• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    2016-11-12 06:21:05光翠娥王世強(qiáng)桑尚源張海玲楊紅飛程水源江南大學(xué)食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室江蘇無錫黃岡師范學(xué)院經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室湖北黃岡438000
    食品科學(xué) 2016年11期
    關(guān)鍵詞:黃岡單層皂苷

    光翠娥,王世強(qiáng),桑尚源,張海玲,楊紅飛,程水源(.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 4;.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    光翠娥1,王世強(qiáng)1,桑尚源1,張海玲1,楊紅飛1,程水源2
    (1.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    利用Caco-2細(xì)胞單層與大鼠小腸模型研究大豆皂苷Ⅰ和Ⅱ的吸收變化與機(jī)制。在Caco-2細(xì)胞單層中,大豆皂苷Ⅰ和Ⅱ從腸腔側(cè)到基底側(cè)的表觀滲透系數(shù)(apparent permeability coefficients,Papp)隨時(shí)間的延長(zhǎng)趨向平穩(wěn),前120 min近似線性,且隨濃度增大,斜率減小,Papp值分別為(1.02×10-6~3.41×10-6)cm/s和(0.9×10-6~3.05×10-6) cm/s;傳遞的飽和性、雙側(cè)Papp比率>1.5以及線粒體呼吸鏈抑制劑疊氮化鈉的抑制作用表明了兩者的主動(dòng)轉(zhuǎn)運(yùn)機(jī)制。抑制劑維拉帕米沒有提高大豆皂苷Ⅰ和Ⅱ的吸收,排除了p-糖蛋白介導(dǎo)的外排;吸收促進(jìn)劑按照冰片>脫氧膽酸鈉>卡波姆934P>聚山梨酯80的強(qiáng)弱提高兩者的吸收,殼聚糖則未能加強(qiáng)滲透。跨膜轉(zhuǎn)運(yùn)也表現(xiàn)出組織差異性:兩者在大鼠空腸的Papp是十二指腸和回腸的2倍多。因此,控制的傳遞應(yīng)能提高大豆皂苷Ⅰ和Ⅱ的小腸吸收以便兩者實(shí)施它們的生理功能。

    大豆皂苷;Caco-2;疊氮化鈉;p-糖蛋白;吸收促進(jìn)劑

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II using a Caco-2 cell monolayer and a rat intestinal model[J]. Food Science, 2016, 37(11): 174-179. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    Soyasaponins Ⅰ and Ⅱ are naturally occurring oleanane triterpenoid glycosides and primarily found in soybean (Glycine max). Their contents vary according to soybean variety, culture year, location grown and degree of maturity with an average of 0.24 and 0.1 mmol/g, respectively[1]. SoyasaponinⅠmainly exists in soybean germ whereas soybean cotyledon contains a higher content of soyasaponinⅡthan germ[2]. SoyasaponinsⅠandⅡare both amphiphilic molecules, with polar sugar moieties attached to a nonpolar pentacyclic ring (soyasapogenol B) at the C-3 position[3]. The structures of soyasaponins I and Ⅱ have been elucidated to be 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-galactopyranosyl(1→2)-β-D- glucuronopyranosyl]-soyasapogenol B and 3-O-[α-L-rhamnopyranosyl(1→2)-α-L- arabinopyranosyl(1→2)-β-D-glucuronopyranosyl]-soyasapogenol B, respectively. Soyasaponin I has been reported to have anti-inflammatory[4], anti-carcinogenic[5], anti-microbial[6], antioxidative[4], adjuvant[7], hepato-[8], cardiovascular[9]and kidney[10]protective functions; soyasaponinⅡalso displays anti-viral[11], adjuvant[7], hepato-[8]and cardiovascular[9]protective effects[12].

    The human colonic carcinoma Caco-2 cells form monolayers that allow absorption to occur simultaneously with food digestion under conditions similar to those found along the surface of the intestinal tract. Preluding the human trials, the Caco-2 cell monolayer model is generally used to screen bioactives with high productivity and thereafter predict their permeation in human intestine[13]. Excellent correlation exists between in vivo absorption and in vitro apparent permeability coefficient (Papp) for compounds including transcellular, paracellular and carrier-mediated mechanisms[14]. An end-point mode of experiment showed the mucosal transfer of soyasaponinⅠacross the Caco-2 cell monolayer with an Pappvalue of (0.9 × 10-6-3.6 × 10-6) cm/s[15]. Herein a detailed experiment would be conducted to investigate the time- and concentration-dependent permeability of soyasaponinsⅠandⅡand therefore confirm their transport mechanism.

    Moreover, the absorption of bioactives in human intestine is influenced by diverse factors. Passive intestinal permeability depends on molecular size, lipophilicity, hydrogen bonding capacity and so on[16]; the active transport needs carriers and energy; efflux mechanisms, absorption enhancers and food matrix can retard or promote the permeability of bioactives. Therefore, the effects of inhibitors, including sodium azide and verapamil, and absorption enhancers, including borneol, sodium deoxycholate (SDC), polysorbate (Tween) 80, crosslinked poly(acrylate) derivative carbomer 934P and poly(2-deoxy-2-amino glucan) polymer chitosan on the permeability of soyasaponins Ⅰ and Ⅱ, would be predicted using the Caco-2 cell monolyer model. The uptake of bioactives also displays tissue difference. Herein the optimal intestine regions for absorption of soyasaponins Ⅰ and Ⅱ would be determined.

