• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    2016-11-12 06:21:05光翠娥王世強(qiáng)桑尚源張海玲楊紅飛程水源江南大學(xué)食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室江蘇無錫黃岡師范學(xué)院經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室湖北黃岡438000
    食品科學(xué) 2016年11期
    關(guān)鍵詞:黃岡單層皂苷

    光翠娥,王世強(qiáng),桑尚源,張海玲,楊紅飛,程水源(.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 4;.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    光翠娥1,王世強(qiáng)1,桑尚源1,張海玲1,楊紅飛1,程水源2
    (1.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    利用Caco-2細(xì)胞單層與大鼠小腸模型研究大豆皂苷Ⅰ和Ⅱ的吸收變化與機(jī)制。在Caco-2細(xì)胞單層中,大豆皂苷Ⅰ和Ⅱ從腸腔側(cè)到基底側(cè)的表觀滲透系數(shù)(apparent permeability coefficients,Papp)隨時(shí)間的延長(zhǎng)趨向平穩(wěn),前120 min近似線性,且隨濃度增大,斜率減小,Papp值分別為(1.02×10-6~3.41×10-6)cm/s和(0.9×10-6~3.05×10-6) cm/s;傳遞的飽和性、雙側(cè)Papp比率>1.5以及線粒體呼吸鏈抑制劑疊氮化鈉的抑制作用表明了兩者的主動(dòng)轉(zhuǎn)運(yùn)機(jī)制。抑制劑維拉帕米沒有提高大豆皂苷Ⅰ和Ⅱ的吸收,排除了p-糖蛋白介導(dǎo)的外排;吸收促進(jìn)劑按照冰片>脫氧膽酸鈉>卡波姆934P>聚山梨酯80的強(qiáng)弱提高兩者的吸收,殼聚糖則未能加強(qiáng)滲透。跨膜轉(zhuǎn)運(yùn)也表現(xiàn)出組織差異性:兩者在大鼠空腸的Papp是十二指腸和回腸的2倍多。因此,控制的傳遞應(yīng)能提高大豆皂苷Ⅰ和Ⅱ的小腸吸收以便兩者實(shí)施它們的生理功能。

    大豆皂苷;Caco-2;疊氮化鈉;p-糖蛋白;吸收促進(jìn)劑

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II using a Caco-2 cell monolayer and a rat intestinal model[J]. Food Science, 2016, 37(11): 174-179. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    Soyasaponins Ⅰ and Ⅱ are naturally occurring oleanane triterpenoid glycosides and primarily found in soybean (Glycine max). Their contents vary according to soybean variety, culture year, location grown and degree of maturity with an average of 0.24 and 0.1 mmol/g, respectively[1]. SoyasaponinⅠmainly exists in soybean germ whereas soybean cotyledon contains a higher content of soyasaponinⅡthan germ[2]. SoyasaponinsⅠandⅡare both amphiphilic molecules, with polar sugar moieties attached to a nonpolar pentacyclic ring (soyasapogenol B) at the C-3 position[3]. The structures of soyasaponins I and Ⅱ have been elucidated to be 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-galactopyranosyl(1→2)-β-D- glucuronopyranosyl]-soyasapogenol B and 3-O-[α-L-rhamnopyranosyl(1→2)-α-L- arabinopyranosyl(1→2)-β-D-glucuronopyranosyl]-soyasapogenol B, respectively. Soyasaponin I has been reported to have anti-inflammatory[4], anti-carcinogenic[5], anti-microbial[6], antioxidative[4], adjuvant[7], hepato-[8], cardiovascular[9]and kidney[10]protective functions; soyasaponinⅡalso displays anti-viral[11], adjuvant[7], hepato-[8]and cardiovascular[9]protective effects[12].

    The human colonic carcinoma Caco-2 cells form monolayers that allow absorption to occur simultaneously with food digestion under conditions similar to those found along the surface of the intestinal tract. Preluding the human trials, the Caco-2 cell monolayer model is generally used to screen bioactives with high productivity and thereafter predict their permeation in human intestine[13]. Excellent correlation exists between in vivo absorption and in vitro apparent permeability coefficient (Papp) for compounds including transcellular, paracellular and carrier-mediated mechanisms[14]. An end-point mode of experiment showed the mucosal transfer of soyasaponinⅠacross the Caco-2 cell monolayer with an Pappvalue of (0.9 × 10-6-3.6 × 10-6) cm/s[15]. Herein a detailed experiment would be conducted to investigate the time- and concentration-dependent permeability of soyasaponinsⅠandⅡand therefore confirm their transport mechanism.

    Moreover, the absorption of bioactives in human intestine is influenced by diverse factors. Passive intestinal permeability depends on molecular size, lipophilicity, hydrogen bonding capacity and so on[16]; the active transport needs carriers and energy; efflux mechanisms, absorption enhancers and food matrix can retard or promote the permeability of bioactives. Therefore, the effects of inhibitors, including sodium azide and verapamil, and absorption enhancers, including borneol, sodium deoxycholate (SDC), polysorbate (Tween) 80, crosslinked poly(acrylate) derivative carbomer 934P and poly(2-deoxy-2-amino glucan) polymer chitosan on the permeability of soyasaponins Ⅰ and Ⅱ, would be predicted using the Caco-2 cell monolyer model. The uptake of bioactives also displays tissue difference. Herein the optimal intestine regions for absorption of soyasaponins Ⅰ and Ⅱ would be determined.

