• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚吡咯/硝酸活化碳氣凝膠納米復合材料的制備表征及其在超級電容器中的應用

    2016-11-08 06:00:36李亞捷倪星元劉念平周小衛(wèi)同濟大學物理科學與工程學院上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室上海200092
    物理化學學報 2016年2期
    關(guān)鍵詞:吡咯硝酸電容器

    李亞捷 倪星元 沈 軍 劉 冬 劉念平 周小衛(wèi)(同濟大學物理科學與工程學院,上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室,上海200092)

    聚吡咯/硝酸活化碳氣凝膠納米復合材料的制備表征及其在超級電容器中的應用

    李亞捷倪星元*沈軍劉冬劉念平周小衛(wèi)
    (同濟大學物理科學與工程學院,上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室,上海200092)

    通過化學氧化聚合法制備出不同比例的聚吡咯(PPY)/硝酸活化碳氣凝膠(HCA)復合材料。采用傅里葉變換紅外光譜(FT-IR)和掃描電子顯微鏡(SEM)表征材料的成分和形貌,結(jié)果表明,通過硝酸活化及與聚吡咯的復合,并未破壞碳氣凝膠的多孔形貌,硝酸活化碳氣凝膠及聚吡咯/硝酸活化碳氣凝膠都仍然保持著原碳氣凝膠的三維納米多孔結(jié)構(gòu)。采用對照實驗的方法,設(shè)計并合成五組不同配比的復合材料,聚吡咯與硝酸活化碳氣凝膠的質(zhì)量比例分別為3:1、2:1、1:1、1:2、1:3,通過循環(huán)伏安法,恒流充放電,交流阻抗及循環(huán)性測試等考察材料的電化學性能。結(jié)果證明,當聚吡咯與硝酸活化碳氣凝膠比例為1:1時,復合材料顯示出最優(yōu)電化學性能:比電容高達336 F?g-1,是純碳氣凝膠(103 F?g-1)的三倍有余,除此還顯示出卓越的導電性與循環(huán)穩(wěn)定性,2000次循環(huán)后仍保持初始電容的91%,具備優(yōu)良的超級電容器電極材料性能。因此聚吡咯/硝酸活化碳氣凝膠復合納米材料是超級電容器的理想電極材料。

    活化碳氣凝膠;聚吡咯;超級電容器;化學氧化聚合法;復合電極材料;電化學性能

    doi:10.3866/PKU.WHXB201511131

    1 Introduction

    Increasing attention has been paid to supercapacitors due to their high power and energy densities,long cycle life and wide range of operating temperature.Besides,they are safe and environmentally friendly1.Thus,they are widely used in power and energy applications such as hybrid electric vehicles(HEVs),burst power generation,and backup sources2.

    According to the energy storage mechanism,supercapacitors can be classified into two categories:electrochemical double-layer capacitors(EDLCs)and pseudo-capacitors3.In the EDLCs,energy is stored by the accumulation of ionic and electronic charges at the interface between electrolytes and electrode materials4.Carbonaceous materials,such as carbon fibers5,porous carbons6,activated carbons7,and carbon aerogels8,are promising electrode materials for their high specific area,long cycle life,and relatively low cost.In particular,carbon aerogel(CA)is a unique class of three-dimensional nanoporous carbon materials that have high surface area,good electrical conductivity,and high porosity1,9. However,its specific capacitance is lower than expected due to poor wettability.Chemical surface modification in nitric acid solutions has been reported to improve the wettability of carbon materials,which results in a higher usable surface area,smaller internal resistance,and higher specific capacitance10.By comparison,pseudo-capacitors store energy through relatively fast and reversible faradaic processes in a redox-active material at characteristic potentials11.They are able to store charge not only in the electrical double layer,but also throughout the body of the electrodes by rapid faradaic charge transfer.The faradaic pseudocapacitance of pseudo-capacitors is almost 10-100 times higher than EDLCs,but the improvement of capacitance by pseudofaradaic reactions is not stable and the capacitance decays with cycling11,12.Transition metal oxides including ruthenium and tantalum oxides are ideal electrode materials for pseudo-capacitors because they have great specific capacitance.However,their high cost has limited the practical application13.Electrically conducting polymers(ECPs),such as polyaniline(PANI)14,poly(3-methylthiophene)(pMeT)15,and polypyrrole(PPY)16,are promising electrode materials due to their high conductivity and relatively low cost.Among these ECPs,PPY has good thermal and environmental stability,high storage stability,and relative ease of synthesis16.However,during the cyclic electrochemical oxidation and reduction process,continuously injection and rejection of solvated ions will lead to the framework swelling and contraction of the polymer chain,which influences the cycling performance of PPY17.

    Nowadays,supercapacitors which combine the advantages of both EDLCs and pseudo-capacitors have become a promising subject.For example,some researchers combined carbonaceous materials with ECPs or with transition metal oxides to synthesize composite electrodes such as CNTs(carbon nanotubes)-PANI composite18,CNTs(carbon nanotubes)-PPY composite19,TiO2-activated carbon composite20,and manganese oxide/MWNTs (multiwalled carbon nanotubes)composite electrodes21.The results show that after recombination,the electrochemical performances of electrodes are improved.

    In this work,PPY/nitric acid activated carbon aerogel(HCA) composites were synthesized via chemical oxidation polymerization with different PPY contents and we explored the optimum mass ratio of HCA to PPY.The method involved in this paper is simple,convenient and beneficial for commercial applications. The final results indicate that the PPY/HCA composite with the mass ratio of 1:1 has high specific capacitance,excellent conductivity,and long term stability.

    2 Experimental

    2.1Preparation of carbon aerogel

    The carbon aerogel was prepared via a sol-gel process:resorcinol(R)(analytical reagent)and formaldehyde(F)(analytical reagent)were mixed in a 1:2 molar ratio with alkaline sodium carbonate(C)(analytical reagent)as catalyst and deionized water as solvent.The mass percentage of reactions in solution was 30%, the molar ratio of R to C was held at a constant value of 500. Stirring the above solution at room temperature for 30 min,then the hydrosols were sealed and heat-treated at 30°C for one day, 50°C for one day,and 90°C for three days,respectively.The resultant RF hydrogels were rinsed in an ethanol bath for a week, then CO2supercritical drying at 31.8°C and 7.3 MPa was carried out to get cylindrical organic aerogels.The obtained RF organic aerogels were carbonized at 1050°C for 3 h with the rising temperature rate of 5°C?min-1in a tubular furnace under N2flow of 100 mL?min-122,23.The obtained RF carbon aerogel sample was denoted as CA.