    1 Materials and Methods

    1.1 Materials and animals

    Human colon adenocarcinoma Caco-2 cell line Cell Bank of Chinese Academy of Sciences (Shanghai, China); alkaline phosphatase assay kit, penicillin and streptomycin Beyotime Institute of Biotechnology (Shanghai, China); carbomer 934P Xinhenglong Technology (Wuhan, China); soluble chitosan (50% deacetylation degree) Hecreat Biotech (Qingdao, China); Hank’s balanced salt solution (HBSS, pH 7.4), Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and non-essential amino acids (NEAA) GibcoBRL (New York, USA); soyasaponins I and Ⅱ ChromaDex (Irvine, USA); TranswellTMplates of 6 wells (24 mm diameter, 3 mm pore size) Corning Costar (New York, USA); atenolol and propranolol Sigma (St. Louis, USA). Male Sprague-Dawley (SD) rats with a body mass of approximately 250 g Shanghai Super-B&K Laboratory Animal Corporation (Shanghai Laboratory Animal Center, China). The animals had free access to food and water in the room maintained at about 25 ℃ with a 12 h light/dark cycle.

    1.2 Preparation of Caco-2 cell monolayers

    Caco-2 cells were cultured in DMEM containing 4.5 g/L glucose and supplemented with 10% (V/V) FBS, 1% (V/V) L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin, 1%(V/V) NEAA, and maintained at 37 ℃ in a controlled atmosphere of 5% CO2and 90% relative humidity. Medium was replaced every two days until the confluence reached 80%-90%. After 32-40 passages by trypsinization with 0.25% trypsin and 0.02% of ethylenediaminetetraacetic acid (EDTA) in PBS, Caco-2 cells were inoculated at a density of 1.5×105cells/cm2on Transwell membrane inserts. Medium was renewed every 2 days for the 5 weeks and every day for the next 8-21 day s[13]. Differentiation of Caco-2 cells was examined by determining the activity of alkaline phosphatase with an assay kit; the integrity was checked by measuring the transepithelial electrical resistance (TEER)with an Evom resistance voltohmmeter (World Precision Instruments, Sarasota, USA) after monitoring for 60 min; and the transportation ability was tested by running standard assays using atenolol and propranolol as paracellular fl ux and transcellular fl ux markers, respectively[16].

    1.3 Transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After the integral cell monolayers were washed twice with prewarmed Hank’s balanced salt solution (HBSS) medium, 0.5 mL aliquots of HBSS containing different concentrations of soyasaponins Ⅰ and Ⅱ (0.5, 1, 3 mmol/L) were added to the apical side and 1.5 mL of fresh HBSS to the basolateral side, or 0.5 mL HBSS to the apical side and 1.5 mL samples to the basolateral side. The monolayers were incubated at 37 ℃ on a vibrax shaker at 60 r/min. At the time intervals of 30, 45, 60, 90, 120, 150, 180 and 240 min, 0.5 or 0.25 mL aliquots were drawn from the receiving side for analysis and replaced with an equal volume of fresh buffer. In order to investigate the transport variation, a 0.5 mL aliquot of HBSS containing 1mmol/L soyasaponin Ⅰ and 1 mmol/L soyasaponin Ⅱ was added to the apical side, or 0.5 mL aliquots of HBSS containing 1 mmol/L soyasaponin Ⅰor soyasaponin Ⅱ and sodium azide (0.5 mmol/L) or verapamil (0.1 mmol/L) or borneol (0.5 g/100 mL) or SDC (0.5 g/100 mL) or polysorbate 80 (0.5 g/100 mL) or carbomer 934P (0.5 g/100 mL) or chitosan (0.5 g/100 mL) were added to the apical side, and 0.5 mL aliquots were removed from the basolateral side over a period of 180 min. The collected samples were immediately frozen, lyophilized and stored below -20 ℃ for subsequent high-performance liquid chromatography (HPLC) analysis[13]. The Pappwas calculated according to the following equation.

    where ΔQ/Δt is the appearance rate of the soyasaponin on the receiving side/(mol/s), A is the membrane surface area /cm2, and C0is the initial concentrationin the donor compartment/ (mol/mL).

    Transport enhancement ratio (ER) was calculated from Pappvalues according to the following equation:

    1.4 ex vivo transport of soyasaponinsⅠandⅡacross rat intestinal tissues

    Rats were anaesthetized via intraperitoneal injection of 15% urethane (10 mL/kg) and then a laparotomy was performed. The intestine was excised and rinsed in ice-cold PBS (pH 7.4). The duodenal segment was the first 10 cm portion from the stomach, the ileal segment was the fi nal 10 cm portion of the small intestine, and the remaining intestine was used as the jejunum. After experimental segments were obtained, the underlying muscularis was removed before mounting in an Ussing chamber, in which a surface area of 0.293 cm2was exposed. PBS (3 mL) was added to the serosal side and an equal volume of sample solution (1 mmol/L) was added to the mucosal side. After the chamber was placed in a water bath at 30 ℃, mixing was performed by bubbling with 95% O2-5% CO2[17]. Samples were taken away from the serosal side over a period of 180 min and were immediately frozen, lyophilized and stored below -20 ℃ for subsequent HPLC analysis.