    1 Materials and Methods

    1.1 Materials and animals

    Human colon adenocarcinoma Caco-2 cell line Cell Bank of Chinese Academy of Sciences (Shanghai, China); alkaline phosphatase assay kit, penicillin and streptomycin Beyotime Institute of Biotechnology (Shanghai, China); carbomer 934P Xinhenglong Technology (Wuhan, China); soluble chitosan (50% deacetylation degree) Hecreat Biotech (Qingdao, China); Hank’s balanced salt solution (HBSS, pH 7.4), Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and non-essential amino acids (NEAA) GibcoBRL (New York, USA); soyasaponins I and Ⅱ ChromaDex (Irvine, USA); TranswellTMplates of 6 wells (24 mm diameter, 3 mm pore size) Corning Costar (New York, USA); atenolol and propranolol Sigma (St. Louis, USA). Male Sprague-Dawley (SD) rats with a body mass of approximately 250 g Shanghai Super-B&K Laboratory Animal Corporation (Shanghai Laboratory Animal Center, China). The animals had free access to food and water in the room maintained at about 25 ℃ with a 12 h light/dark cycle.

    1.2 Preparation of Caco-2 cell monolayers

    Caco-2 cells were cultured in DMEM containing 4.5 g/L glucose and supplemented with 10% (V/V) FBS, 1% (V/V) L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin, 1%(V/V) NEAA, and maintained at 37 ℃ in a controlled atmosphere of 5% CO2and 90% relative humidity. Medium was replaced every two days until the confluence reached 80%-90%. After 32-40 passages by trypsinization with 0.25% trypsin and 0.02% of ethylenediaminetetraacetic acid (EDTA) in PBS, Caco-2 cells were inoculated at a density of 1.5×105cells/cm2on Transwell membrane inserts. Medium was renewed every 2 days for the 5 weeks and every day for the next 8-21 day s[13]. Differentiation of Caco-2 cells was examined by determining the activity of alkaline phosphatase with an assay kit; the integrity was checked by measuring the transepithelial electrical resistance (TEER)with an Evom resistance voltohmmeter (World Precision Instruments, Sarasota, USA) after monitoring for 60 min; and the transportation ability was tested by running standard assays using atenolol and propranolol as paracellular fl ux and transcellular fl ux markers, respectively[16].

    1.3 Transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After the integral cell monolayers were washed twice with prewarmed Hank’s balanced salt solution (HBSS) medium, 0.5 mL aliquots of HBSS containing different concentrations of soyasaponins Ⅰ and Ⅱ (0.5, 1, 3 mmol/L) were added to the apical side and 1.5 mL of fresh HBSS to the basolateral side, or 0.5 mL HBSS to the apical side and 1.5 mL samples to the basolateral side. The monolayers were incubated at 37 ℃ on a vibrax shaker at 60 r/min. At the time intervals of 30, 45, 60, 90, 120, 150, 180 and 240 min, 0.5 or 0.25 mL aliquots were drawn from the receiving side for analysis and replaced with an equal volume of fresh buffer. In order to investigate the transport variation, a 0.5 mL aliquot of HBSS containing 1mmol/L soyasaponin Ⅰ and 1 mmol/L soyasaponin Ⅱ was added to the apical side, or 0.5 mL aliquots of HBSS containing 1 mmol/L soyasaponin Ⅰor soyasaponin Ⅱ and sodium azide (0.5 mmol/L) or verapamil (0.1 mmol/L) or borneol (0.5 g/100 mL) or SDC (0.5 g/100 mL) or polysorbate 80 (0.5 g/100 mL) or carbomer 934P (0.5 g/100 mL) or chitosan (0.5 g/100 mL) were added to the apical side, and 0.5 mL aliquots were removed from the basolateral side over a period of 180 min. The collected samples were immediately frozen, lyophilized and stored below -20 ℃ for subsequent high-performance liquid chromatography (HPLC) analysis[13]. The Pappwas calculated according to the following equation.

    where ΔQ/Δt is the appearance rate of the soyasaponin on the receiving side/(mol/s), A is the membrane surface area /cm2, and C0is the initial concentrationin the donor compartment/ (mol/mL).

    Transport enhancement ratio (ER) was calculated from Pappvalues according to the following equation:

    1.4 ex vivo transport of soyasaponinsⅠandⅡacross rat intestinal tissues

    Rats were anaesthetized via intraperitoneal injection of 15% urethane (10 mL/kg) and then a laparotomy was performed. The intestine was excised and rinsed in ice-cold PBS (pH 7.4). The duodenal segment was the first 10 cm portion from the stomach, the ileal segment was the fi nal 10 cm portion of the small intestine, and the remaining intestine was used as the jejunum. After experimental segments were obtained, the underlying muscularis was removed before mounting in an Ussing chamber, in which a surface area of 0.293 cm2was exposed. PBS (3 mL) was added to the serosal side and an equal volume of sample solution (1 mmol/L) was added to the mucosal side. After the chamber was placed in a water bath at 30 ℃, mixing was performed by bubbling with 95% O2-5% CO2[17]. Samples were taken away from the serosal side over a period of 180 min and were immediately frozen, lyophilized and stored below -20 ℃ for subsequent HPLC analysis.

    1.5 Quantifi cation of soyasaponins I and Ⅱ by HPLC

    The lyophilized samples were dissolved in 200 mL MeOH and centrifuged at 15 000 × g for 10 min. The resulting supernatant (20 μL) was injected and separated by the reversed phase-HPLC(RP-HPLC) system comprised of a Jupiter 4 μ Proteo 90A C12 reversed-phase column (250 mm × 4.6 mm, Phenomenex, Inc., Torrance, CA), a Waters 2695 Separations Module and a Waters 996 photodiode array detector (Waters Co., Milford, MA) recording absorbance from 190 to 350 nm. Solvent A was 0.05% (V/V) trifluoroacetic acid (TFA) in filtered deionized water, and solvent B was 0.05% (V/V) TFA in acetonitrile. Elution was achieved by a linear gradient from 38% to 48% solvent B within 40 min at a fl ow rate of 1 mL/min[1]. Calibration curves of the peak area versus standard concentration were used to calculate the soyasaponin concentrations.