    2.2Nitric acid activation of carbon aerogel

    CAwas dispersed in concentrated nitric acid(65%)at 60°C for 12 h,filtered and washed with deionized water until the pH was about 6,then the product was dried at 90°C for 24 h,denoted as HCA.

    2.3Synthesis of polypyrrole/nitric acid activated carbon aerogel

    Firstly,0.1 g HCAwas dispersed in 200 mL of deionized water, then mixed with 0.02 g sodium dodecyl sulfate(SDS)(analytical reagent)as surfactant,stirred for 30 min and kept for ultrasound for 2 h.Secondly,pyrrole monomer(analytical reagent)was added into the above solution in five kinds of pyrrole:HCAmass ratios (1:1,2:1,3:1,1:2,1:3),stirred for 10 min and irradiated by ultrasonic wave for 30 min.Thirdly,0.2 g FeCl3(93%)was addedinto the solution as oxidant to motivate polymerization reaction, stirred for 30 min and kept for ultrasound for 2 h.The reaction was carried out under static condition for 24 h and then the PPY/HCA composite precipitate was filtered and washed with deionized water and ethanol.Lastly,the product was dried at 60°C for 24 h24.The name of PPY/HCAcomposite was abbreviated as PPYHCA-x,where x stands for the mass ratio of PPY to HCA.For example,PPY-HCA-21 means that the mass ratio of PPY to HCA was 2:1.

    2.4Structural characterization

    The components of samples were determined by Fourier transform infrared(FT-IR)spectroscopy(Bruker-TENSOR27). The field emission scanning electron microscopy(FESEM,Philips XL30FEG)was used to examine the structures and morphology of materials.N2adsorption isotherms were recorded with an AUTOSORB-1 Surface Area Analyzer(Quantachrome Instrument Corporation)at-196°C.Prior to measurements,the samples were degassed at 300°C for 2 h.The specific surface areas were determined on the basis of the Brunauer-Emmett-Teller(BET) method.The pore size distribution was obtained by employing density functional theory(DFT).The total pore volume was estimated from the amount of N2adsorbed at the relative pressure of p/p0=0.99.And t-plot method was used to determine the micropore surface area and micropore volume.

    2.5Electrochemical measurements

    Working electrodes were prepared by the following method:a mixture of active materials,conductive carbon black,and polytetrafluoroethylene(PTFE)at a mass ratio of 8:1:1 was pasted onto nickel foam,pressed at 8 MPa and dried at 80°C for 48 h.Electrochemical tests were carried out at room temperature using an electrochemical work station(CHI660C,Chenhua, China).A three-electrode cell was set up using nickel foam as counter electrode,Hg/HgO electrode as reference electrode,PPY/ HCA composite as working electrode,and KOH(6 mol?L-1) aqueous solution as electrolyte.

    Cyclic voltammetry(CV)measurements were conducted over a potential window from-0.8 to-0.1 V at different scan rates ranging from 5 to 100 mV?s-1.Galvanostatic charge-discharge measurements were ranged from-0.8 to-0.1 V at different current densities ranging from 0.5 to 5 A?g-1.Electrochemical impedance spectroscopy(EIS)measurements were recorded from 0.01 Hz to 100 kHz with 5 mV amplitude ofAC signal.

    3 Results and discussion

    3.1Structural characterization

    Fig.1(a)shows the FT-IR spectra of CA,HCA,PPY-HCA-11, PPY-HCA-21,and PPY-HCA-31.As shown in this image,the spectrum of HCA is similar to that of CA,but a few new peaks such as 1690 and 1725 cm-1appear,which represent the deformation vibration of―COOH and=C=O,respectively.Because of the strong oxidation of concentrated nitric acid,oxidationreduction reaction may take place on the surface of CA,engendering a great deal of oxygen containing groups such as―COOH and=C=O with hydrophilic property,which could improve the wettability of CA12.The spectra of three composites are similar but they are quite different from CA and HCA,there emerge a series of new peaks:794 cm-1is attributed to the C=C deformation of PPY,the broad band at 1320 cm-1demonstrates the C―H and C―N in-plane deformation vibration,966 and 1047 cm-1are attributed to the C―H deformation of PPY,the peak near 930 cm-1is attributed to the characteristic absorption of pyrrole ring,the peak near 1213 cm-1is attributed to the C―N stretching vibration of PPY,the peaks near 1462 and 1546 cm-1are attributed to C―N and C―C asymmetric and symmetric pyrrole ring stretching, respectively.Additionally,2850 and 2920 cm-1present the C―H asymmetric and symmetric stretching vibration of SDS which acted as surfactant25,26.The above results illustrate that PPY/HCA composites are successfully synthesized.

    Fig.1(b)is the standard infrared spectrum of PPY27,where we can see characteristic peaks:794,930,966,1047,1213,1320, 1462,and 1546 cm-1,they are allattributed to PPY and are all conformed to former analysis.Therefore,PPY/HCA composites are successfully prepared via chemical oxidative polymerization.

    Fig.1 (a)FT-IR spectra of CA,HCA,PPY-HCA-11,PPY-HCA-21,PPY-HCA-31 and(b)standard infrared spectrum of PPY

    The SEM images of CA,HCA and PPY/HCA composites are shown in Fig.2.From Fig.2(a,b),it can be seen that CAand HCA consist of interconnected sphere nanoparticles with diameters of 30 to 40 nm.Both of them have porous structure,which suggests that nitric acid activation did not destroy the overall skeleton andmaintains the three-dimensional nanoporous structure of carbon aerogel.Fig.2(c,d,e)shows the SEM images of PPY-HCA-11, PPY-HCA-21,and PPY-HCA-31,respectively.They are similar to CA,and appear no obvious clusters,which indicate that PPY is uniformly coated on the carbon aerogel.The composites still maintain three-dimensional nanoporous structure,which facilitates the ion transfer in charging and discharging processes.

    Fig.2 SEM images of CA(a),HCA(b),PPY-HCA-11(c),PPY-HCA-21(d),and PPY-HCA-31(e)

    Fig.3 shows theN2adsorption-desorptionisothermsofCA,HCA, PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31,respectively, which indicates a similar structure of 5 samples.As can be seen from the left of the curves,it reaches single layer absorption very fast,which demonstrates rich pore structures with diameter under 2 nm.The hysteresis loops on the right indicate abundant number of pores between 2 and 50 nm.All 5 samples show abundant structure of mesopore and micropore,which also proves the result of the FESEM that the pore structure remains after activation and composition.