    1.5 Quantifi cation of soyasaponins I and Ⅱ by HPLC

    The lyophilized samples were dissolved in 200 mL MeOH and centrifuged at 15 000 × g for 10 min. The resulting supernatant (20 μL) was injected and separated by the reversed phase-HPLC(RP-HPLC) system comprised of a Jupiter 4 μ Proteo 90A C12 reversed-phase column (250 mm × 4.6 mm, Phenomenex, Inc., Torrance, CA), a Waters 2695 Separations Module and a Waters 996 photodiode array detector (Waters Co., Milford, MA) recording absorbance from 190 to 350 nm. Solvent A was 0.05% (V/V) trifluoroacetic acid (TFA) in filtered deionized water, and solvent B was 0.05% (V/V) TFA in acetonitrile. Elution was achieved by a linear gradient from 38% to 48% solvent B within 40 min at a fl ow rate of 1 mL/min[1]. Calibration curves of the peak area versus standard concentration were used to calculate the soyasaponin concentrations.

    1.6 Data analysis

    All data were expressed as the± s and unpaired Student’s t-test was used to assess the significance of the difference between two mean values at a signifi cant level of P < 0.05.

    2 Results and Analysis

    2.1 Time- and concentration-dependent transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After Caco-2 cells grew for 14 days, alkaline phosphatase could hydrolyze the substrate para-nitrophenyl phosphate into yellow para-nitrophenol. On the 21thday, TEER measurement showed a value of above 450 Ω/cm2after subtracting the intrinsic resistance of insert alone.Pappvalues of two known model substrates atenolol (poor permeability) and propranolol (high permeability) were (2.37 ± 0.02) × 10-7cm/s and (2.62 ± 0.07) × 10-5cm/s, respectively. These control assays confi rmed the integrity and transportation ability of Caco-2 cell monolayers. Within the test concentration range, soyasaponins Ⅰ and Ⅱ showed no apparent cytotoxicity on Caco-2 cells. The recovery during transport assays was measured as the total amount of soyasaponins in two sides of the insert. A recovery rate of > 95% for both soyasaponins indicated low cell accumulation and supported the experimental reliability.

    Fig. 1 Effects of time and concentration on the transport ofsoyasaponins I (A) and Ⅱ (B) across Caco-2 cell monolayers (apical to basolateral, n = 5)

    Pappvalues for soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers from the apical to basolateral direction were showed in Fig. 1. With a defi ned concentration, Pappincreased linearly until a plateau was reached at 120 min. According to the equation (1), the transport rate (ΔQ/Δt) increased for the fi rst 120 min and afterwards tended to remain constant. When the soyasaponin concentration was elevated, the transported mass was increased with a less magnitude, Pappdecreased and the uptake tended to be saturable probably due to the carrier saturation. The results show that Pappvalues from the apical to basolateral direction were significantly higher (P < 0.05) than those from the basolateral to apical direction with the ratios being larger than 1.5 (Table 1) further indicated the active transport[16]. Therefore, the transport of soyasaponinsⅠand Ⅱ might involve a carriermediated mechanism; the absorption could be enhanced when the soyasaponin concentration is low and could be limited by the capacity of epithelial cells to take up and transfer soyasaponins to the basolateral side when the high concentration is present[15]. The order of magnitude (10-6cm/s) for fi nal Pappvalues indicated an intermediate permeability of two soyasaponins. For comparison, Pappvalues of 36 fl avonoids across Caco-2 monolayers from the apical to basolateral side ranged from less than 5 × 10-7to 2.96 × 10-5cm/s[16]. Compounds of intermediate or low permeability have a lower permeability in Caco-2 model than in vivo. Atenolol, ranitidine, furosemide and chlorothiazide, which are adequately absorbed in humans, showed poor permeability in the standard 21-day Caco-2 cell monolayer. Caco-2 cells originate from the colon and have a tighter paracellular route than in vivo. The average pore radius of tight junctions in the human intestine is around 8-13?, whereas the corresponding radius in Caco-2 cells is about 5 ?[18].

    TTaabble 1 Bilateral apparent permeation coeffi cients (Paapppp)) ooff soyasaponins in the Caco-2 model

    2.2 Effects of inhibitors and absorption enhancers on the transport of soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers

    When soyasaponins Ⅰ and Ⅱ were simultaneously added to the apical side, the individual Pappwas mildly lower than that for a soyasaponin added separately (Fig. 2), which indicated that two soyasaponins might use the same carrier and therefore competitively inhibit the permeation each other and that the interaction in food matrix could regulate their absorption. Sodium azide, a cytochrome c oxidase-respiratory chain complex Ⅳinhibitor due to enhanced cytochrome c holoenzyme dissociation that inhibits the electron transfer between mitochondrial respiratory chain and thus prevents the oxidative ATP production[19], significantly reduced the transport of both soyasaponins (P < 0.05). Competitive inhibition and energy requirement during transport further indicated the carrier-mediated flux of soyasaponins Ⅰand Ⅱ. P-glycoprotein, a transmembrane permeability glycoprotein, is an ATP dependent efflux pump that is strongly expressed by Caco-2 cells and often causes multidrug resistance and poor bioavailability[20]. Its specific inhibitorverapamil did not significantly increase the permeation of both soyasaponins, hence suggesting that the carrier might not involve in the efflux of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. When different enhancers were added, the ranking in terms of absorption enhancing ability was borneol > SDC > carbomer 934P > polysorbate 80 > chitosan. Among them, borneol, SDC, carbomer 934P and polysorbate 80 significantly promoted the permeation of soysaponins (P < 0.05) with ERs being 3.06, 2.98, 2.52, 2.44 for soyasaponin Ⅰ and 3.21, 3.03, 2.73 and 2.62 for soyasaponin Ⅱ, respectively. Chitosan showed no absorption enhancing effect for two soyasaponins and in contrast, suppressed in different degrees. Borneol is an efficacyenhancing ingredient in traditional Chinese medicine; SDC is a type of bile salts that tend to dissolve the extracellular proteins and loosen the tight junctions and also to dissolve the membrane bound cholesterol and increase the fl uidity of the membrane, thereby increasing the transcellular permeability[21]; polysorbate 80 is a nonionic surfactant used in the manufacture of a variety of pharmaceutical products and can induce alternation of biomembranes and therefore increase the permeability[22]; carbomer and chitosan with strong mucoadhesiveness and low toxicity have been proved to function by opening intercellular junctions and thereby enhancing the paracellular permeability[23].