    1.6 Data analysis

    All data were expressed as the± s and unpaired Student’s t-test was used to assess the significance of the difference between two mean values at a signifi cant level of P < 0.05.

    2 Results and Analysis

    2.1 Time- and concentration-dependent transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After Caco-2 cells grew for 14 days, alkaline phosphatase could hydrolyze the substrate para-nitrophenyl phosphate into yellow para-nitrophenol. On the 21thday, TEER measurement showed a value of above 450 Ω/cm2after subtracting the intrinsic resistance of insert alone.Pappvalues of two known model substrates atenolol (poor permeability) and propranolol (high permeability) were (2.37 ± 0.02) × 10-7cm/s and (2.62 ± 0.07) × 10-5cm/s, respectively. These control assays confi rmed the integrity and transportation ability of Caco-2 cell monolayers. Within the test concentration range, soyasaponins Ⅰ and Ⅱ showed no apparent cytotoxicity on Caco-2 cells. The recovery during transport assays was measured as the total amount of soyasaponins in two sides of the insert. A recovery rate of > 95% for both soyasaponins indicated low cell accumulation and supported the experimental reliability.

    Fig. 1 Effects of time and concentration on the transport ofsoyasaponins I (A) and Ⅱ (B) across Caco-2 cell monolayers (apical to basolateral, n = 5)

    Pappvalues for soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers from the apical to basolateral direction were showed in Fig. 1. With a defi ned concentration, Pappincreased linearly until a plateau was reached at 120 min. According to the equation (1), the transport rate (ΔQ/Δt) increased for the fi rst 120 min and afterwards tended to remain constant. When the soyasaponin concentration was elevated, the transported mass was increased with a less magnitude, Pappdecreased and the uptake tended to be saturable probably due to the carrier saturation. The results show that Pappvalues from the apical to basolateral direction were significantly higher (P < 0.05) than those from the basolateral to apical direction with the ratios being larger than 1.5 (Table 1) further indicated the active transport[16]. Therefore, the transport of soyasaponinsⅠand Ⅱ might involve a carriermediated mechanism; the absorption could be enhanced when the soyasaponin concentration is low and could be limited by the capacity of epithelial cells to take up and transfer soyasaponins to the basolateral side when the high concentration is present[15]. The order of magnitude (10-6cm/s) for fi nal Pappvalues indicated an intermediate permeability of two soyasaponins. For comparison, Pappvalues of 36 fl avonoids across Caco-2 monolayers from the apical to basolateral side ranged from less than 5 × 10-7to 2.96 × 10-5cm/s[16]. Compounds of intermediate or low permeability have a lower permeability in Caco-2 model than in vivo. Atenolol, ranitidine, furosemide and chlorothiazide, which are adequately absorbed in humans, showed poor permeability in the standard 21-day Caco-2 cell monolayer. Caco-2 cells originate from the colon and have a tighter paracellular route than in vivo. The average pore radius of tight junctions in the human intestine is around 8-13?, whereas the corresponding radius in Caco-2 cells is about 5 ?[18].

    TTaabble 1 Bilateral apparent permeation coeffi cients (Paapppp)) ooff soyasaponins in the Caco-2 model

    2.2 Effects of inhibitors and absorption enhancers on the transport of soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers

    When soyasaponins Ⅰ and Ⅱ were simultaneously added to the apical side, the individual Pappwas mildly lower than that for a soyasaponin added separately (Fig. 2), which indicated that two soyasaponins might use the same carrier and therefore competitively inhibit the permeation each other and that the interaction in food matrix could regulate their absorption. Sodium azide, a cytochrome c oxidase-respiratory chain complex Ⅳinhibitor due to enhanced cytochrome c holoenzyme dissociation that inhibits the electron transfer between mitochondrial respiratory chain and thus prevents the oxidative ATP production[19], significantly reduced the transport of both soyasaponins (P < 0.05). Competitive inhibition and energy requirement during transport further indicated the carrier-mediated flux of soyasaponins Ⅰand Ⅱ. P-glycoprotein, a transmembrane permeability glycoprotein, is an ATP dependent efflux pump that is strongly expressed by Caco-2 cells and often causes multidrug resistance and poor bioavailability[20]. Its specific inhibitorverapamil did not significantly increase the permeation of both soyasaponins, hence suggesting that the carrier might not involve in the efflux of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. When different enhancers were added, the ranking in terms of absorption enhancing ability was borneol > SDC > carbomer 934P > polysorbate 80 > chitosan. Among them, borneol, SDC, carbomer 934P and polysorbate 80 significantly promoted the permeation of soysaponins (P < 0.05) with ERs being 3.06, 2.98, 2.52, 2.44 for soyasaponin Ⅰ and 3.21, 3.03, 2.73 and 2.62 for soyasaponin Ⅱ, respectively. Chitosan showed no absorption enhancing effect for two soyasaponins and in contrast, suppressed in different degrees. Borneol is an efficacyenhancing ingredient in traditional Chinese medicine; SDC is a type of bile salts that tend to dissolve the extracellular proteins and loosen the tight junctions and also to dissolve the membrane bound cholesterol and increase the fl uidity of the membrane, thereby increasing the transcellular permeability[21]; polysorbate 80 is a nonionic surfactant used in the manufacture of a variety of pharmaceutical products and can induce alternation of biomembranes and therefore increase the permeability[22]; carbomer and chitosan with strong mucoadhesiveness and low toxicity have been proved to function by opening intercellular junctions and thereby enhancing the paracellular permeability[23].