    Fig.3 N2adsorption-desorption isotherms of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    Fig.4 shows the comprehensive N2adsorption-desorption isotherms of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31,which shows the pore volume of 5 samples.As can be seen from the left of the curves,CA has the highest volume platform on the left,following with HCA,PPY-HCA-11,PPY-HCA-21,andPPY-HCA-31.According to the adsorption theory,higher volume indicates more micropores,makes CA with the most micropores. And same order of curve height can be observed on the right. Higher volume indicates more pore structure and huger pore volume.Therefore,CAhas the most quantity of pore with hugest pore volume and followed with HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31.

    Fig.4 Comprehensive N2adsorption-desorption isotherms of CA, HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    Fig.5 shows the pore size distribution of 5 samples.It can be seen that most of the pores are mesopore between 10 and 50 nm. But there is a 4 nm peak on the curve of HCA,indicates the present of the micropore which may be generated during the activation.After polymerization,micropores are filled by PPY while has little effect on mesopore.This result demonstrates that all 5 samples have rich mesopore structure consistent with FESEM and N2adsorption-desorption isotherms results.

    Fig.5 Pore size distribution of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    The schematic of PPY/HCA composite preparation process is shown in Fig.6.CAand SDS dispersed in the deionized water,the hydrophobic groups-long chain alkyl of SDS makes it attached to CAquickly.Simultaneously,the hydrophilic groups-sulfate anions of SDS form a negative charge layer on the surface of CA.Then pyrrole monomer,which was added into the above solution,will be attracted by the negative charge layer due to electrostatic interaction.Upon adding FeCl3as oxidant,pyrrole monomer on the surface of carbon aerogel will polymerize to PPY via chemical oxidative polymerization28.Finally,PPY/HCAcomposite materials are prepared.

    Fig.6 Schematic diagrams of the PPY/HCAcomposite preparation process

    3.2Electrochemical performance

    The cyclic voltammogram(CV)curves of samples at the scan rate of 50 mV?s-1are shown in Fig.7.It can be found that the CV curves of CA and HCA are rectangular and symmetrical,indicating a typical electric double layer(EDL)behavior and good stability.The energy storage mechanism of carbon aerogel in EDLCs has been described in previous literature29.HCA exhibitslarger CV area than that of CA,revealing that it has larger specific capacitance than CA.The CV curves of PPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are similar: compared with the CV curves of HCA,the oxidation and reduction peaks can be obviously seen,which are owing to the redox reaction of PPY18.

    Fig.7 Cyclic voltammogram curves of samples at a scan rate of 50 mV?s-1

    ThisredoxreactionofPPYisrelatedwithsequentialLewisbaseor Lewis acid-producing steps:in the discharging process,a reductionprocesswithreleaseofhydroxylionsisinvolved.Withthe involvementofionsoftheelectrolyte,thisLewisionizationprocess quotesaquasi-linear,one-dimensionalcylindrical Helmholtz-like double layer developed;in the charging process,due to a Lewis ionization process which involves oxidation with electron transfer, positive charges are introduced on the PPYchain by p-doping30,31.

    Fig.8 Cyclic voltammogram curves of CA(a),HCA(b),PPY-HCA-11(c),PPY-HCA-21(d),PPY-HCA-31(e), PPY-HCA-12(f),and PPY-HCA-13(g)at different scan rates

    In order to estimate the detail electrochemical properties,cyclic voltammetry was carried out for each electrode at various scan rates of 5,10,50,and 100 mV?s-1,as shown in Fig.8.The specific capacitance of the electrode can be calculated by the following equation:

    whereIistheaveragecurrent,mistheeffectivemassofelectrode materials,andvisthescanrate32.TheeffectivemassesofCA,HCA, PPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are 0.012,0.011,0.008,0.012,0.012,0.012,and 0.012g,respectively.TheresultsobtainedarelistedinTable1.

    By comparing the specific capacitance of CAwith that of HCA, we can find that after nitric acid activation,the capacitance is 50% higher than CA,which is owing to the improvement of wettability. Thus the utilization rate of electrode materials in aqueous electrolytes increases.PPY/HCA composite electrode materials havemuch higher specific capacitance,almost 1-2 times higher than that of CA.On the whole,PPY-HCA-11 has the highest specific capacitance,followed by PPY-HCA-31,PPY-HCA-21,PPY-HCA-11 and then PPY-HCA-13,their specific capacitances are all much higher than those of HCA and CA.The specific capacitance of PPY-HCA-11 reaches 336 F?g-1at a scan rate of 5 mV?s-1,while the capacitance of CA electrode is only 103 F?g-1.According to the above results and related theories,we can come to the following conclusions:composite materials combine the double-layer capacitances of HCAand Faradic capacitances of PPY.Therefore, the composites have a substantial increase in specific capacitance18.

    Table1 Specific capacitances of materials at different scan rates

    In general,the specific capacitance of each sample increases with the decreasing of scan rates,the reason is that electrostatic adsorption-desorption reaction and oxidation-reduction reaction occur not only in the surface of electrode,but also inside the materials33.Hence at lower scan rate,the electrolyte can penetrate well into the electrode materials,increasing the utilization rate of materials,so the specific capacitance is improved.

    The charge-discharge curves of samples measured in 6 mol?L-1KOH aqueous electrolyte at a current density of 1A?g-1are shown in Fig.9.The curves of CAand HCAare almost linear and present typical symmetrical triangle shape,indicating that they have double-layer capacitive behavior,while the curves of composite electrodes are not linear due to the existence of the Faradic reaction of PPY.

    Fig.9 Charge-discharge curves of samples at a current density of 1A?g-1

    The specific capacitance of samples can be calculated according to equation(2):

    where,t is the discharge time,and ΔV is the voltage34.From Fig.9 we can find that the discharge time sequence of samples is PPYHCA-11>PPY-HCA-31>PPY-HCA-21>PPY-HCA-12>PPYHCA-13>HCA>CA,so does the order of specific capacitance. This sequence is resistent with the results acquired by cyclic voltammetry,illustrates that composite electrodes have larger specific capacitance attributed to the existence of pseudo-capacitance and confirms that PPY-HCA-11 has the highest specific capacitance.

    At the beginning of the discharge,a sharp voltage change, which can be used to estimate the resistance of materials,is observed in each curves,the larger the voltage dip,the bigger the equivalent series resistance(ESR).The resistance of samples can be calculated by the following equation:

    where ΔU is the voltage dips and I is the charge-discharge current32.The resistances of CA,HCA,PPY-HCA-11,PPY-HCA-21, PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are 0.026,0.018, 0.014,0.013,0.011,0.013,and 0.017 Ω,respectively.PPY-HCA composites have lower resistance than CA and HCA,indicating that the addition of PPY improve the conductivity of CA.For supercapacitors that utilize pseudo-capacitance,there are three types of electrochemical processes in the energy storage:(1) surface adsorption of ions from the electrolyte;(2)redox reactions involving ions from the electrolyte;(3)the doping and undoping of ECPs in the electrodes.In the above processes,the electrodes must have high electronic conductivity to distribute and collect the electron current3.Hence the composites with higher conductivity are ideal electrode materials for supercapacitors.