    Fig. 2 Pappand transport ER of soyasaponins Ⅰ (A) and Ⅱ (B) in theCaco-2 model in the presence of various inhibitors and enhancers (apical to basolateral)

    2.3 Regional difference of the transport of soyasaponinsⅠ and Ⅱ in the intestine

    The optimal sites for absorption of soyasaponins Ⅰ andⅡ were determined by ex vivo transport across rat intestinal segments in Ussing chambers. Pappvalues of soyasaponins across rat duodenum, jejunum and ileum were summarized in Fig. 3. The calculated Pappvalues for soyasaponins Ⅰand Ⅱ across the jejunal segment were more than 2-times greater (P < 0.05) than Pappvalues across the duodenal and ileal segments, whereas the Pappvalues across duodenum and ileum did not differ signifi cantly. These results indicated jejunum was the optimum absorption site of soyasaponins I and Ⅱ. The unstirred water layer, differences in the thickness of mucous layers, the tightness and the number of tight junctions and membrane components might have infl uenced the transport of soyasaponins Ⅰ and Ⅱ across the various intestinal membranes[17]. Additionally, Pappvalues obtained through the ex vivo Ussing chambers were higher than those observed in the Caco-2 experiments with permeability ratios ranging from about 3.2 (ileum) up to 6.9 (duodenum), which may be explained by the higher tightness of the Caco-2 cell monolayer compared to intact mammalian intestinal tissue[24].

    Fig. 3 Transport of soyasaponins Ⅰ and Ⅱ across the intestinal segments

    3 Conclusions

    The present study showed the permeability of soyasaponins Ⅰ and Ⅱ as being intermediate in the Caco-2 model. Active transport was suggested to be the major absorption mechanism, which was further supported by the inhibitory effects of sodium azide. Absorption enhancers, borneol, SDC, carbomer 934P and polysorbate 80, did improve the permeability of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. Jejunum was suggested to be the optimal absorption tissue. Thus a manipulated transport would increase the intestinal permeability so that soyasaponinsⅠand Ⅱ could exert their health actions.

    [1] HU Jiang, LEE S, HENDRICH S, et al. Quantifi cation of the group B soyasaponins by high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2587-2594. DOI:10.1021/jf011474.

    [2] BERHOW M A, KONG S, VERMILLION K E, et al. Complete quantifi cation of group A and group B soyasaponins in soybeans[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2035-2044. DOI:10.1021/jf053072o.

    [3] ZHANG Wei, POPOVICH D G. Chemical and biological characterization of oleanane triterpenoids from soy[J]. Molecules, 2009, 14(8): 2959-2975. DOI:10.3390/molecules14082959.

    [4] LEE I, PARK Y, YEO H, et al. SoyasaponinⅠattenuates TNBS-induced colitis in mice by inhibiting NF-κB pathway[J]. Journal of Agricultural and Food Chemistry, 2010, 58(20): 10929-10934. DOI:10.1021/jf102296y.

    [5] CHANG Weiwei, YU Chiayu, LIN Tzuwen, et al. SoyasaponinⅠdecreases the expression of α-2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells[J]. Biochemical and Biophysical Research Communications, 2006, 341(2): 614-619. DOI:10.1016/ j.bbrc.2005.12.216.

    [6] EL-HAWIET A M, TOAIMA S M, ASAAD A M, et al. Chemical constituents from Astragalus annularis Forssk. and A. trimestriss L., Fabaceae[J]. Brazilian Journal of Pharmacognosy, 2010, 20(6): 860-865. DOI:10.1590/S0102-695X2010005000047.

    [7] ODA K, MATSUDA H, MURAKAMI T, et al. Relationship between adjuvant activity and amphipathic structure of soyasaponins[J]. Vaccine, 2003, 21(17/18): 2145-2151. DOI:10.1016/S0264-410X(02)00739-9.

    [8] ISHII Y, TANIZAWA H. Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones[J]. Biological & Pharmaceutical Bulletin, 2006, 29(8): 1759-1763. DOI:10.1248/ bpb.29.1759.

    [9] TAKAJASHI S, HORI K, HOKARI M, et al. Inhibition of human renin activity by saponins[J]. Biomedical Research, 2010, 31(2): 155-159. DOI:10.2220/biomedres.31.155.

    [10] PHIBRICK D J, BUREAU D P, COLLINS F W, et al. Evidence that soyasaponin Bbretards disease progression in a murine model of polycystic kidney disease[J]. Kidney International, 2003, 63(4): 1230-1239. DOI:10.1046/j.1523-1755.2003.00869.x.

    [11] KINJO J, YOKOMIZO K, HIRAKAWA T, et al. Anti-herps virus activity of fabaceous triterpenoidal saponins[J]. Biological & Pharmaceutical Bulletin, 2000, 23(7): 887-889. DOI:10.1248/ bpb.23.887.