    Fig. 2 Pappand transport ER of soyasaponins Ⅰ (A) and Ⅱ (B) in theCaco-2 model in the presence of various inhibitors and enhancers (apical to basolateral)

    2.3 Regional difference of the transport of soyasaponinsⅠ and Ⅱ in the intestine

    The optimal sites for absorption of soyasaponins Ⅰ andⅡ were determined by ex vivo transport across rat intestinal segments in Ussing chambers. Pappvalues of soyasaponins across rat duodenum, jejunum and ileum were summarized in Fig. 3. The calculated Pappvalues for soyasaponins Ⅰand Ⅱ across the jejunal segment were more than 2-times greater (P < 0.05) than Pappvalues across the duodenal and ileal segments, whereas the Pappvalues across duodenum and ileum did not differ signifi cantly. These results indicated jejunum was the optimum absorption site of soyasaponins I and Ⅱ. The unstirred water layer, differences in the thickness of mucous layers, the tightness and the number of tight junctions and membrane components might have infl uenced the transport of soyasaponins Ⅰ and Ⅱ across the various intestinal membranes[17]. Additionally, Pappvalues obtained through the ex vivo Ussing chambers were higher than those observed in the Caco-2 experiments with permeability ratios ranging from about 3.2 (ileum) up to 6.9 (duodenum), which may be explained by the higher tightness of the Caco-2 cell monolayer compared to intact mammalian intestinal tissue[24].

    Fig. 3 Transport of soyasaponins Ⅰ and Ⅱ across the intestinal segments

    3 Conclusions

    The present study showed the permeability of soyasaponins Ⅰ and Ⅱ as being intermediate in the Caco-2 model. Active transport was suggested to be the major absorption mechanism, which was further supported by the inhibitory effects of sodium azide. Absorption enhancers, borneol, SDC, carbomer 934P and polysorbate 80, did improve the permeability of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. Jejunum was suggested to be the optimal absorption tissue. Thus a manipulated transport would increase the intestinal permeability so that soyasaponinsⅠand Ⅱ could exert their health actions.

    [1] HU Jiang, LEE S, HENDRICH S, et al. Quantifi cation of the group B soyasaponins by high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2587-2594. DOI:10.1021/jf011474.

    [2] BERHOW M A, KONG S, VERMILLION K E, et al. Complete quantifi cation of group A and group B soyasaponins in soybeans[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2035-2044. DOI:10.1021/jf053072o.

    [3] ZHANG Wei, POPOVICH D G. Chemical and biological characterization of oleanane triterpenoids from soy[J]. Molecules, 2009, 14(8): 2959-2975. DOI:10.3390/molecules14082959.

    [4] LEE I, PARK Y, YEO H, et al. SoyasaponinⅠattenuates TNBS-induced colitis in mice by inhibiting NF-κB pathway[J]. Journal of Agricultural and Food Chemistry, 2010, 58(20): 10929-10934. DOI:10.1021/jf102296y.

    [5] CHANG Weiwei, YU Chiayu, LIN Tzuwen, et al. SoyasaponinⅠdecreases the expression of α-2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells[J]. Biochemical and Biophysical Research Communications, 2006, 341(2): 614-619. DOI:10.1016/ j.bbrc.2005.12.216.

    [6] EL-HAWIET A M, TOAIMA S M, ASAAD A M, et al. Chemical constituents from Astragalus annularis Forssk. and A. trimestriss L., Fabaceae[J]. Brazilian Journal of Pharmacognosy, 2010, 20(6): 860-865. DOI:10.1590/S0102-695X2010005000047.

    [7] ODA K, MATSUDA H, MURAKAMI T, et al. Relationship between adjuvant activity and amphipathic structure of soyasaponins[J]. Vaccine, 2003, 21(17/18): 2145-2151. DOI:10.1016/S0264-410X(02)00739-9.

    [8] ISHII Y, TANIZAWA H. Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones[J]. Biological & Pharmaceutical Bulletin, 2006, 29(8): 1759-1763. DOI:10.1248/ bpb.29.1759.

    [9] TAKAJASHI S, HORI K, HOKARI M, et al. Inhibition of human renin activity by saponins[J]. Biomedical Research, 2010, 31(2): 155-159. DOI:10.2220/biomedres.31.155.

    [10] PHIBRICK D J, BUREAU D P, COLLINS F W, et al. Evidence that soyasaponin Bbretards disease progression in a murine model of polycystic kidney disease[J]. Kidney International, 2003, 63(4): 1230-1239. DOI:10.1046/j.1523-1755.2003.00869.x.

    [11] KINJO J, YOKOMIZO K, HIRAKAWA T, et al. Anti-herps virus activity of fabaceous triterpenoidal saponins[J]. Biological & Pharmaceutical Bulletin, 2000, 23(7): 887-889. DOI:10.1248/ bpb.23.887.

    [12] GUANG Cuie, CHEN Jie, SANG Shangyuan, et al. Biological functionality of soyasaponins and soyasapogenols[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33): 8247-8255. DOI:10.1021/jf503047a.

    [13] GUANG Cuie, SHANG Jiangang, JIANG Bo. Transport of traditional Chinese pimple milk-derived angiotensin- converting enzyme(ACE) inhibitory peptides across a Caco-2 cell monolayer and their molecular recognition with ACE[J]. Journal of Food, Agriculture & Environment, 2012, 10(3/4): 40-44.

    [14] YEE S Y. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth[J]. Pharmaceutical Research, 1997, 14(6): 763-766. DOI:10.1023/ A:1012102522787.