    Furthermore,to understand more about the electrochemical behavior of PPY-HCA-11,galvanostatic charge-discharge tests were carried out at various current densities of 0.5,1,2,3,4,and 5A?g-1,as shown in Fig.10.With the increasing of current density, the curves still present typical symmetrical triangle shape. However,the specific capacitance decreases due to the relatively low rate of ions diffusion within micropores at large current density.

    Fig.10 Charge-discharge curves of PPY-HCA-11 at different current densities of 0.5,1,2,3,4,and 5A?g-1

    Electrochemical impedance spectroscopy(EIS)is a useful technique to characterize the electrochemical properties of elec-trodes.The Nyquist plots of electrodes are shown in Fig.11(a).All of them exhibit three connected parts:a semicircle in the high frequency region which corresponds to the charge transfer reaction at the interface of electrode and electrolyte,a 45°line in the intermediate frequency region associated with Warburg impedance of ion diffusion inside the electrode materials and a straight line in the low frequency region responding to the capacitive performance35.

    The specific capacitance can be derived from the imaginary part of the impedance spectrum and frequency according to the following equation:

    where,f is the frequency,and Z?is the imaginary impedance36. Fig.11(b)shows the specific capacitance of samples on frequency derived from impedance spectroscopy.The specific capacitance of electrodes increased with the decreasing of frequency.This is because the electrolyte ions can reach the inner surface sites of the electrode materials under lower frequency37.In the lower frequency region,under the same frequency,the order of the specific capacitances of electrodes is PPY-HCA-11>PPY-HCA-31>PPYHCA-21>PPY-HCA-12>PPY-HCA-13>HCA>CA,which is in accordance with the results obtained from cyclic voltammetry and galvanostatic charge-discharge test.It confirmed that PPYHCA-11 has the best capacitance-frequency response and the highest specific capacitance.

    Fig.11 AC impedance spectra of materials

    The cycle life is a significant factor for supercapacitors.As shown in Fig.12,the specific capacitance of CAand HCAis nearly 100%after 2000 times.The specific capacitance of HCA is 50% higher than CA,indicating that nitric acid activation does not influence the cyclic stability of carbon aerogel and improve the specific capacitance.Composite electrode materials have higher capacitance,but their stability is inferior to CA and HCA.After 2000times,thecapacitydeteriorationsofPPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,andPPY-HCA-13are9%,15%, 21%,12%,and20%,respectively.Thecapacitydeteriorationrises withthechangingofthecontentofPPY,PPY-HCA-11showingthe best stability among composite materials:the loss of capacitance mainly happens at first 500 cycles,after 1000 times the specific capacitance stabilizes at a fixed high value;after 2000 times,the specificcapacitancestillremains91%oftheinitialvalue,whichis stillmuchhigherthanothersamples.Theorderofthespecificcapacitances of electrodes is PPY-HCA-11>PPY-HCA-31>PPYHCA-21>PPY-HCA-12>PPY-HCA-13>HCA>CA,whichis consistent with the results obtained from cyclic voltammetry,galvanostaticcharge-dischargetest,andelectrochemicalimpedance spectroscopy.ThisresultalsocorroboratesthatPPY-HCA-11has thehighestspecificcapacitance.

    Fig.12 Cyclic life of materials CA(a),HCA(b),PPY-HCA-11(c), PPY-HCA-21(d),PPY-HCA-31(e),PPY-HCA-12(f), and PPY-HCA-13(g)

    In the composite materials,PPY can enhance the capacitance remarkably;meanwhile,as a conductive framework,HCA can increase the cycling and physical stability of PPY.The above results confirmed that the optimum ratio of PPYto HCAis 1:1.

    The reasons are as follows:SEM shows that the sample has rich pore structure and appears no obvious clusters,which indicates that PPY is uniformly coated on the carbon aerogel,and maintains the three-dimensional nanoporous structure after activation and composition.The pore structure facilitates the ion transfer in charging and discharging processes,thus propitious to the improvement of electrochemical properties.

    N2adsorption-desorption isotherms also show abundant structure of mesopore and micropore in samples.The composite contains carbon aerogel and PPY,which combine the double-layer capacitances of HCA and Faradic capacitances of PPY.If PPY is over 50%,the pseudo-capacitance will be too huge for cycle performance as well as huge impedance of PPY,and poor cycling stability.If PPY is less than 50%,the pseudo-capacitance will be too low to improve the specific capacitance.

    According to the above results and related theories,we can come to the following conclusions:composite materials combine the double-layer capacitances of HCA and Faradic capacitances of PPY.Therefore,the composites have a substantial increase in specific capacitance.The above results confirmed that the optimum ratio of PPY to HCAis 1:1,the composite material shows the best electrochemical properties.It is a promising electrode material for supercapacitors.

    4 Conclusions

    Wettability of CAcan be improved by surface modification with nitric acid.After activation,the specific capacitance of CA increases by 50%.Besides,the modified CA maintains excellent cycle stability.The PPY/HCA composites have three-dimensional nanoporous structure as CA.Because they possess not only doublelayer capacitance but also pseudo-capacitance,their specific capacitances are 1-2 times higher than that of CA.With the increasing of PPY content in composites,the conductivity increases, but the long term stability becomes worse due to the existence of Faradic pseudo-capacitance.

    PPY-HCA-11 has the highest specific capacitance among samples,its capacitance reaches 336 F?g-1at a scan rate of 5 mV?s-1,while the capacitance of CAis only 103 F?g-1,it also has good cycling stability and retains 91%of initial capacitance over 2000 times,which is still much higher than that of CA.Besides,its conductivity is excellent and it is more cost-saving than other composites.Consequently,the PPY/HCAcomposite with the ratio of 1:1 is an ideal electrode material for supercapacitors.

    References

    (1)Wang,J.B.;Yang,X.Q.;Wu,D.C.;Fu,R.W.;Dresselhaus,M. S.;Dresselhaus,G.Journal of Power Sources 2008,185,589. doi:10.1016/j.jpowsour.2008.06.070

    (2)Li,J.;Wang,X.Y.;Huang,Q.H.;Gambo,S.;Sebastian,P.J. Journal of Power Sources 2006,158,784.