    [12] GUANG Cuie, CHEN Jie, SANG Shangyuan, et al. Biological functionality of soyasaponins and soyasapogenols[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33): 8247-8255. DOI:10.1021/jf503047a.

    [13] GUANG Cuie, SHANG Jiangang, JIANG Bo. Transport of traditional Chinese pimple milk-derived angiotensin- converting enzyme(ACE) inhibitory peptides across a Caco-2 cell monolayer and their molecular recognition with ACE[J]. Journal of Food, Agriculture & Environment, 2012, 10(3/4): 40-44.

    [14] YEE S Y. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth[J]. Pharmaceutical Research, 1997, 14(6): 763-766. DOI:10.1023/ A:1012102522787.

    [15] HU Jiang, REDDY M B, HENDRICH S, et al. SoyasaponinⅠand sapogenol B have limited absorption by Caco-2 intestinal cells and limited bioavailability in women[J]. Journal of Nutrition, 2004, 134(8): 1867-1873.

    [16] TIAN Xiaojuan, YANG Xiuwei, YANG Xiaoda, et al. Studies of intestinal permeability of 36 flavonoid using Caco-2 cell monolayer model[J]. International Journal of Pharmaceutics, 2009, 367(1/2): 58-64. DOI:10.1016/j.ijpharm.2008.09.023.

    [17] UCHIYAMA T, SUGIYAMA T, QUAN Y S, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-β-D-maltopyranoside[J]. Journal of Pharmacy and Pharmacology, 1999, 51(11): 1241-1250. DOI:10.1211/0022357991776976.

    [18] MASUNGI C, BORREMANS C, WILLEMS B, et al. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds[J]. Journal of Pharmaceutical Science, 2004, 93(10): 2507-2521. DOI:10.1002/ jps.20149.

    [19] LEARY S C, HILL B C, LYONS C N, et al. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation[J]. Journal of Biological Chemistry, 2002, 277(13): 11321-11328. DOI:10.1074/jbc. M112303200.

    [20] VARMA M V, ASHOKRAJ Y, DEY C S, et al. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement[J]. Pharmacological Research, 2003, 48(4): 347-359. DOI:10.1016/S1043-6618(03)00158-0.

    [21] RUAN Liping, YU Boyang, ZHU Danni, et al. Effect of enhancer on the absorption of matrine in vitro and its hepato-protective effect on mice[J]. Journal of China Pharmaceutical University, 2008, 39(2): 116-121.

    [22] AKHTAR N, REHMAN M U, KHAN H M S, et al. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid[J]. Tropical Journal of Pharmaceutical Research, 2011, 10(3): 281-288. DOI:10.4314/tjpr.v10i3.1.

    [23] LUEBEB H L, de LEEUW B J, LANGEMEYER M W E, et al. Mucoadhesive p olymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vitro[J]. Pharceutical Research, 1996, 13(11): 1668-1672. DOI:10.1023/A:1016488623022.

    [24] FOLTZ M, CERSTIAENS A, van MEENSEL A, et al. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models[J]. Peptides, 2008, 29(8): 1313-1320. DOI:10.1016/j.peptides.2008.03.021.

    Variability of Transepithelial Transport of Soyasaponins Ⅰ and ⅡUsing a Caco-2 Cell Monolayer and a Rat Intestinal Model

    GUANG Cuie1, WANG Shiqiang1, SANG Shangyuan1, ZHANG Hailing1, YANG Hongfei1, CHENG Shuiyuan2
    (1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China)

    The absorption mechanism and variability of soyasaponins I and II were investigated using a Caco-2 cell monolayer and a rat intestinal model. Apparent permeability coeffi cients (Papp) across the Caco-2 model increased linearly until plateaus were reached at 120 min with intermediate Pappvalues of (1.02?3.41) × 10-6and (0.9?3.05) × 10-6cm/s for two soyasaponins, respectively. Saturable transport, bilateral Pappratios of more than 1.5 and the inhibitory effect of mitochondrial electron transport chain blocker sodium azi de indicated the active transport mechanisms. The transmembrane permeability glycoprotein (p-glycoprotein) inhibitor verapamil did not increase the permeation of both soyasaponins, excluding the p-glycoprotein-related effl ux. Several absorption enhancers promoted the permeation across the Caco-2 cell monolayers with a rank of borneol > sodiumdeoxycholate > carbomer 934P polysorbate 80; but chitosan did not exhibit such an enhancing ability. The transepithelial transport also showed tissue difference in the intestine with the Pappvalues for soyasaponins I and II across the jejunal segment being more than 2 times greater than those across the duodenal and ileal segments. Therefore, a controlled transport should be able to improve the intestinal absorption so that soyasaponins I and II would exert their health functions. Key words: soya saponin; Caco-2; sodium azide; p-glycoprotein; absorption enhancer

    nces:

    10.7506/spkx1002-6630-201611030

    TS201.4

    A

    1002-6630(2016)11-0174-06

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II

    using a Caco-2 cell monolayer and a rat intestinal model[J]. 食品科學(xué), 2016, 37(11): 174-179. DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    2015-03-01

    國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31201289);經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(2011BLKF241);食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室自由探索項(xiàng)目(SKLF-ZZB-201208)

