干人人爱 | 在线视频色国产色| 国产精华一区二区三区| 韩国av一区二区三区四区| 日韩 欧美 亚洲 中文字幕| 一边摸一边抽搐一进一小说| 日日爽夜夜爽网站| 国产欧美日韩一区二区三| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 一本久久中文字幕| av电影中文网址| 在线永久观看黄色视频| 国产亚洲欧美98| 一二三四在线观看免费中文在| 国产精品二区激情视频| 在线av久久热| 老汉色∧v一级毛片| 天天添夜夜摸| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av | 国产熟女午夜一区二区三区| 无限看片的www在线观看| 国产欧美日韩一区二区三| 女警被强在线播放| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 免费久久久久久久精品成人欧美视频| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 九色国产91popny在线| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 9色porny在线观看| avwww免费| 亚洲人成电影免费在线| 777久久人妻少妇嫩草av网站| 岛国视频午夜一区免费看| 非洲黑人性xxxx精品又粗又长| 一本大道久久a久久精品| 婷婷六月久久综合丁香| 国产97色在线日韩免费| 大型黄色视频在线免费观看| 夜夜爽天天搞| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 日本在线视频免费播放| 成人国产一区最新在线观看| 国产精品1区2区在线观看.| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩精品亚洲av| 欧美黑人欧美精品刺激| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 两个人视频免费观看高清| 国产精品av久久久久免费| 18美女黄网站色大片免费观看| 精品一区二区三区四区五区乱码| 91精品国产国语对白视频| 欧美性长视频在线观看| 999精品在线视频| 亚洲精品在线美女| 国产精品久久久av美女十八| 日韩三级视频一区二区三区| 免费观看人在逋| 99riav亚洲国产免费| 久99久视频精品免费| 欧美一级毛片孕妇| 欧美中文日本在线观看视频| 中出人妻视频一区二区| 日韩大尺度精品在线看网址 | 99在线视频只有这里精品首页| 女警被强在线播放| av视频免费观看在线观看| 成人免费观看视频高清| 亚洲欧美精品综合久久99| www.999成人在线观看| 日韩av在线大香蕉| 在线av久久热| 亚洲天堂国产精品一区在线| 两个人看的免费小视频| 欧美黄色淫秽网站| 在线播放国产精品三级| 日日爽夜夜爽网站| 久久精品亚洲精品国产色婷小说| 亚洲精品在线美女| 久久久国产成人免费| 午夜免费鲁丝| av视频免费观看在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清 | 国产一区二区三区综合在线观看| 久久久国产成人精品二区| 一边摸一边做爽爽视频免费| 久久中文看片网| 美女免费视频网站| 一区二区日韩欧美中文字幕| 老汉色av国产亚洲站长工具| 精品人妻在线不人妻| 一二三四社区在线视频社区8| 久久精品人人爽人人爽视色| 国产精品 国内视频| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 国产又色又爽无遮挡免费看| 亚洲五月婷婷丁香| 成人国产综合亚洲| 亚洲精品国产精品久久久不卡| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 久久精品成人免费网站| 亚洲电影在线观看av| 国产一区二区三区在线臀色熟女| 欧美久久黑人一区二区| 97人妻精品一区二区三区麻豆 | 国产亚洲av嫩草精品影院| 一本大道久久a久久精品| 亚洲男人天堂网一区| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 高清黄色对白视频在线免费看| 成人欧美大片| a级毛片在线看网站| 窝窝影院91人妻| 亚洲激情在线av| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 亚洲五月天丁香| 日韩大尺度精品在线看网址 | 色综合站精品国产| 91成年电影在线观看| 18禁美女被吸乳视频| 99在线视频只有这里精品首页| 国产激情久久老熟女| 国产精品电影一区二区三区| 亚洲欧美激情在线| 如日韩欧美国产精品一区二区三区| 亚洲一区二区三区不卡视频| 国产午夜精品久久久久久| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 亚洲欧美日韩高清在线视频| 午夜a级毛片| 极品人妻少妇av视频| 亚洲 欧美 日韩 在线 免费| 免费搜索国产男女视频| 无限看片的www在线观看| videosex国产| 久久久久久久久免费视频了| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 免费无遮挡裸体视频| 嫩草影院精品99| 两个人看的免费小视频| 免费av毛片视频| 首页视频小说图片口味搜索| 亚洲少妇的诱惑av| 一进一出抽搐动态| 久久婷婷成人综合色麻豆| 久久久久久大精品| 日韩有码中文字幕| 正在播放国产对白刺激| 亚洲av熟女| 校园春色视频在线观看| 精品国产国语对白av| 午夜视频精品福利| 在线观看免费视频网站a站| 亚洲精品国产精品久久久不卡| 最近最新免费中文字幕在线| 精品免费久久久久久久清纯| 精品日产1卡2卡| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三区在线| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| av电影中文网址| 天天躁夜夜躁狠狠躁躁| 岛国视频午夜一区免费看| 真人一进一出gif抽搐免费| 精品久久久久久久久久免费视频| 国产精品免费视频内射| 日韩欧美三级三区| 免费看十八禁软件| 波多野结衣一区麻豆| 美女午夜性视频免费| 成人三级黄色视频| 久久精品国产综合久久久| 精品国产超薄肉色丝袜足j| 国产野战对白在线观看| 禁无遮挡网站| 精品国内亚洲2022精品成人| 国产精品九九99| 成人三级做爰电影| 欧美性长视频在线观看| 午夜福利欧美成人| 18禁裸乳无遮挡免费网站照片 | 国产单亲对白刺激| 精品国产乱子伦一区二区三区| 精品国产超薄肉色丝袜足j| 日韩视频一区二区在线观看| 亚洲avbb在线观看| 国产精品综合久久久久久久免费 | 欧美色欧美亚洲另类二区 | 中亚洲国语对白在线视频| 久久 成人 亚洲| 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 51午夜福利影视在线观看| 一级毛片精品| 精品一品国产午夜福利视频| 国产欧美日韩综合在线一区二区| 