    (3)Burke,A.Journal of Power Sources 2000,91,37 doi:10.1016/ S0378-7753(00)00485-7

    (4)Lewandowski,A.;Jakobczyk,P.;Galinski,M.Electrochimica Acta 2012,86,225.doi:10.1016/j.electacta.2012.05.060

    (5)Wang,K.X.;Wang,Y.G.;Wang,Y.R.;Hosono,E.;Zhou,H.S. J.Phys.Chem.C 2009,113,1093.doi:10.1021/jp807463u

    (6)Chen,H.;Wang,F.;Tong,S.S.;Guo,S.L.;Pan,X.M.Applied Surface Science 2012,258,6097.doi:10.1016/j. apsusc.2012.03.009

    (7)González-García,P.;Centeno,T.A.;Urones-Garrote,E.;ávila-Brande,D.;Otero-Díaz,L.C.Applied Surface Science 2013, 265,731.doi:10.1016/j.apsusc.2012.11.092

    (8)Halama,A.;Szubzda,B.;Pasciak,G.;Electrochimica Acta 2010,55,7501.doi:10.1016/j.electacta.2010.03.040

    (9)Schmit,C.;Probstle,H.;Fricke,J.J.Non-Cryst.Solids 2001, 285,2772.

    (10)Liang,J.;Wei,B.Q.;Zhang,B.;Xu,C.L.;Wu,D.H.;Ma,R. Z.Journal of Power Sources 1999,84,126.

    (11)Lei,C.H.;Wilson,P.;Lekakou,C.Journal of Power Sources 2011,196,7823.

    (12)Peng,C.;Zhang,S.W.;Jewell,D.;Chen,G.Z.Prog.Nat.Sci. 2008,18,777.doi:10.1016/j.pnsc.2008.03.002

    (13)Sugimoto,W.;Yokoshima,K.;Murakami,Y.;Takasu,Y. Electrochimica Acta 2006,52,1742.doi:10.1016/j. electacta.2006.02.054

    (14)Xu,H.;Li,J.L.;Peng,Z.J.;Zhuang,J.X.;Zhang,J.L. Electrochimica Acta 2013,90,393.doi:10.1016/j. electacta.2012.12.047

    (15)Mastragostino,M.;Arbizzani,C.;Soavi,F.Solid State Ionics 2002,148,493.doi:10.1016/S0167-2738(02)00093-0

    (16)Li,J.;Cui,L.;Zhang,X.G.Applied Surface Science 2010,256, 4339.doi:10.1016/j.apsusc.2010.02.028

    (17)Biswas,S.;Drzal,L.T.Chemical Materials 2010,22,5667. doi:10.1021/cm101132g

    (18)Zhao,X.F.;Jiang,Q.;Guo,Y.N.;Zhang,N.;Shan,C.X.; Zhao,Y.Journal of Inorganic Material 2010,25,91.

    (19)Mi,H.Y.;Zhang,X.G.;Xu,Y.L.;Xiao,F.Applied Surface Science 2010,256,2284.doi:10.1016/j.apsusc.2009.10.053

    (20)Selvakumar,M.;Dhat,D.K.Applied Surface Science 2012, 263,236.doi:10.1016/j.apsusc.2012.09.036

    (21)Wang,G.X.;Zhang,B.L.;Yu,Z.L.;Qu,M.Z.Solid State Ionics 2005,176,1169.doi:10.1016/j.ssi.2005.02.005

    (22)Liu,N.P.;Shen,J.;Liu,D.Microporous and Mesoporous Materials 2013,167,176.doi:10.1016/j. micromeso.2012.09.009

    (23)Liu,D.;Shen,J.;Liu,N.P.;Yang,H.Y.;Du,A.Electrochimica Acta 2013,89,571.doi:10.1016/j.electacta.2012.11.033

    (24)Cui,C.J.;Zhao,A.L.;Wu,G.M.Journal of Functional Materials 2012,43,1281.

    (25)Omastová,M.;Trchová,M.;Kovárǒvác,J.;Stejskalc,J. Synthetic Metals 2003,138,447.doi:10.1016/S0379-6779(02) 00498-8

    (26)Cui,L.;Li,J.;Zhang,X.G.Materials Letters 2009,63,683.

    (27)Liang,N.Synthesis and Characterization of PPY and Its Composite Materials.Master Dissertation,Jiangsu University of Science and Technology,Zhenjiang,2012.[梁寧.聚吡咯及其復合材料的制備與性能研究[D].鎮(zhèn)江:江蘇科技大學, 2012.]

    (28)Du,B.;Jiang,Q.;Zhao,X.F.;Lin,S.Z.;Mu,P.S.;Zhao,Y. Acta Phys.-Chim.Sin.2009,25(3),513.[杜冰,江奇,趙曉峰,林孫忠,幕佩珊,趙勇.物理化學學報,2009,25(3), 513.]doi:10.3866/PKU.WHXB20090319

    (29)Pandolfo,A.G.;Hollenkamp,A.F.Journal of Power Sources 2006,157,11.doi:10.1016/j.jpowsour.2006.02.065

    (30)Conway,B.E.Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications;Kluwer Academic/Plenum Publishers:New York,1999;p 299.

    (31)An,K.H.;Jeon,K.K.;Heo,J.K.;Lim,S.C.;Bae,D.J.;Lee,Y.H.Journal of the Electrochemical Society 2002,149,A1058.

    (32)Liu,D.;Shen,J.;Li,Y.J.;Liu,N.P.;Liu,B.Acta Phys.-Chim. Sin.2012,28(4),843.[劉冬,沈軍,李亞捷,劉念平,劉斌.物理化學學報,2012,28(4),843.]doi:10.3866/PKU. WHXB201202172

    (33)Yan,J.;Wei,T.;Shao,B.;Ma,F.Q.;Fan,Z.J.Carbon 2010,48, 1731.doi:10.1016/j.carbon.2010.01.014

    (34)Zhu,J.B.;Xu,Y.L.;Wang,J.;Wang,J.P.Acta Phys.-Chim. Sin.2012,28(2),373.[朱劍波,徐友龍,王杰,王景平.物理化學學報,2012,28(2),373.]doi:10.3866/PKU. WHXB201112021

    (35)Zhou,X.W.;Wu,G.M.;Gao,G.H.;Cui,C.J.;Yang,H.Y.; Shen,J.;Zhou,B.;Zhang,Z.H.Electrochimica Acta 2012,74, 32.doi:10.1016/j.electacta.2012.03.178

    (36)Jurewicz,K.;Delpeux,S.;Bertagna,V.;Beguin,F.;Frackowiak, E.Chemical Physics Letters 2001,347,36.