    光翠娥(1976—),女,副教授,博士,研究方向?yàn)槭称窢I養(yǎng)與功能因子。 E-mail:guang1226@hotmail.com

    猜你喜歡
    黃岡單層皂苷
    書的厚與薄
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    黃岡師范學(xué)院美術(shù)作品選登
    黃岡師范學(xué)院美術(shù)學(xué)院寫生作品選登
    黃岡師范學(xué)院書法作品選登
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    單層小波分解下圖像行列壓縮感知選擇算法
    HPLC-MS/MS法同時(shí)測(cè)定三七花總皂苷中2種成分
    中成藥(2018年9期)2018-10-09 07:19:04
    HPLC法測(cè)定大鼠皮膚中三七皂苷R1和人參皂苷Rb1
    中成藥(2017年9期)2017-12-19 13:34:40
    HPLC法同時(shí)測(cè)定熟三七散中13種皂苷
    中成藥(2017年6期)2017-06-13 07:30:34
    国产精品国产三级国产av玫瑰| av在线观看视频网站免费| 精品酒店卫生间| 两个人的视频大全免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本猛色少妇xxxxx猛交久久| 好男人视频免费观看在线| 干丝袜人妻中文字幕| 男女那种视频在线观看| 日韩国内少妇激情av| 身体一侧抽搐| freevideosex欧美| 深爱激情五月婷婷| 日韩 亚洲 欧美在线| 精品久久久噜噜| 国产男女超爽视频在线观看| 成人国产麻豆网| 噜噜噜噜噜久久久久久91| 男人和女人高潮做爰伦理| 中文字幕免费在线视频6| 午夜免费观看性视频| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久v下载方式| 欧美+日韩+精品| freevideosex欧美| 一个人免费在线观看电影| 97精品久久久久久久久久精品| 一级毛片aaaaaa免费看小| 国产一级毛片七仙女欲春2| 亚洲综合色惰| 一级毛片我不卡| 午夜福利成人在线免费观看| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 综合色av麻豆| 51国产日韩欧美| 一级毛片aaaaaa免费看小| 国内精品美女久久久久久| 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| 18禁动态无遮挡网站| 亚洲精品一二三| 久久精品人妻少妇| 91久久精品国产一区二区三区| 简卡轻食公司| 国产亚洲精品av在线| 午夜福利网站1000一区二区三区| a级毛片免费高清观看在线播放| 久久久久精品性色| 国产亚洲av片在线观看秒播厂 | 久久综合国产亚洲精品| 免费看日本二区| 麻豆成人av视频| 久久99精品国语久久久| 免费观看无遮挡的男女| 午夜久久久久精精品| 最近中文字幕2019免费版| 国产不卡一卡二| 国产精品精品国产色婷婷| 亚洲精品色激情综合| 国产高清不卡午夜福利| 免费av观看视频| 精品不卡国产一区二区三区| 亚洲第一区二区三区不卡| 人人妻人人澡欧美一区二区| 99热网站在线观看| 亚洲一级一片aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日啪夜夜爽| 中文字幕人妻熟人妻熟丝袜美| 内地一区二区视频在线| 超碰97精品在线观看| 久久久久久久国产电影| 乱码一卡2卡4卡精品| 在线播放无遮挡| av福利片在线观看| 国产精品国产三级专区第一集| 亚洲国产av新网站| 国产视频首页在线观看| av在线播放精品| av女优亚洲男人天堂| 婷婷色av中文字幕| 亚洲天堂国产精品一区在线| 80岁老熟妇乱子伦牲交| 国产成人精品福利久久| 久久精品夜夜夜夜夜久久蜜豆| 国产av国产精品国产| 99久国产av精品| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 国产精品无大码| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 亚洲最大成人中文| 日本wwww免费看| 在线观看免费高清a一片| 亚洲不卡免费看| 三级男女做爰猛烈吃奶摸视频| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 97人妻精品一区二区三区麻豆| 午夜亚洲福利在线播放| 高清毛片免费看| .国产精品久久| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 晚上一个人看的免费电影| 日韩,欧美,国产一区二区三区| 91av网一区二区| 国产黄色小视频在线观看| 超碰97精品在线观看| 一个人看视频在线观看www免费| av播播在线观看一区| 亚洲av一区综合| 久久久a久久爽久久v久久| 午夜免费男女啪啪视频观看| 亚洲,欧美,日韩| 亚洲国产最新在线播放| 亚洲人与动物交配视频| 国产黄片视频在线免费观看| 美女cb高潮喷水在线观看| 一级av片app| 国产午夜精品一二区理论片| 尾随美女入室| 纵有疾风起免费观看全集完整版 | 黑人高潮一二区| 两个人视频免费观看高清| 禁无遮挡网站| 99久国产av精品| 免费av观看视频| 纵有疾风起免费观看全集完整版 | 国产精品久久久久久av不卡| 嫩草影院入口| 亚洲精品第二区| 亚洲av不卡在线观看| 精品酒店卫生间| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 少妇丰满av| 国语对白做爰xxxⅹ性视频网站| 成人欧美大片| 热99在线观看视频| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 欧美激情在线99| 国产在视频线在精品| 国产免费一级a男人的天堂| 有码 亚洲区| 亚洲国产色片| 日韩国内少妇激情av| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 久久亚洲国产成人精品v| 91av网一区二区| 97热精品久久久久久| 国产综合懂色| 国产精品福利在线免费观看| 淫秽高清视频在线观看| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 一区二区三区乱码不卡18| 欧美xxxx黑人xx丫x性爽| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 十八禁国产超污无遮挡网站| 波多野结衣巨乳人妻| 亚洲国产高清在线一区二区三| 久久久久精品久久久久真实原创| 一级片'在线观看视频| 美女内射精品一级片tv| 日韩一区二区三区影片| 国产色爽女视频免费观看| 