    [15] HU Jiang, REDDY M B, HENDRICH S, et al. SoyasaponinⅠand sapogenol B have limited absorption by Caco-2 intestinal cells and limited bioavailability in women[J]. Journal of Nutrition, 2004, 134(8): 1867-1873.

    [16] TIAN Xiaojuan, YANG Xiuwei, YANG Xiaoda, et al. Studies of intestinal permeability of 36 flavonoid using Caco-2 cell monolayer model[J]. International Journal of Pharmaceutics, 2009, 367(1/2): 58-64. DOI:10.1016/j.ijpharm.2008.09.023.

    [17] UCHIYAMA T, SUGIYAMA T, QUAN Y S, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-β-D-maltopyranoside[J]. Journal of Pharmacy and Pharmacology, 1999, 51(11): 1241-1250. DOI:10.1211/0022357991776976.

    [18] MASUNGI C, BORREMANS C, WILLEMS B, et al. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds[J]. Journal of Pharmaceutical Science, 2004, 93(10): 2507-2521. DOI:10.1002/ jps.20149.

    [19] LEARY S C, HILL B C, LYONS C N, et al. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation[J]. Journal of Biological Chemistry, 2002, 277(13): 11321-11328. DOI:10.1074/jbc. M112303200.

    [20] VARMA M V, ASHOKRAJ Y, DEY C S, et al. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement[J]. Pharmacological Research, 2003, 48(4): 347-359. DOI:10.1016/S1043-6618(03)00158-0.

    [21] RUAN Liping, YU Boyang, ZHU Danni, et al. Effect of enhancer on the absorption of matrine in vitro and its hepato-protective effect on mice[J]. Journal of China Pharmaceutical University, 2008, 39(2): 116-121.

    [22] AKHTAR N, REHMAN M U, KHAN H M S, et al. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid[J]. Tropical Journal of Pharmaceutical Research, 2011, 10(3): 281-288. DOI:10.4314/tjpr.v10i3.1.

    [23] LUEBEB H L, de LEEUW B J, LANGEMEYER M W E, et al. Mucoadhesive p olymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vitro[J]. Pharceutical Research, 1996, 13(11): 1668-1672. DOI:10.1023/A:1016488623022.

    [24] FOLTZ M, CERSTIAENS A, van MEENSEL A, et al. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models[J]. Peptides, 2008, 29(8): 1313-1320. DOI:10.1016/j.peptides.2008.03.021.

    Variability of Transepithelial Transport of Soyasaponins Ⅰ and ⅡUsing a Caco-2 Cell Monolayer and a Rat Intestinal Model

    GUANG Cuie1, WANG Shiqiang1, SANG Shangyuan1, ZHANG Hailing1, YANG Hongfei1, CHENG Shuiyuan2
    (1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China)

    The absorption mechanism and variability of soyasaponins I and II were investigated using a Caco-2 cell monolayer and a rat intestinal model. Apparent permeability coeffi cients (Papp) across the Caco-2 model increased linearly until plateaus were reached at 120 min with intermediate Pappvalues of (1.02?3.41) × 10-6and (0.9?3.05) × 10-6cm/s for two soyasaponins, respectively. Saturable transport, bilateral Pappratios of more than 1.5 and the inhibitory effect of mitochondrial electron transport chain blocker sodium azi de indicated the active transport mechanisms. The transmembrane permeability glycoprotein (p-glycoprotein) inhibitor verapamil did not increase the permeation of both soyasaponins, excluding the p-glycoprotein-related effl ux. Several absorption enhancers promoted the permeation across the Caco-2 cell monolayers with a rank of borneol > sodiumdeoxycholate > carbomer 934P polysorbate 80; but chitosan did not exhibit such an enhancing ability. The transepithelial transport also showed tissue difference in the intestine with the Pappvalues for soyasaponins I and II across the jejunal segment being more than 2 times greater than those across the duodenal and ileal segments. Therefore, a controlled transport should be able to improve the intestinal absorption so that soyasaponins I and II would exert their health functions. Key words: soya saponin; Caco-2; sodium azide; p-glycoprotein; absorption enhancer

    nces:

    10.7506/spkx1002-6630-201611030

    TS201.4

    A

    1002-6630(2016)11-0174-06

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II

    using a Caco-2 cell monolayer and a rat intestinal model[J]. 食品科學(xué), 2016, 37(11): 174-179. DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    2015-03-01

    國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31201289);經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(2011BLKF241);食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室自由探索項(xiàng)目(SKLF-ZZB-201208)