    (37)Park,B.H.;Choi,J.H.Electrochimica Acta 2010,55,2888. doi:10.1016/j.electacta.2009.12.084

    Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors

    LI Ya-JieNI Xing-Yuan*SHEN JunLIU DongLIU Nian-PingZHOU Xiao-Wei
    (Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology,Institute of Physical Science and Engineering,Tongji University,Shanghai 200092,P.R.China)

    Polypyrrole(PPY)/nitric acid(HNO3)activated carbon aerogel(HCA)composites are prepared through chemical oxidative polymerization with different PPY/HCAmass ratios.Fourier transform infrared(FTIR)spectroscopy and scanning electron microscope(SEM)were employed to investigate the components and morphology of the samples.The results demonstrate that the synthesized materials maintain the threedimensional nanoporous structure of the carbon aerogel(CA);the activation by nitric acid and composition with PPY do not destroy the porous structure of the carbon aerogel and the complex still has the original threedimensional nanoporous structure.Composites with different mass ratios(3:1,2:1,1:1,1:2,1:3)of PPY/ HCA were prepared and the electrochemical properties were measured by cyclic voltammetry,galvanostatic charge-discharge test,and electrochemical impedance spectroscopy.The results confirm that the PPY/HCA composite with a ratio of 1:1 exhibits the best electrochemical performances;it has a high specific capacitance of 336 F?g-1,which is more than two times higher than that of CA(103 F?g-1);it also exhibits outstanding conductivity and cycling stability,retaining 91%of its initial capacitance after 2000 cycles.Therefore,thiscomposite is quite a promising electrode material for supercapacitors.

    June 25,2015;Revised:November 10,2015;Published on Web:November 13,2015.

    Activated carbon aerogel;Polypyrrole;Supercapacitor;Chemical oxidative polymerization; Composite electrode material;Capacitive property

    O646

    *Corresponding author.Email:nixingyuan@#edu.cn;Tel/Fax:+86-21-65986071.

    The project was supported by the National Natural Science Foundation of China(51072137,50802064,11074189),Key Projects in the National

    Science&Technology Pillar Program,China(2009BAC62B02),and Shanghai Committee of Science and Technology,China(11nm0501600).