国产成人精品福利久久| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 禁无遮挡网站| 中文在线观看免费www的网站| 91久久精品电影网| 久久97久久精品| 午夜久久久久精精品| 91午夜精品亚洲一区二区三区| av在线播放精品| 最近最新中文字幕大全电影3| 久久热精品热| 中国国产av一级| 三级国产精品片| 联通29元200g的流量卡| 亚洲最大成人中文| 亚洲精品aⅴ在线观看| 亚洲成人精品中文字幕电影| 中文精品一卡2卡3卡4更新| 能在线免费看毛片的网站| 极品教师在线视频| 天堂av国产一区二区熟女人妻| 九草在线视频观看| 国产 一区精品| 精品久久久久久久久av| 插阴视频在线观看视频| 亚洲精品国产av蜜桃| 波多野结衣巨乳人妻| 久久精品人妻少妇| 亚洲国产欧美人成| 亚洲精品第二区| 欧美高清成人免费视频www| 蜜臀久久99精品久久宅男| 又粗又硬又长又爽又黄的视频| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 肉色欧美久久久久久久蜜桃 | 免费观看的影片在线观看| 欧美日本视频| 亚州av有码| 超碰97精品在线观看| 九九在线视频观看精品| 69av精品久久久久久| 免费少妇av软件| 成人毛片a级毛片在线播放| 国产成人免费观看mmmm| 一级黄片播放器| 亚洲欧美成人精品一区二区| 国产 亚洲一区二区三区 | 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看 | 国产爱豆传媒在线观看| 亚洲国产最新在线播放| 十八禁网站网址无遮挡 | 精品一区二区三卡| 最新中文字幕久久久久| 国产乱来视频区| 最近中文字幕2019免费版| 日韩强制内射视频| 丝袜喷水一区| 日韩精品有码人妻一区| 在线免费观看不下载黄p国产| .国产精品久久| 色综合站精品国产| 老女人水多毛片| freevideosex欧美| 亚洲av免费在线观看| 国模一区二区三区四区视频| a级毛片免费高清观看在线播放| 国产精品久久视频播放| 久久久久久久久久久丰满| 精品不卡国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人av中文字幕在线观看| 国产视频内射| 搞女人的毛片| 在线观看一区二区三区| 国产免费视频播放在线视频 | 草草在线视频免费看| 国产在视频线精品| 99热这里只有是精品50| ponron亚洲| av一本久久久久| 高清在线视频一区二区三区| 少妇被粗大猛烈的视频| 免费看av在线观看网站| 大话2 男鬼变身卡| 日本一二三区视频观看| 国产白丝娇喘喷水9色精品| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 日本与韩国留学比较| 成年人午夜在线观看视频 | 一级毛片久久久久久久久女| 久久精品熟女亚洲av麻豆精品 | 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 欧美成人一区二区免费高清观看| 黄色一级大片看看| 免费看美女性在线毛片视频| 久久久欧美国产精品| 七月丁香在线播放| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 乱人视频在线观看| 亚洲在线自拍视频| 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| av.在线天堂| 欧美zozozo另类| 亚洲精品一二三| 黑人高潮一二区| 久久久久久久国产电影| 免费观看a级毛片全部| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 97超碰精品成人国产| av又黄又爽大尺度在线免费看| 熟妇人妻不卡中文字幕| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 午夜福利在线在线| 韩国av在线不卡| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 啦啦啦韩国在线观看视频| 热99在线观看视频| 亚洲美女搞黄在线观看| 国产不卡一卡二| 成人鲁丝片一二三区免费| 男女啪啪激烈高潮av片| 51国产日韩欧美| 精品一区二区三区人妻视频| 嫩草影院新地址| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 伦理电影大哥的女人| 97在线视频观看| 国产成人a区在线观看| 别揉我奶头 嗯啊视频| 国产亚洲精品久久久com| 搡女人真爽免费视频火全软件| 久久久精品欧美日韩精品| 99久久人妻综合| 国产精品.久久久| 我的女老师完整版在线观看| 色播亚洲综合网| 一级黄片播放器| 成人高潮视频无遮挡免费网站| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频 | 国产淫片久久久久久久久| 欧美高清成人免费视频www| 色网站视频免费| 我的女老师完整版在线观看| 午夜精品在线福利| 国产 一区 欧美 日韩| 最近中文字幕2019免费版| 五月玫瑰六月丁香| 午夜激情福利司机影院| 日韩国内少妇激情av| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 男人爽女人下面视频在线观看| 伊人久久国产一区二区| 午夜福利高清视频| 国产成人福利小说| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 国产精品一二三区在线看| 国产伦一二天堂av在线观看| 亚洲真实伦在线观看| 七月丁香在线播放| 成人性生交大片免费视频hd| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 久久久久久久久久久丰满| 亚洲国产av新网站| 国产 一区 欧美 日韩| 国产 亚洲一区二区三区 | 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 美女高潮的动态| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| av国产免费在线观看| 亚洲精品456在线播放app| 欧美日韩在线观看h| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 色视频www国产| h日本视频在线播放| 日本免费a在线| 国产美女午夜福利| 亚洲成色77777| 国产伦一二天堂av在线观看| 尤物成人国产欧美一区二区三区| 欧美最新免费一区二区三区| 国产黄a三级三级三级人| 久久99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 精品人妻视频免费看| 精品午夜福利在线看| 成年免费大片在线观看| 欧美区成人在线视频| 色综合站精品国产| 国产乱人偷精品视频| 