色哟哟哟哟哟哟| 亚洲五月婷婷丁香| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 日韩精品青青久久久久久| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 最后的刺客免费高清国语| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 亚洲色图av天堂| 精品久久久久久久末码| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频| 又紧又爽又黄一区二区| 国产精华一区二区三区| 两个人的视频大全免费| bbb黄色大片| 嫩草影视91久久| 午夜激情福利司机影院| 亚洲真实伦在线观看| 成人二区视频| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| 婷婷六月久久综合丁香| 久久久久久久亚洲中文字幕| 天堂√8在线中文| 免费在线观看日本一区| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 免费观看人在逋| 又黄又爽又免费观看的视频| 最后的刺客免费高清国语| 久久精品91蜜桃| 国产精品一区www在线观看 | aaaaa片日本免费| 伦理电影大哥的女人| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片 | 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 成人美女网站在线观看视频| 久久久久久久久久黄片| 天堂网av新在线| 深夜精品福利| 精品久久久久久久久久免费视频| 免费av毛片视频| 精品日产1卡2卡| 无遮挡黄片免费观看| 啦啦啦啦在线视频资源| 搡老岳熟女国产| 国产美女午夜福利| 日本免费一区二区三区高清不卡| 成人av在线播放网站| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区免费毛片| 国产高清不卡午夜福利| 亚洲四区av| 22中文网久久字幕| xxxwww97欧美| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 岛国在线免费视频观看| av福利片在线观看| 成人午夜高清在线视频| 搞女人的毛片| 深爱激情五月婷婷| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩高清在线视频| 少妇高潮的动态图| 一夜夜www| 成人欧美大片| 五月玫瑰六月丁香| 亚洲成a人片在线一区二区| 精品一区二区三区人妻视频| 99riav亚洲国产免费| 少妇的逼水好多| 美女免费视频网站| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 亚洲精品成人久久久久久| 日本一二三区视频观看| 亚洲欧美日韩东京热| 91久久精品国产一区二区三区| 成人欧美大片| 国产一区二区激情短视频| 九九久久精品国产亚洲av麻豆| 免费在线观看成人毛片| 日日啪夜夜撸| 乱系列少妇在线播放| 不卡一级毛片| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 深爱激情五月婷婷| 韩国av一区二区三区四区| 高清日韩中文字幕在线| 久久久久久久久久久丰满 | 国产一区二区激情短视频| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 性欧美人与动物交配| 欧美日本亚洲视频在线播放| 国产中年淑女户外野战色| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 久久精品人妻少妇| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 99久久精品热视频| 日韩欧美在线乱码| 在线观看午夜福利视频| 成人国产一区最新在线观看| 久久精品国产亚洲网站| 亚洲自拍偷在线| 国产精品伦人一区二区| 一级a爱片免费观看的视频| 亚洲美女搞黄在线观看 | 欧美性感艳星| av在线亚洲专区| 久久6这里有精品| 伦理电影大哥的女人| 性色avwww在线观看| 三级国产精品欧美在线观看| 能在线免费观看的黄片| 99国产极品粉嫩在线观看| 日本在线视频免费播放| АⅤ资源中文在线天堂| 精品久久久噜噜| 成年女人毛片免费观看观看9| 在线观看av片永久免费下载| 欧美激情国产日韩精品一区| 亚洲精品一卡2卡三卡4卡5卡| 美女xxoo啪啪120秒动态图| netflix在线观看网站| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播| 久久精品人妻少妇| 国产真实乱freesex| av福利片在线观看| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| or卡值多少钱| av黄色大香蕉| 亚洲美女视频黄频| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看 | 麻豆av噜噜一区二区三区| 亚洲真实伦在线观看| 久99久视频精品免费| 精品人妻1区二区| 精品欧美国产一区二区三| 久久久久久九九精品二区国产| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 国产在视频线在精品| 久久久久久久久大av| 91麻豆av在线| 婷婷精品国产亚洲av在线| 国产单亲对白刺激| 精品人妻视频免费看| 别揉我奶头 嗯啊视频| 国产高清视频在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 免费看日本二区| 天堂动漫精品| 午夜视频国产福利| a在线观看视频网站| 我的老师免费观看完整版| 免费黄网站久久成人精品| 丰满人妻一区二区三区视频av| 国产午夜精品论理片| 免费人成视频x8x8入口观看| 亚洲专区中文字幕在线| 99热6这里只有精品| 色综合亚洲欧美另类图片| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 成人美女网站在线观看视频| 成人午夜高清在线视频| 国产熟女欧美一区二区| 免费看av在线观看网站| 午夜a级毛片| 亚洲午夜理论影院| 亚洲七黄色美女视频| 中文字幕av成人在线电影| 国产aⅴ精品一区二区三区波| 国产一区二区亚洲精品在线观看| 免费av不卡在线播放| 国产欧美日韩一区二区精品| 在线观看一区二区三区| 午夜福利成人在线免费观看| 国产成人福利小说| 日本熟妇午夜| 国产美女午夜福利| www日本黄色视频网| 日日摸夜夜添夜夜添小说| 男女边吃奶边做爰视频| .国产精品久久| 久久99热6这里只有精品| 日韩精品有码人妻一区| 午夜日韩欧美国产| 两个人视频免费观看高清| 欧美又色又爽又黄视频| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 特级一级黄色大片|