    國家自然科學基金(51072137,50802064,11074189),國家科技支撐計劃重點項目(2009BAC62B02)及上??茖W技術(shù)委員會項目(11nm0501600)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    吡咯硝酸電容器
    銅與稀硝酸反應裝置的改進與創(chuàng)新
    云南化工(2021年7期)2021-12-21 07:28:06
    Au/聚吡咯復合材料吸附與催化性能的研究
    一道關(guān)于鐵與硝酸反應的計算題的七種解法
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    含銅硝酸退鍍液中銅的回收和硝酸的再生
    石墨烯在超級電容器中的應用概述
    硝酸鈀生產(chǎn)工藝研究
    超聲波促進合成新型吡咯α,β-不飽和酮
    合成化學(2015年10期)2016-01-17 08:56:06
    欧美成人午夜免费资源| 最近中文字幕2019免费版| 国产亚洲av片在线观看秒播厂| 久久久久久人妻| 老女人水多毛片| 狠狠精品人妻久久久久久综合| 超碰97精品在线观看| 成年女人在线观看亚洲视频| 日韩一区二区三区影片| 亚洲va在线va天堂va国产| 精品少妇久久久久久888优播| 久久精品久久精品一区二区三区| 久久国内精品自在自线图片| 免费在线观看成人毛片| 啦啦啦啦在线视频资源| 女的被弄到高潮叫床怎么办| 欧美 日韩 精品 国产| 国产爽快片一区二区三区| 嘟嘟电影网在线观看| 亚洲国产色片| 最近的中文字幕免费完整| 亚洲欧美中文字幕日韩二区| 美女高潮的动态| 男女无遮挡免费网站观看| 老师上课跳d突然被开到最大视频| 亚洲三级黄色毛片| 干丝袜人妻中文字幕| 97精品久久久久久久久久精品| 蜜桃久久精品国产亚洲av| 青春草视频在线免费观看| 成年av动漫网址| 欧美97在线视频| 免费黄网站久久成人精品| 涩涩av久久男人的天堂| 精品一区二区三卡| 久热这里只有精品99| 成人美女网站在线观看视频| 国产深夜福利视频在线观看| av线在线观看网站| 精品亚洲成国产av| videos熟女内射| 午夜老司机福利剧场| 热99国产精品久久久久久7| av女优亚洲男人天堂| 大片免费播放器 马上看| 99久久精品热视频| 免费观看a级毛片全部| 大话2 男鬼变身卡| 尾随美女入室| 亚洲图色成人| 在线免费观看不下载黄p国产| 亚洲真实伦在线观看| av国产免费在线观看| 男女下面进入的视频免费午夜| 一级毛片 在线播放| 舔av片在线| 男人和女人高潮做爰伦理| 成年免费大片在线观看| 麻豆乱淫一区二区| 久久国产精品男人的天堂亚洲 | 国产乱来视频区| 内地一区二区视频在线| 麻豆乱淫一区二区| 老熟女久久久| 国产成人freesex在线| 大话2 男鬼变身卡| 精品久久久久久久久亚洲| 九九久久精品国产亚洲av麻豆| 成人国产av品久久久| 成年美女黄网站色视频大全免费 | 精品亚洲乱码少妇综合久久| 亚洲av在线观看美女高潮| 尤物成人国产欧美一区二区三区| 日韩一区二区视频免费看| 亚洲av二区三区四区| 日韩一本色道免费dvd| 日本午夜av视频| 精品国产三级普通话版| 成人黄色视频免费在线看| 久久精品人妻少妇| 国产亚洲5aaaaa淫片| 交换朋友夫妻互换小说| 亚洲电影在线观看av| 天天躁夜夜躁狠狠久久av| 国产免费福利视频在线观看| 久久久久久久久久久免费av| 女人久久www免费人成看片| 亚洲av二区三区四区| 九九在线视频观看精品| 街头女战士在线观看网站| av免费在线看不卡| 国产男女内射视频| 激情五月婷婷亚洲| 亚洲精品乱久久久久久| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 18禁裸乳无遮挡免费网站照片| 国产高潮美女av| 国产精品国产av在线观看| 久久久精品免费免费高清| a级一级毛片免费在线观看| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花 | 国产深夜福利视频在线观看| 国产69精品久久久久777片| 在线免费十八禁| 国内精品宾馆在线| 国产精品久久久久成人av| 好男人视频免费观看在线| 亚洲综合精品二区| 好男人视频免费观看在线| 久久6这里有精品| 免费观看性生交大片5| 亚洲av.av天堂| 国产男女内射视频| 男女国产视频网站| 各种免费的搞黄视频| 欧美精品一区二区大全| 亚洲精品aⅴ在线观看| 人妻夜夜爽99麻豆av| 在线看a的网站| 岛国毛片在线播放| 日韩国内少妇激情av| 黄色配什么色好看| av在线蜜桃| 久久久亚洲精品成人影院| 国内揄拍国产精品人妻在线| 婷婷色综合大香蕉| 亚洲精品日韩av片在线观看| 欧美日韩一区二区视频在线观看视频在线| 黄色日韩在线| 国产白丝娇喘喷水9色精品| 大又大粗又爽又黄少妇毛片口| 91精品国产九色| 色视频www国产| 精品亚洲成国产av| av视频免费观看在线观看| 18+在线观看网站| 成人高潮视频无遮挡免费网站| 亚洲经典国产精华液单| 日韩成人伦理影院| 亚洲经典国产精华液单| 永久网站在线| 伦理电影大哥的女人| 久久精品国产亚洲av涩爱| 亚洲最大成人中文| 伊人久久精品亚洲午夜| 久久女婷五月综合色啪小说| 高清午夜精品一区二区三区| 日韩一本色道免费dvd| 只有这里有精品99| 欧美bdsm另类| 亚洲av.av天堂| 2018国产大陆天天弄谢| 多毛熟女@视频| 黑人猛操日本美女一级片| 免费观看无遮挡的男女| 2021少妇久久久久久久久久久| 日韩免费高清中文字幕av| 国产 精品1| 91精品国产九色| 超碰97精品在线观看| 欧美xxxx性猛交bbbb| 天堂俺去俺来也www色官网| 最后的刺客免费高清国语| 下体分泌物呈黄色| 久久久久久久大尺度免费视频| 国产亚洲av片在线观看秒播厂| 在线播放无遮挡| 久久久久久久久久久免费av| 国产熟女欧美一区二区| 欧美xxⅹ黑人| av网站免费在线观看视频| 日韩精品有码人妻一区| 国产精品免费大片| 嫩草影院新地址| 天天躁日日操中文字幕| 在现免费观看毛片| 亚洲精品中文字幕在线视频 | 日韩中字成人| 男女下面进入的视频免费午夜| 中文精品一卡2卡3卡4更新| 国产亚洲最大av| 91在线精品国自产拍蜜月| 老司机影院成人| 亚洲av综合色区一区| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华液的使用体验| 国产熟女欧美一区二区| 日本色播在线视频| 日韩中文字幕视频在线看片 | 国产色爽女视频免费观看| 免费观看av网站的网址| 欧美日韩视频精品一区| 欧美精品国产亚洲| 亚洲国产精品一区三区| 99久久精品国产国产毛片| 国产亚洲午夜精品一区二区久久| 日本av手机在线免费观看| 亚洲欧美日韩另类电影网站 | 国产一区二区三区综合在线观看 | 欧美精品国产亚洲| 国产免费一区二区三区四区乱码| 国产黄色视频一区二区在线观看| 中文字幕制服av| 欧美变态另类bdsm刘玥| 成人亚洲精品一区在线观看 | 免费播放大片免费观看视频在线观看| 国产精品三级大全| 久久99热这里只频精品6学生| 简卡轻食公司| 亚洲精品乱码久久久v下载方式| 精品一区二区三卡| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩无卡精品| 久久久久人妻精品一区果冻| 久久久久精品性色| 午夜精品国产一区二区电影| 久久久久久久国产电影| 欧美老熟妇乱子伦牲交| 国产精品一区二区性色av| 日韩av不卡免费在线播放| 2022亚洲国产成人精品| 黄片wwwwww| 一级毛片 在线播放| 深爱激情五月婷婷| 国产老妇伦熟女老妇高清| 99久久人妻综合| 内射极品少妇av片p| 国产永久视频网站| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 伊人久久精品亚洲午夜| 免费观看a级毛片全部| 国产黄片视频在线免费观看| a 毛片基地| 欧美成人午夜免费资源| 尾随美女入室| 人体艺术视频欧美日本| 久久99蜜桃精品久久| 午夜激情久久久久久久| 亚洲欧美清纯卡通| 中文在线观看免费www的网站| 亚洲成人av在线免费| 欧美日韩在线观看h| 欧美另类一区| 久久精品夜色国产| 亚洲丝袜综合中文字幕| 我的老师免费观看完整版| 色婷婷av一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲网站| 免费看不卡的av| 日本色播在线视频| 日韩成人av中文字幕在线观看| 国产视频内射| 欧美日本视频| 免费人妻精品一区二区三区视频| 大片电影免费在线观看免费| 成人无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频 | 一级毛片黄色毛片免费观看视频| 色吧在线观看| 国产在视频线精品| 久久久久久久国产电影| 国产欧美亚洲国产| 26uuu在线亚洲综合色| 好男人视频免费观看在线| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花 | 久久99精品国语久久久| 国产视频首页在线观看| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区| 婷婷色麻豆天堂久久| 亚洲国产欧美在线一区| 我要看日韩黄色一级片| 亚洲欧洲日产国产| 日本vs欧美在线观看视频 | 青春草亚洲视频在线观看| 少妇猛男粗大的猛烈进出视频| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| 尾随美女入室| 你懂的网址亚洲精品在线观看| 七月丁香在线播放| 精品一区在线观看国产| 成年人午夜在线观看视频| 国产欧美日韩精品一区二区| 少妇高潮的动态图| 亚洲国产高清在线一区二区三| 啦啦啦在线观看免费高清www| 成人影院久久| 舔av片在线| 妹子高潮喷水视频| 