    光翠娥(1976—),女,副教授,博士,研究方向?yàn)槭称窢I養(yǎng)與功能因子。 E-mail:guang1226@hotmail.com

    猜你喜歡
    黃岡單層皂苷
    書的厚與薄
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    黃岡師范學(xué)院美術(shù)作品選登
    黃岡師范學(xué)院美術(shù)學(xué)院寫生作品選登
    黃岡師范學(xué)院書法作品選登
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    單層小波分解下圖像行列壓縮感知選擇算法
    HPLC-MS/MS法同時(shí)測(cè)定三七花總皂苷中2種成分
    中成藥(2018年9期)2018-10-09 07:19:04
    HPLC法測(cè)定大鼠皮膚中三七皂苷R1和人參皂苷Rb1
    中成藥(2017年9期)2017-12-19 13:34:40
    HPLC法同時(shí)測(cè)定熟三七散中13種皂苷
    中成藥(2017年6期)2017-06-13 07:30:34
    白带黄色成豆腐渣| 亚洲五月天丁香| 97碰自拍视频| 欧美午夜高清在线| 欧美性感艳星| 99riav亚洲国产免费| 在线观看免费午夜福利视频| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 激情在线观看视频在线高清| 久久久久亚洲av毛片大全| 国产高清激情床上av| 99热只有精品国产| 久久精品国产清高在天天线| 亚洲av成人不卡在线观看播放网| 欧美另类亚洲清纯唯美| 高清毛片免费观看视频网站| 麻豆国产97在线/欧美| 国产三级中文精品| 一级黄色大片毛片| 国产成+人综合+亚洲专区| 亚洲国产精品久久男人天堂| 国产成人欧美在线观看| 国产视频内射| 美女 人体艺术 gogo| 亚洲成人久久爱视频| 别揉我奶头~嗯~啊~动态视频| 给我免费播放毛片高清在线观看| 欧美成人一区二区免费高清观看| 久久亚洲真实| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免 | 丝袜美腿在线中文| 51国产日韩欧美| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区四那| 欧美日韩瑟瑟在线播放| 此物有八面人人有两片| 美女高潮喷水抽搐中文字幕| 在线观看美女被高潮喷水网站 | 此物有八面人人有两片| 在线十欧美十亚洲十日本专区| 中文亚洲av片在线观看爽| 午夜福利在线在线| 亚洲精品国产精品久久久不卡| 亚洲av熟女| 性色avwww在线观看| 国产中年淑女户外野战色| 可以在线观看的亚洲视频| 欧美成人免费av一区二区三区| 可以在线观看毛片的网站| 欧美日韩精品网址| 亚洲乱码一区二区免费版| 麻豆一二三区av精品| 天天一区二区日本电影三级| 免费看a级黄色片| 国产高清激情床上av| 欧美黄色片欧美黄色片| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 一二三四社区在线视频社区8| 国产成人福利小说| 国产一区二区亚洲精品在线观看| 国产三级黄色录像| 九九热线精品视视频播放| 久久久久久国产a免费观看| 国产一区二区亚洲精品在线观看| 中文字幕熟女人妻在线| 18禁在线播放成人免费| 51午夜福利影视在线观看| 乱人视频在线观看| 国模一区二区三区四区视频| 成年女人毛片免费观看观看9| 国产欧美日韩精品一区二区| 熟女电影av网| 亚洲成人精品中文字幕电影| 亚洲国产欧美人成| 99在线视频只有这里精品首页| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 日韩免费av在线播放| 免费av毛片视频| 岛国在线免费视频观看| 久久草成人影院| 亚洲人成网站高清观看| av天堂中文字幕网| av中文乱码字幕在线| 99热只有精品国产| www.www免费av| 无人区码免费观看不卡| 日本一本二区三区精品| 全区人妻精品视频| 精品乱码久久久久久99久播| 亚洲精品久久国产高清桃花| 熟女少妇亚洲综合色aaa.| 欧美日本视频| 午夜免费成人在线视频| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 亚洲狠狠婷婷综合久久图片| 亚洲在线自拍视频| 精品无人区乱码1区二区| 在线观看免费午夜福利视频| 免费在线观看成人毛片| 国产97色在线日韩免费| 亚洲国产精品久久男人天堂| www.熟女人妻精品国产| 日韩亚洲欧美综合| 国产视频内射| 国产色爽女视频免费观看| 免费人成在线观看视频色| 午夜福利视频1000在线观看| 国产精品 国内视频| 麻豆国产av国片精品| 久久久久性生活片| 亚洲一区高清亚洲精品| 中文字幕精品亚洲无线码一区| 欧美日韩一级在线毛片| 国产精品久久视频播放| 叶爱在线成人免费视频播放| 91在线精品国自产拍蜜月 | 黄片大片在线免费观看| 亚洲最大成人手机在线| x7x7x7水蜜桃| 制服人妻中文乱码| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 国产精品免费一区二区三区在线| 精品免费久久久久久久清纯| 久久久国产成人免费| 法律面前人人平等表现在哪些方面| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 国产一区二区在线观看日韩 | 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 最近最新中文字幕大全免费视频| e午夜精品久久久久久久| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 在线观看午夜福利视频| 高清在线国产一区| 国产视频一区二区在线看| 亚洲片人在线观看| 亚洲欧美日韩卡通动漫| 午夜免费激情av| 两人在一起打扑克的视频| 欧美中文综合在线视频| 91在线观看av| 亚洲国产精品999在线| 欧美日韩乱码在线| 欧美黄色淫秽网站| 天天一区二区日本电影三级| 国产三级在线视频| 叶爱在线成人免费视频播放| 91麻豆精品激情在线观看国产| 女人十人毛片免费观看3o分钟| 久久精品国产清高在天天线| 美女高潮喷水抽搐中文字幕| 在线观看美女被高潮喷水网站 | 亚洲自拍偷在线| 特级一级黄色大片| 麻豆一二三区av精品| 内射极品少妇av片p| 日韩国内少妇激情av| 成人永久免费在线观看视频| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 日韩欧美 国产精品| 九九在线视频观看精品| 久久精品91蜜桃| 在线a可以看的网站| 每晚都被弄得嗷嗷叫到高潮| 免费看a级黄色片| 在线免费观看的www视频| 