久久久午夜欧美精品| 亚洲四区av| 内射极品少妇av片p| 午夜激情久久久久久久| 日本黄色片子视频| 天天躁夜夜躁狠狠久久av| 国产淫片久久久久久久久| 熟女电影av网| 亚洲精品久久午夜乱码| 精品国内亚洲2022精品成人| 亚洲综合色惰| 春色校园在线视频观看| 黄色配什么色好看| av在线天堂中文字幕| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 久久久久网色| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频 | 男女边吃奶边做爰视频| 国产综合精华液| 国产激情偷乱视频一区二区| 国产一区亚洲一区在线观看| 亚洲av不卡在线观看| 我的老师免费观看完整版| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 99久久人妻综合| 精品人妻视频免费看| 少妇熟女欧美另类| 夜夜看夜夜爽夜夜摸| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 国产精品久久久久久久久免| av.在线天堂| videossex国产| 九草在线视频观看| 搡老妇女老女人老熟妇| 内射极品少妇av片p| 美女国产视频在线观看| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 嫩草影院入口| 国产男女超爽视频在线观看| 最新中文字幕久久久久| 六月丁香七月| 中国美白少妇内射xxxbb| 国产一区二区亚洲精品在线观看| 观看免费一级毛片| 免费观看a级毛片全部| 久久草成人影院| 国产av在哪里看| 最近的中文字幕免费完整| 特级一级黄色大片| 亚洲熟妇中文字幕五十中出| 在线观看人妻少妇| 在线观看一区二区三区| 久久久久久久大尺度免费视频| 边亲边吃奶的免费视频| 成年人午夜在线观看视频 | 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 国产熟女欧美一区二区| 女人十人毛片免费观看3o分钟| 国产探花极品一区二区| 丰满乱子伦码专区| av黄色大香蕉| 亚洲一级一片aⅴ在线观看| 99久久人妻综合| 亚洲欧美日韩无卡精品| 99久久精品国产国产毛片| 久久久久久久久久久免费av| 日本免费a在线| 国产伦一二天堂av在线观看| 99热网站在线观看| 国产精品蜜桃在线观看| 亚洲真实伦在线观看| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 日日啪夜夜爽| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| av线在线观看网站| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 久久久久久久久久成人| 高清日韩中文字幕在线| 成人鲁丝片一二三区免费| 国产乱人视频| 日韩欧美精品免费久久| 国产午夜精品论理片| a级毛片免费高清观看在线播放| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 免费观看的影片在线观看| av天堂中文字幕网| 国产黄片视频在线免费观看| 国产精品99久久久久久久久| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添av毛片| 午夜激情久久久久久久| 国产精品久久久久久久久免| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 国内精品美女久久久久久| 丰满少妇做爰视频| 夜夜看夜夜爽夜夜摸| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 大片免费播放器 马上看| 久久久久国产网址| 久久久精品欧美日韩精品| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 免费看日本二区| 亚洲av国产av综合av卡| 在线免费观看不下载黄p国产| 国产伦一二天堂av在线观看| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 一级a做视频免费观看| 十八禁国产超污无遮挡网站| 日本wwww免费看| 国产在线一区二区三区精| 在线免费观看的www视频| 成年女人在线观看亚洲视频 | 国产欧美另类精品又又久久亚洲欧美| 亚洲在线自拍视频| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 五月伊人婷婷丁香| 亚洲精品中文字幕在线视频 | 亚洲精品乱久久久久久| 国产高清三级在线| 色吧在线观看| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| av线在线观看网站| 亚洲国产av新网站| 狠狠精品人妻久久久久久综合| 国产 一区精品| a级毛色黄片| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| 国产午夜福利久久久久久| 亚洲最大成人手机在线| 欧美日韩综合久久久久久| 91精品伊人久久大香线蕉| 国产白丝娇喘喷水9色精品| 女人十人毛片免费观看3o分钟| 亚洲色图av天堂| av卡一久久| av.在线天堂| 国产精品熟女久久久久浪| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 黄色配什么色好看| 精品久久久久久久末码| 夫妻性生交免费视频一级片| 亚洲精品国产av成人精品| 永久网站在线| 国产中年淑女户外野战色| 两个人的视频大全免费| 国产精品熟女久久久久浪| 久久久亚洲精品成人影院| 少妇熟女欧美另类| 国产精品.久久久| 毛片女人毛片| 国内精品美女久久久久久| 午夜激情福利司机影院| 只有这里有精品99| 99久国产av精品| 欧美bdsm另类| 别揉我奶头 嗯啊视频| 中文精品一卡2卡3卡4更新| 99热这里只有精品一区| 久久久久久久久久黄片| 51国产日韩欧美| 日本午夜av视频| 免费黄网站久久成人精品| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| www.色视频.com| 久久久久久久久久久丰满| 美女xxoo啪啪120秒动态图| 色网站视频免费| 亚洲精品中文字幕在线视频 | 亚洲成人久久爱视频| 搡女人真爽免费视频火全软件| 成人午夜精彩视频在线观看| 一本久久精品| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 国语对白做爰xxxⅹ性视频网站| 91久久精品电影网| 亚洲图色成人| 久久精品综合一区二区三区| 高清午夜精品一区二区三区| 国产v大片淫在线免费观看| 高清av免费在线| 精品国产一区二区三区久久久樱花 | 美女脱内裤让男人舔精品视频| 午夜激情福利司机影院| 草草在线视频免费看|