人人妻人人看人人澡| 欧美日韩视频精品一区| 九色成人免费人妻av| 人人妻人人添人人爽欧美一区卜 | 在线免费十八禁| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 亚洲成色77777| 亚洲av国产av综合av卡| 国产亚洲欧美精品永久| av女优亚洲男人天堂| 高清在线视频一区二区三区| 另类亚洲欧美激情| 欧美日韩视频精品一区| 日本一二三区视频观看| 伦理电影大哥的女人| 少妇人妻久久综合中文| 国产无遮挡羞羞视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 免费观看在线日韩| 日本欧美国产在线视频| 另类亚洲欧美激情| 噜噜噜噜噜久久久久久91| 成人综合一区亚洲| 又大又黄又爽视频免费| 中文字幕亚洲精品专区| 我的老师免费观看完整版| 婷婷色综合www| 亚洲精品一二三| 国产精品欧美亚洲77777| 免费黄网站久久成人精品| 国产精品成人在线| 国产在视频线精品| 成年美女黄网站色视频大全免费 | 极品少妇高潮喷水抽搐| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 乱系列少妇在线播放| 日韩国内少妇激情av| 久久综合国产亚洲精品| 欧美97在线视频| 日韩三级伦理在线观看| 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 国产美女午夜福利| 波野结衣二区三区在线| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 又大又黄又爽视频免费| 午夜激情福利司机影院| 少妇的逼水好多| 大香蕉久久网| 久久久午夜欧美精品| 国产伦精品一区二区三区视频9| 高清欧美精品videossex| 99久久人妻综合| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 免费黄频网站在线观看国产| 一区在线观看完整版| 丝袜脚勾引网站| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 在线天堂最新版资源| 男女边摸边吃奶| 国产精品人妻久久久影院| 亚洲va在线va天堂va国产| 成年av动漫网址| 成人美女网站在线观看视频| 只有这里有精品99| 成人18禁高潮啪啪吃奶动态图 | tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 国产精品一区二区在线观看99| 美女内射精品一级片tv| 久久国产精品大桥未久av | 少妇人妻久久综合中文| 久久精品国产鲁丝片午夜精品| 国产高潮美女av| 国产精品99久久99久久久不卡 | av在线播放精品| 欧美97在线视频| 夜夜看夜夜爽夜夜摸| 亚洲精品乱久久久久久| 美女xxoo啪啪120秒动态图| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放| 久久久午夜欧美精品| 高清av免费在线| 国产一级毛片在线| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 久久99热6这里只有精品| 国产一区二区三区av在线| 亚洲四区av| 特大巨黑吊av在线直播| 黄色日韩在线| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| 大陆偷拍与自拍| 国产成人91sexporn| 免费黄网站久久成人精品| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 日韩中字成人| 又爽又黄a免费视频| 寂寞人妻少妇视频99o| av国产久精品久网站免费入址| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| h日本视频在线播放| 在线观看国产h片| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 大码成人一级视频| 丝瓜视频免费看黄片| 国产成人91sexporn| 国产精品一二三区在线看| 国产乱人视频| 国产成人a∨麻豆精品| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆国产97在线/欧美| 黑丝袜美女国产一区| 我要看日韩黄色一级片| 欧美激情极品国产一区二区三区 | 在线观看免费高清a一片| 成人一区二区视频在线观看| 噜噜噜噜噜久久久久久91| 妹子高潮喷水视频| 少妇人妻久久综合中文| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 国产v大片淫在线免费观看| av在线蜜桃| 51国产日韩欧美| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 国产av精品麻豆| 亚洲四区av| 中文字幕av成人在线电影| av不卡在线播放| 日韩人妻高清精品专区| av不卡在线播放| 这个男人来自地球电影免费观看 | 婷婷色麻豆天堂久久| 欧美成人一区二区免费高清观看| 高清黄色对白视频在线免费看 | 欧美bdsm另类| av黄色大香蕉| 在线观看一区二区三区| 在线观看一区二区三区激情| 一区在线观看完整版| 亚洲欧美一区二区三区国产| 日本午夜av视频| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 亚洲va在线va天堂va国产| 精品人妻偷拍中文字幕| 女人十人毛片免费观看3o分钟| 欧美激情极品国产一区二区三区 | 晚上一个人看的免费电影| 看免费成人av毛片| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 大香蕉97超碰在线| 自拍偷自拍亚洲精品老妇| 亚洲人与动物交配视频| 最新中文字幕久久久久| 亚洲精品中文字幕在线视频 | 少妇精品久久久久久久| 国内少妇人妻偷人精品xxx网站| 亚洲av综合色区一区| 久久久成人免费电影| 亚洲国产成人一精品久久久| 国产精品一及| 久久久久久久亚洲中文字幕| 深爱激情五月婷婷| 美女脱内裤让男人舔精品视频| 十分钟在线观看高清视频www | 一本久久精品| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| 久久久亚洲精品成人影院| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 美女中出高潮动态图| 97在线视频观看| 国产欧美日韩精品一区二区| 欧美zozozo另类| 国产在线男女| 美女内射精品一级片tv| 黄色日韩在线| 五月玫瑰六月丁香| 中文字幕制服av| 黑丝袜美女国产一区| 国产精品人妻久久久影院| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩另类电影网站 | 精品酒店卫生间| 国产精品一区二区在线不卡| 观看免费一级毛片| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 中文天堂在线官网| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 免费少妇av软件| 亚洲精品久久午夜乱码| 国产探花极品一区二区| 久久久色成人| 我的老师免费观看完整版| 晚上一个人看的免费电影| 欧美精品国产亚洲| 免费少妇av软件| 中文精品一卡2卡3卡4更新| 久久国产乱子免费精品| 成年美女黄网站色视频大全免费 | 丰满乱子伦码专区| 一本一本综合久久| 在线精品无人区一区二区三 | 国产大屁股一区二区在线视频| 亚洲精品,欧美精品| 99热全是精品| 国产成人精品久久久久久| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 老师上课跳d突然被开到最大视频| 高清日韩中文字幕在线| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频| 毛片女人毛片| .国产精品久久| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看 | 午夜视频国产福利| 高清不卡的av网站| 熟女av电影| 大香蕉97超碰在线| 国产一区二区在线观看日韩| 亚洲国产精品成人久久小说| 91久久精品电影网| 女性被躁到高潮视频| 久久久久久久久久成人| 18禁在线播放成人免费| 建设人人有责人人尽责人人享有的 | 国产91av在线免费观看| 七月丁香在线播放| 一个人免费看片子| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 热99国产精品久久久久久7| 欧美三级亚洲精品| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 免费av中文字幕在线| 国产又色又爽无遮挡免| 在线观看三级黄色| tube8黄色片| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 免费大片黄手机在线观看| 丰满迷人的少妇在线观看| 在线精品无人区一区二区三 | 免费黄网站久久成人精品| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 国产无遮挡羞羞视频在线观看| 国产男女超爽视频在线观看| 欧美成人一区二区免费高清观看| 精品少妇黑人巨大在线播放| 天天躁日日操中文字幕| 亚洲国产日韩一区二区| 美女内射精品一级片tv| 亚洲在久久综合| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 18禁在线无遮挡免费观看视频| 高清视频免费观看一区二区| 最后的刺客免费高清国语| 纵有疾风起免费观看全集完整版| 久久精品国产鲁丝片午夜精品| 亚洲av福利一区| 久久久久久久久久人人人人人人|