午夜福利免费观看在线| 99热6这里只有精品| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| e午夜精品久久久久久久| 欧美日韩国产亚洲二区| 男女午夜视频在线观看| 极品教师在线免费播放| 欧美3d第一页| 国产探花极品一区二区| 亚洲美女视频黄频| 亚洲五月婷婷丁香| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 国产国拍精品亚洲av在线观看 | a级一级毛片免费在线观看| 精品人妻偷拍中文字幕| 欧美一区二区亚洲| 国产高清videossex| 精品国产亚洲在线| 国产成人福利小说| 久久精品国产99精品国产亚洲性色| 国产av麻豆久久久久久久| 国产三级黄色录像| 精品一区二区三区人妻视频| 日本五十路高清| 宅男免费午夜| 欧美激情在线99| 午夜激情欧美在线| 午夜激情欧美在线| 91麻豆av在线| 久久久精品大字幕| 欧美乱码精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看日本一区| 日韩精品中文字幕看吧| 三级国产精品欧美在线观看| 亚洲欧美日韩无卡精品| 亚洲熟妇熟女久久| 搡老妇女老女人老熟妇| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 中文字幕高清在线视频| 网址你懂的国产日韩在线| 亚洲精品一区av在线观看| 国产一区二区在线av高清观看| 久久久久九九精品影院| 国产激情欧美一区二区| 一级a爱片免费观看的视频| 欧美zozozo另类| 尤物成人国产欧美一区二区三区| 欧美+日韩+精品| 亚洲无线观看免费| 看黄色毛片网站| 老司机深夜福利视频在线观看| 亚洲国产精品合色在线| 少妇熟女aⅴ在线视频| 国产成+人综合+亚洲专区| 国产精品98久久久久久宅男小说| 特级一级黄色大片| 午夜两性在线视频| 一级a爱片免费观看的视频| 男人舔女人下体高潮全视频| 91麻豆精品激情在线观看国产| 身体一侧抽搐| 精华霜和精华液先用哪个| 亚洲精品国产精品久久久不卡| 99riav亚洲国产免费| 少妇的丰满在线观看| 99久久精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 欧美日韩瑟瑟在线播放| 日本五十路高清| 麻豆国产97在线/欧美| 麻豆国产av国片精品| 中文资源天堂在线| 3wmmmm亚洲av在线观看| 国产成人影院久久av| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 一本一本综合久久| 欧美国产日韩亚洲一区| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 午夜福利18| 久久久国产成人免费| 精品日产1卡2卡| 国产日本99.免费观看| 少妇的逼水好多| 欧美区成人在线视频| 欧美av亚洲av综合av国产av| 有码 亚洲区| a在线观看视频网站| 岛国视频午夜一区免费看| 午夜老司机福利剧场| av黄色大香蕉| 国产精品亚洲一级av第二区| 悠悠久久av| 国产精品亚洲一级av第二区| 国内少妇人妻偷人精品xxx网站| av欧美777| 深爱激情五月婷婷| 国产精品嫩草影院av在线观看 | 天堂av国产一区二区熟女人妻| 久久久久久大精品| 最近最新中文字幕大全免费视频| 又黄又粗又硬又大视频| 淫秽高清视频在线观看| 免费在线观看日本一区| 国产高清视频在线观看网站| 日本一本二区三区精品| 在线免费观看的www视频| 亚洲久久久久久中文字幕| 久久人人精品亚洲av| 国产真实乱freesex| 欧美日韩综合久久久久久 | 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 亚洲精品成人久久久久久| x7x7x7水蜜桃| 国产精品久久久久久亚洲av鲁大| 欧美日韩一级在线毛片| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 夜夜爽天天搞| 成人国产综合亚洲| 欧美激情在线99| 国产成+人综合+亚洲专区| 久久久国产精品麻豆| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 亚洲自拍偷在线| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 欧美日韩一级在线毛片| 久久久久久九九精品二区国产| 性色avwww在线观看| 一个人看的www免费观看视频| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 天堂影院成人在线观看| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 久久人人精品亚洲av| 国内精品久久久久久久电影| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 国产99白浆流出| 高清毛片免费观看视频网站| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 久久国产精品影院| 国产成人影院久久av| 在线观看66精品国产| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 俄罗斯特黄特色一大片| 内射极品少妇av片p| 欧美一区二区亚洲| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 精品福利观看| 18禁美女被吸乳视频| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 看片在线看免费视频| 有码 亚洲区| 成人一区二区视频在线观看| 成年女人永久免费观看视频| 亚洲国产欧美网| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 老汉色av国产亚洲站长工具| 国产色婷婷99| 亚洲av美国av| 国产精品电影一区二区三区| 90打野战视频偷拍视频| 欧美日韩国产亚洲二区| 深爱激情五月婷婷| 亚洲最大成人中文| 欧美黑人巨大hd| 国产精品99久久99久久久不卡| 夜夜爽天天搞| 在线天堂最新版资源| 十八禁人妻一区二区| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久 | 精华霜和精华液先用哪个| 老司机午夜福利在线观看视频| 亚洲国产精品999在线| 国产精品久久久久久久久免 | 男女床上黄色一级片免费看| 窝窝影院91人妻| 国产精品日韩av在线免费观看| 午夜视频国产福利| 偷拍熟女少妇极品色| 国产精品99久久久久久久久| 91久久精品国产一区二区成人 | 少妇裸体淫交视频免费看高清| 韩国av一区二区三区四区| 18禁在线播放成人免费| 国内精品一区二区在线观看| 欧美黑人巨大hd| 日本成人三级电影网站| 一本一本综合久久| 嫩草影视91久久| 午夜激情福利司机影院| 美女大奶头视频| 91麻豆av在线| 精品国产美女av久久久久小说| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老汉色av国产亚洲站长工具| 中文字幕av在线有码专区| 久久久国产精品麻豆| 一级毛片高清免费大全| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 我要搜黄色片| 老司机在亚洲福利影院| 午夜老司机福利剧场| 欧美区成人在线视频| 亚洲成av人片免费观看| 97碰自拍视频| 狂野欧美激情性xxxx| 少妇丰满av| 国产av一区在线观看免费| 丰满人妻一区二区三区视频av | 国产精品久久久人人做人人爽| 国产aⅴ精品一区二区三区波| 岛国视频午夜一区免费看| 免费人成在线观看视频色| 久久久国产精品麻豆| 国产亚洲精品一区二区www| 日本免费a在线| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 欧美成狂野欧美在线观看| 欧美日韩综合久久久久久 | 麻豆成人av在线观看| 国内揄拍国产精品人妻在线| 亚洲成av人片免费观看| 内射极品少妇av片p| 十八禁网站免费在线| 国产成人啪精品午夜网站| 亚洲国产精品sss在线观看| 真人一进一出gif抽搐免费| av福利片在线观看| 国产高清有码在线观看视频| 日韩欧美在线乱码| 变态另类丝袜制服| 日韩欧美国产在线观看| 中文字幕人成人乱码亚洲影| av片东京热男人的天堂| 国产高潮美女av| or卡值多少钱| 国产熟女xx| 日日干狠狠操夜夜爽| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 在线观看66精品国产| 精品欧美国产一区二区三| 日本黄大片高清| 国产亚洲av嫩草精品影院| 老熟妇仑乱视频hdxx| 亚洲成av人片免费观看| 在线天堂最新版资源| 神马国产精品三级电影在线观看| 亚洲精华国产精华精| 九色国产91popny在线| 午夜a级毛片| 中出人妻视频一区二区| 国产三级中文精品| 国产麻豆成人av免费视频| 欧美激情久久久久久爽电影| 国产精品 国内视频| 欧美日韩精品网址| 一区二区三区免费毛片| 黄色成人免费大全| 91久久精品国产一区二区成人 | 我的老师免费观看完整版| 久久久久国内视频| 亚洲专区国产一区二区| 亚洲av熟女| 日本熟妇午夜| 深爱激情五月婷婷| 欧美乱码精品一区二区三区| 露出奶头的视频| 午夜免费男女啪啪视频观看 | 国产69精品久久久久777片| 国产三级中文精品| 国产成人av教育| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 熟女电影av网| 午夜免费激情av| 亚洲中文字幕日韩| 日本一二三区视频观看| 日韩中文字幕欧美一区二区| 成人无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 亚洲精品美女久久久久99蜜臀| 99久久综合精品五月天人人| 亚洲乱码一区二区免费版| 老司机午夜十八禁免费视频| 欧美又色又爽又黄视频| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 欧美成人a在线观看| 国产黄片美女视频| 久久亚洲真实| 精品电影一区二区在线| 99热这里只有精品一区| 变态另类丝袜制服| 欧美激情久久久久久爽电影| 99在线视频只有这里精品首页| 日韩欧美精品v在线| av黄色大香蕉| 天天添夜夜摸| 九九在线视频观看精品| av片东京热男人的天堂| 国产精品,欧美在线| 亚洲成av人片在线播放无| 天天躁日日操中文字幕| 久久精品人妻少妇| 欧美国产日韩亚洲一区| a级毛片a级免费在线| 免费无遮挡裸体视频| 亚洲欧美日韩高清专用| 啦啦啦免费观看视频1| 午夜精品一区二区三区免费看| av在线天堂中文字幕| 波野结衣二区三区在线 | 女同久久另类99精品国产91| 在线看三级毛片| 香蕉av资源在线| 9191精品国产免费久久| 国产成人影院久久av| 免费看a级黄色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天美传媒精品一区二区| 欧美三级亚洲精品| 国产69精品久久久久777片| 久久中文看片网| 91在线观看av| 美女cb高潮喷水在线观看| 无遮挡黄片免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 亚洲久久久久久中文字幕| 琪琪午夜伦伦电影理论片6080| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看| 国产精品久久久久久久电影 | 最近视频中文字幕2019在线8| 淫妇啪啪啪对白视频| 天堂动漫精品| 窝窝影院91人妻| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 女生性感内裤真人,穿戴方法视频| 免费在线观看日本一区| 久久香蕉国产精品| 在线播放无遮挡| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 午夜老司机福利剧场| 动漫黄色视频在线观看| 久久九九热精品免费| 亚洲成人久久性| 精品无人区乱码1区二区| 久久国产乱子伦精品免费另类| 人妻久久中文字幕网| 国产精品久久久久久精品电影| 天堂网av新在线| 90打野战视频偷拍视频| 国产精品亚洲美女久久久| 国产精品久久久久久人妻精品电影| 精品不卡国产一区二区三区| 久久九九热精品免费| 久久精品人妻少妇| 少妇的丰满在线观看| 九九久久精品国产亚洲av麻豆| 日本黄色片子视频| 最好的美女福利视频网| 午夜久久久久精精品| 欧美性感艳星| 亚洲人成网站在线播放欧美日韩| tocl精华| 男女午夜视频在线观看| 国产高清三级在线| 99国产精品一区二区蜜桃av| 久久欧美精品欧美久久欧美| 尤物成人国产欧美一区二区三区| 免费观看人在逋| 1000部很黄的大片| 国产成人啪精品午夜网站| 亚洲性夜色夜夜综合| 国产99白浆流出| 欧美中文综合在线视频| 99国产综合亚洲精品| 日本黄大片高清| 99久国产av精品| 国产黄a三级三级三级人| av天堂中文字幕网| 少妇的丰满在线观看| 久久精品综合一区二区三区| 熟女电影av网| 成人亚洲精品av一区二区| 精品久久久久久久毛片微露脸| 熟女电影av网| 一级黄片播放器| avwww免费| 高潮久久久久久久久久久不卡| 91av网一区二区| 90打野战视频偷拍视频| 成人永久免费在线观看视频| 久久亚洲真实| 欧美日本视频| 最近最新中文字幕大全免费视频| 小说图片视频综合网站| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆|