• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚吡咯/硝酸活化碳氣凝膠納米復合材料的制備表征及其在超級電容器中的應用

    2016-11-08 06:00:36李亞捷倪星元劉念平周小衛(wèi)同濟大學物理科學與工程學院上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室上海200092
    物理化學學報 2016年2期
    關(guān)鍵詞:吡咯硝酸電容器

    李亞捷 倪星元 沈 軍 劉 冬 劉念平 周小衛(wèi)(同濟大學物理科學與工程學院,上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室,上海200092)

    聚吡咯/硝酸活化碳氣凝膠納米復合材料的制備表征及其在超級電容器中的應用

    李亞捷倪星元*沈軍劉冬劉念平周小衛(wèi)
    (同濟大學物理科學與工程學院,上海市特殊人工微結(jié)構(gòu)材料與技術(shù)重點實驗室,上海200092)

    通過化學氧化聚合法制備出不同比例的聚吡咯(PPY)/硝酸活化碳氣凝膠(HCA)復合材料。采用傅里葉變換紅外光譜(FT-IR)和掃描電子顯微鏡(SEM)表征材料的成分和形貌,結(jié)果表明,通過硝酸活化及與聚吡咯的復合,并未破壞碳氣凝膠的多孔形貌,硝酸活化碳氣凝膠及聚吡咯/硝酸活化碳氣凝膠都仍然保持著原碳氣凝膠的三維納米多孔結(jié)構(gòu)。采用對照實驗的方法,設(shè)計并合成五組不同配比的復合材料,聚吡咯與硝酸活化碳氣凝膠的質(zhì)量比例分別為3:1、2:1、1:1、1:2、1:3,通過循環(huán)伏安法,恒流充放電,交流阻抗及循環(huán)性測試等考察材料的電化學性能。結(jié)果證明,當聚吡咯與硝酸活化碳氣凝膠比例為1:1時,復合材料顯示出最優(yōu)電化學性能:比電容高達336 F?g-1,是純碳氣凝膠(103 F?g-1)的三倍有余,除此還顯示出卓越的導電性與循環(huán)穩(wěn)定性,2000次循環(huán)后仍保持初始電容的91%,具備優(yōu)良的超級電容器電極材料性能。因此聚吡咯/硝酸活化碳氣凝膠復合納米材料是超級電容器的理想電極材料。

    活化碳氣凝膠;聚吡咯;超級電容器;化學氧化聚合法;復合電極材料;電化學性能

    doi:10.3866/PKU.WHXB201511131

    1 Introduction

    Increasing attention has been paid to supercapacitors due to their high power and energy densities,long cycle life and wide range of operating temperature.Besides,they are safe and environmentally friendly1.Thus,they are widely used in power and energy applications such as hybrid electric vehicles(HEVs),burst power generation,and backup sources2.

    According to the energy storage mechanism,supercapacitors can be classified into two categories:electrochemical double-layer capacitors(EDLCs)and pseudo-capacitors3.In the EDLCs,energy is stored by the accumulation of ionic and electronic charges at the interface between electrolytes and electrode materials4.Carbonaceous materials,such as carbon fibers5,porous carbons6,activated carbons7,and carbon aerogels8,are promising electrode materials for their high specific area,long cycle life,and relatively low cost.In particular,carbon aerogel(CA)is a unique class of three-dimensional nanoporous carbon materials that have high surface area,good electrical conductivity,and high porosity1,9. However,its specific capacitance is lower than expected due to poor wettability.Chemical surface modification in nitric acid solutions has been reported to improve the wettability of carbon materials,which results in a higher usable surface area,smaller internal resistance,and higher specific capacitance10.By comparison,pseudo-capacitors store energy through relatively fast and reversible faradaic processes in a redox-active material at characteristic potentials11.They are able to store charge not only in the electrical double layer,but also throughout the body of the electrodes by rapid faradaic charge transfer.The faradaic pseudocapacitance of pseudo-capacitors is almost 10-100 times higher than EDLCs,but the improvement of capacitance by pseudofaradaic reactions is not stable and the capacitance decays with cycling11,12.Transition metal oxides including ruthenium and tantalum oxides are ideal electrode materials for pseudo-capacitors because they have great specific capacitance.However,their high cost has limited the practical application13.Electrically conducting polymers(ECPs),such as polyaniline(PANI)14,poly(3-methylthiophene)(pMeT)15,and polypyrrole(PPY)16,are promising electrode materials due to their high conductivity and relatively low cost.Among these ECPs,PPY has good thermal and environmental stability,high storage stability,and relative ease of synthesis16.However,during the cyclic electrochemical oxidation and reduction process,continuously injection and rejection of solvated ions will lead to the framework swelling and contraction of the polymer chain,which influences the cycling performance of PPY17.

    Nowadays,supercapacitors which combine the advantages of both EDLCs and pseudo-capacitors have become a promising subject.For example,some researchers combined carbonaceous materials with ECPs or with transition metal oxides to synthesize composite electrodes such as CNTs(carbon nanotubes)-PANI composite18,CNTs(carbon nanotubes)-PPY composite19,TiO2-activated carbon composite20,and manganese oxide/MWNTs (multiwalled carbon nanotubes)composite electrodes21.The results show that after recombination,the electrochemical performances of electrodes are improved.

    In this work,PPY/nitric acid activated carbon aerogel(HCA) composites were synthesized via chemical oxidation polymerization with different PPY contents and we explored the optimum mass ratio of HCA to PPY.The method involved in this paper is simple,convenient and beneficial for commercial applications. The final results indicate that the PPY/HCA composite with the mass ratio of 1:1 has high specific capacitance,excellent conductivity,and long term stability.

    2 Experimental

    2.1Preparation of carbon aerogel

    The carbon aerogel was prepared via a sol-gel process:resorcinol(R)(analytical reagent)and formaldehyde(F)(analytical reagent)were mixed in a 1:2 molar ratio with alkaline sodium carbonate(C)(analytical reagent)as catalyst and deionized water as solvent.The mass percentage of reactions in solution was 30%, the molar ratio of R to C was held at a constant value of 500. Stirring the above solution at room temperature for 30 min,then the hydrosols were sealed and heat-treated at 30°C for one day, 50°C for one day,and 90°C for three days,respectively.The resultant RF hydrogels were rinsed in an ethanol bath for a week, then CO2supercritical drying at 31.8°C and 7.3 MPa was carried out to get cylindrical organic aerogels.The obtained RF organic aerogels were carbonized at 1050°C for 3 h with the rising temperature rate of 5°C?min-1in a tubular furnace under N2flow of 100 mL?min-122,23.The obtained RF carbon aerogel sample was denoted as CA.

    2.2Nitric acid activation of carbon aerogel

    CAwas dispersed in concentrated nitric acid(65%)at 60°C for 12 h,filtered and washed with deionized water until the pH was about 6,then the product was dried at 90°C for 24 h,denoted as HCA.

    2.3Synthesis of polypyrrole/nitric acid activated carbon aerogel

    Firstly,0.1 g HCAwas dispersed in 200 mL of deionized water, then mixed with 0.02 g sodium dodecyl sulfate(SDS)(analytical reagent)as surfactant,stirred for 30 min and kept for ultrasound for 2 h.Secondly,pyrrole monomer(analytical reagent)was added into the above solution in five kinds of pyrrole:HCAmass ratios (1:1,2:1,3:1,1:2,1:3),stirred for 10 min and irradiated by ultrasonic wave for 30 min.Thirdly,0.2 g FeCl3(93%)was addedinto the solution as oxidant to motivate polymerization reaction, stirred for 30 min and kept for ultrasound for 2 h.The reaction was carried out under static condition for 24 h and then the PPY/HCA composite precipitate was filtered and washed with deionized water and ethanol.Lastly,the product was dried at 60°C for 24 h24.The name of PPY/HCAcomposite was abbreviated as PPYHCA-x,where x stands for the mass ratio of PPY to HCA.For example,PPY-HCA-21 means that the mass ratio of PPY to HCA was 2:1.

    2.4Structural characterization

    The components of samples were determined by Fourier transform infrared(FT-IR)spectroscopy(Bruker-TENSOR27). The field emission scanning electron microscopy(FESEM,Philips XL30FEG)was used to examine the structures and morphology of materials.N2adsorption isotherms were recorded with an AUTOSORB-1 Surface Area Analyzer(Quantachrome Instrument Corporation)at-196°C.Prior to measurements,the samples were degassed at 300°C for 2 h.The specific surface areas were determined on the basis of the Brunauer-Emmett-Teller(BET) method.The pore size distribution was obtained by employing density functional theory(DFT).The total pore volume was estimated from the amount of N2adsorbed at the relative pressure of p/p0=0.99.And t-plot method was used to determine the micropore surface area and micropore volume.

    2.5Electrochemical measurements

    Working electrodes were prepared by the following method:a mixture of active materials,conductive carbon black,and polytetrafluoroethylene(PTFE)at a mass ratio of 8:1:1 was pasted onto nickel foam,pressed at 8 MPa and dried at 80°C for 48 h.Electrochemical tests were carried out at room temperature using an electrochemical work station(CHI660C,Chenhua, China).A three-electrode cell was set up using nickel foam as counter electrode,Hg/HgO electrode as reference electrode,PPY/ HCA composite as working electrode,and KOH(6 mol?L-1) aqueous solution as electrolyte.

    Cyclic voltammetry(CV)measurements were conducted over a potential window from-0.8 to-0.1 V at different scan rates ranging from 5 to 100 mV?s-1.Galvanostatic charge-discharge measurements were ranged from-0.8 to-0.1 V at different current densities ranging from 0.5 to 5 A?g-1.Electrochemical impedance spectroscopy(EIS)measurements were recorded from 0.01 Hz to 100 kHz with 5 mV amplitude ofAC signal.

    3 Results and discussion

    3.1Structural characterization

    Fig.1(a)shows the FT-IR spectra of CA,HCA,PPY-HCA-11, PPY-HCA-21,and PPY-HCA-31.As shown in this image,the spectrum of HCA is similar to that of CA,but a few new peaks such as 1690 and 1725 cm-1appear,which represent the deformation vibration of―COOH and=C=O,respectively.Because of the strong oxidation of concentrated nitric acid,oxidationreduction reaction may take place on the surface of CA,engendering a great deal of oxygen containing groups such as―COOH and=C=O with hydrophilic property,which could improve the wettability of CA12.The spectra of three composites are similar but they are quite different from CA and HCA,there emerge a series of new peaks:794 cm-1is attributed to the C=C deformation of PPY,the broad band at 1320 cm-1demonstrates the C―H and C―N in-plane deformation vibration,966 and 1047 cm-1are attributed to the C―H deformation of PPY,the peak near 930 cm-1is attributed to the characteristic absorption of pyrrole ring,the peak near 1213 cm-1is attributed to the C―N stretching vibration of PPY,the peaks near 1462 and 1546 cm-1are attributed to C―N and C―C asymmetric and symmetric pyrrole ring stretching, respectively.Additionally,2850 and 2920 cm-1present the C―H asymmetric and symmetric stretching vibration of SDS which acted as surfactant25,26.The above results illustrate that PPY/HCA composites are successfully synthesized.

    Fig.1(b)is the standard infrared spectrum of PPY27,where we can see characteristic peaks:794,930,966,1047,1213,1320, 1462,and 1546 cm-1,they are allattributed to PPY and are all conformed to former analysis.Therefore,PPY/HCA composites are successfully prepared via chemical oxidative polymerization.

    Fig.1 (a)FT-IR spectra of CA,HCA,PPY-HCA-11,PPY-HCA-21,PPY-HCA-31 and(b)standard infrared spectrum of PPY

    The SEM images of CA,HCA and PPY/HCA composites are shown in Fig.2.From Fig.2(a,b),it can be seen that CAand HCA consist of interconnected sphere nanoparticles with diameters of 30 to 40 nm.Both of them have porous structure,which suggests that nitric acid activation did not destroy the overall skeleton andmaintains the three-dimensional nanoporous structure of carbon aerogel.Fig.2(c,d,e)shows the SEM images of PPY-HCA-11, PPY-HCA-21,and PPY-HCA-31,respectively.They are similar to CA,and appear no obvious clusters,which indicate that PPY is uniformly coated on the carbon aerogel.The composites still maintain three-dimensional nanoporous structure,which facilitates the ion transfer in charging and discharging processes.

    Fig.2 SEM images of CA(a),HCA(b),PPY-HCA-11(c),PPY-HCA-21(d),and PPY-HCA-31(e)

    Fig.3 shows theN2adsorption-desorptionisothermsofCA,HCA, PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31,respectively, which indicates a similar structure of 5 samples.As can be seen from the left of the curves,it reaches single layer absorption very fast,which demonstrates rich pore structures with diameter under 2 nm.The hysteresis loops on the right indicate abundant number of pores between 2 and 50 nm.All 5 samples show abundant structure of mesopore and micropore,which also proves the result of the FESEM that the pore structure remains after activation and composition.

    Fig.3 N2adsorption-desorption isotherms of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    Fig.4 shows the comprehensive N2adsorption-desorption isotherms of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31,which shows the pore volume of 5 samples.As can be seen from the left of the curves,CA has the highest volume platform on the left,following with HCA,PPY-HCA-11,PPY-HCA-21,andPPY-HCA-31.According to the adsorption theory,higher volume indicates more micropores,makes CA with the most micropores. And same order of curve height can be observed on the right. Higher volume indicates more pore structure and huger pore volume.Therefore,CAhas the most quantity of pore with hugest pore volume and followed with HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31.

    Fig.4 Comprehensive N2adsorption-desorption isotherms of CA, HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    Fig.5 shows the pore size distribution of 5 samples.It can be seen that most of the pores are mesopore between 10 and 50 nm. But there is a 4 nm peak on the curve of HCA,indicates the present of the micropore which may be generated during the activation.After polymerization,micropores are filled by PPY while has little effect on mesopore.This result demonstrates that all 5 samples have rich mesopore structure consistent with FESEM and N2adsorption-desorption isotherms results.

    Fig.5 Pore size distribution of CA,HCA,PPY-HCA-11,PPY-HCA-21,and PPY-HCA-31

    The schematic of PPY/HCA composite preparation process is shown in Fig.6.CAand SDS dispersed in the deionized water,the hydrophobic groups-long chain alkyl of SDS makes it attached to CAquickly.Simultaneously,the hydrophilic groups-sulfate anions of SDS form a negative charge layer on the surface of CA.Then pyrrole monomer,which was added into the above solution,will be attracted by the negative charge layer due to electrostatic interaction.Upon adding FeCl3as oxidant,pyrrole monomer on the surface of carbon aerogel will polymerize to PPY via chemical oxidative polymerization28.Finally,PPY/HCAcomposite materials are prepared.

    Fig.6 Schematic diagrams of the PPY/HCAcomposite preparation process

    3.2Electrochemical performance

    The cyclic voltammogram(CV)curves of samples at the scan rate of 50 mV?s-1are shown in Fig.7.It can be found that the CV curves of CA and HCA are rectangular and symmetrical,indicating a typical electric double layer(EDL)behavior and good stability.The energy storage mechanism of carbon aerogel in EDLCs has been described in previous literature29.HCA exhibitslarger CV area than that of CA,revealing that it has larger specific capacitance than CA.The CV curves of PPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are similar: compared with the CV curves of HCA,the oxidation and reduction peaks can be obviously seen,which are owing to the redox reaction of PPY18.

    Fig.7 Cyclic voltammogram curves of samples at a scan rate of 50 mV?s-1

    ThisredoxreactionofPPYisrelatedwithsequentialLewisbaseor Lewis acid-producing steps:in the discharging process,a reductionprocesswithreleaseofhydroxylionsisinvolved.Withthe involvementofionsoftheelectrolyte,thisLewisionizationprocess quotesaquasi-linear,one-dimensionalcylindrical Helmholtz-like double layer developed;in the charging process,due to a Lewis ionization process which involves oxidation with electron transfer, positive charges are introduced on the PPYchain by p-doping30,31.

    Fig.8 Cyclic voltammogram curves of CA(a),HCA(b),PPY-HCA-11(c),PPY-HCA-21(d),PPY-HCA-31(e), PPY-HCA-12(f),and PPY-HCA-13(g)at different scan rates

    In order to estimate the detail electrochemical properties,cyclic voltammetry was carried out for each electrode at various scan rates of 5,10,50,and 100 mV?s-1,as shown in Fig.8.The specific capacitance of the electrode can be calculated by the following equation:

    whereIistheaveragecurrent,mistheeffectivemassofelectrode materials,andvisthescanrate32.TheeffectivemassesofCA,HCA, PPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are 0.012,0.011,0.008,0.012,0.012,0.012,and 0.012g,respectively.TheresultsobtainedarelistedinTable1.

    By comparing the specific capacitance of CAwith that of HCA, we can find that after nitric acid activation,the capacitance is 50% higher than CA,which is owing to the improvement of wettability. Thus the utilization rate of electrode materials in aqueous electrolytes increases.PPY/HCA composite electrode materials havemuch higher specific capacitance,almost 1-2 times higher than that of CA.On the whole,PPY-HCA-11 has the highest specific capacitance,followed by PPY-HCA-31,PPY-HCA-21,PPY-HCA-11 and then PPY-HCA-13,their specific capacitances are all much higher than those of HCA and CA.The specific capacitance of PPY-HCA-11 reaches 336 F?g-1at a scan rate of 5 mV?s-1,while the capacitance of CA electrode is only 103 F?g-1.According to the above results and related theories,we can come to the following conclusions:composite materials combine the double-layer capacitances of HCAand Faradic capacitances of PPY.Therefore, the composites have a substantial increase in specific capacitance18.

    Table1 Specific capacitances of materials at different scan rates

    In general,the specific capacitance of each sample increases with the decreasing of scan rates,the reason is that electrostatic adsorption-desorption reaction and oxidation-reduction reaction occur not only in the surface of electrode,but also inside the materials33.Hence at lower scan rate,the electrolyte can penetrate well into the electrode materials,increasing the utilization rate of materials,so the specific capacitance is improved.

    The charge-discharge curves of samples measured in 6 mol?L-1KOH aqueous electrolyte at a current density of 1A?g-1are shown in Fig.9.The curves of CAand HCAare almost linear and present typical symmetrical triangle shape,indicating that they have double-layer capacitive behavior,while the curves of composite electrodes are not linear due to the existence of the Faradic reaction of PPY.

    Fig.9 Charge-discharge curves of samples at a current density of 1A?g-1

    The specific capacitance of samples can be calculated according to equation(2):

    where,t is the discharge time,and ΔV is the voltage34.From Fig.9 we can find that the discharge time sequence of samples is PPYHCA-11>PPY-HCA-31>PPY-HCA-21>PPY-HCA-12>PPYHCA-13>HCA>CA,so does the order of specific capacitance. This sequence is resistent with the results acquired by cyclic voltammetry,illustrates that composite electrodes have larger specific capacitance attributed to the existence of pseudo-capacitance and confirms that PPY-HCA-11 has the highest specific capacitance.

    At the beginning of the discharge,a sharp voltage change, which can be used to estimate the resistance of materials,is observed in each curves,the larger the voltage dip,the bigger the equivalent series resistance(ESR).The resistance of samples can be calculated by the following equation:

    where ΔU is the voltage dips and I is the charge-discharge current32.The resistances of CA,HCA,PPY-HCA-11,PPY-HCA-21, PPY-HCA-31,PPY-HCA-12,and PPY-HCA-13 are 0.026,0.018, 0.014,0.013,0.011,0.013,and 0.017 Ω,respectively.PPY-HCA composites have lower resistance than CA and HCA,indicating that the addition of PPY improve the conductivity of CA.For supercapacitors that utilize pseudo-capacitance,there are three types of electrochemical processes in the energy storage:(1) surface adsorption of ions from the electrolyte;(2)redox reactions involving ions from the electrolyte;(3)the doping and undoping of ECPs in the electrodes.In the above processes,the electrodes must have high electronic conductivity to distribute and collect the electron current3.Hence the composites with higher conductivity are ideal electrode materials for supercapacitors.

    Furthermore,to understand more about the electrochemical behavior of PPY-HCA-11,galvanostatic charge-discharge tests were carried out at various current densities of 0.5,1,2,3,4,and 5A?g-1,as shown in Fig.10.With the increasing of current density, the curves still present typical symmetrical triangle shape. However,the specific capacitance decreases due to the relatively low rate of ions diffusion within micropores at large current density.

    Fig.10 Charge-discharge curves of PPY-HCA-11 at different current densities of 0.5,1,2,3,4,and 5A?g-1

    Electrochemical impedance spectroscopy(EIS)is a useful technique to characterize the electrochemical properties of elec-trodes.The Nyquist plots of electrodes are shown in Fig.11(a).All of them exhibit three connected parts:a semicircle in the high frequency region which corresponds to the charge transfer reaction at the interface of electrode and electrolyte,a 45°line in the intermediate frequency region associated with Warburg impedance of ion diffusion inside the electrode materials and a straight line in the low frequency region responding to the capacitive performance35.

    The specific capacitance can be derived from the imaginary part of the impedance spectrum and frequency according to the following equation:

    where,f is the frequency,and Z?is the imaginary impedance36. Fig.11(b)shows the specific capacitance of samples on frequency derived from impedance spectroscopy.The specific capacitance of electrodes increased with the decreasing of frequency.This is because the electrolyte ions can reach the inner surface sites of the electrode materials under lower frequency37.In the lower frequency region,under the same frequency,the order of the specific capacitances of electrodes is PPY-HCA-11>PPY-HCA-31>PPYHCA-21>PPY-HCA-12>PPY-HCA-13>HCA>CA,which is in accordance with the results obtained from cyclic voltammetry and galvanostatic charge-discharge test.It confirmed that PPYHCA-11 has the best capacitance-frequency response and the highest specific capacitance.

    Fig.11 AC impedance spectra of materials

    The cycle life is a significant factor for supercapacitors.As shown in Fig.12,the specific capacitance of CAand HCAis nearly 100%after 2000 times.The specific capacitance of HCA is 50% higher than CA,indicating that nitric acid activation does not influence the cyclic stability of carbon aerogel and improve the specific capacitance.Composite electrode materials have higher capacitance,but their stability is inferior to CA and HCA.After 2000times,thecapacitydeteriorationsofPPY-HCA-11,PPY-HCA-21,PPY-HCA-31,PPY-HCA-12,andPPY-HCA-13are9%,15%, 21%,12%,and20%,respectively.Thecapacitydeteriorationrises withthechangingofthecontentofPPY,PPY-HCA-11showingthe best stability among composite materials:the loss of capacitance mainly happens at first 500 cycles,after 1000 times the specific capacitance stabilizes at a fixed high value;after 2000 times,the specificcapacitancestillremains91%oftheinitialvalue,whichis stillmuchhigherthanothersamples.Theorderofthespecificcapacitances of electrodes is PPY-HCA-11>PPY-HCA-31>PPYHCA-21>PPY-HCA-12>PPY-HCA-13>HCA>CA,whichis consistent with the results obtained from cyclic voltammetry,galvanostaticcharge-dischargetest,andelectrochemicalimpedance spectroscopy.ThisresultalsocorroboratesthatPPY-HCA-11has thehighestspecificcapacitance.

    Fig.12 Cyclic life of materials CA(a),HCA(b),PPY-HCA-11(c), PPY-HCA-21(d),PPY-HCA-31(e),PPY-HCA-12(f), and PPY-HCA-13(g)

    In the composite materials,PPY can enhance the capacitance remarkably;meanwhile,as a conductive framework,HCA can increase the cycling and physical stability of PPY.The above results confirmed that the optimum ratio of PPYto HCAis 1:1.

    The reasons are as follows:SEM shows that the sample has rich pore structure and appears no obvious clusters,which indicates that PPY is uniformly coated on the carbon aerogel,and maintains the three-dimensional nanoporous structure after activation and composition.The pore structure facilitates the ion transfer in charging and discharging processes,thus propitious to the improvement of electrochemical properties.

    N2adsorption-desorption isotherms also show abundant structure of mesopore and micropore in samples.The composite contains carbon aerogel and PPY,which combine the double-layer capacitances of HCA and Faradic capacitances of PPY.If PPY is over 50%,the pseudo-capacitance will be too huge for cycle performance as well as huge impedance of PPY,and poor cycling stability.If PPY is less than 50%,the pseudo-capacitance will be too low to improve the specific capacitance.

    According to the above results and related theories,we can come to the following conclusions:composite materials combine the double-layer capacitances of HCA and Faradic capacitances of PPY.Therefore,the composites have a substantial increase in specific capacitance.The above results confirmed that the optimum ratio of PPY to HCAis 1:1,the composite material shows the best electrochemical properties.It is a promising electrode material for supercapacitors.

    4 Conclusions

    Wettability of CAcan be improved by surface modification with nitric acid.After activation,the specific capacitance of CA increases by 50%.Besides,the modified CA maintains excellent cycle stability.The PPY/HCA composites have three-dimensional nanoporous structure as CA.Because they possess not only doublelayer capacitance but also pseudo-capacitance,their specific capacitances are 1-2 times higher than that of CA.With the increasing of PPY content in composites,the conductivity increases, but the long term stability becomes worse due to the existence of Faradic pseudo-capacitance.

    PPY-HCA-11 has the highest specific capacitance among samples,its capacitance reaches 336 F?g-1at a scan rate of 5 mV?s-1,while the capacitance of CAis only 103 F?g-1,it also has good cycling stability and retains 91%of initial capacitance over 2000 times,which is still much higher than that of CA.Besides,its conductivity is excellent and it is more cost-saving than other composites.Consequently,the PPY/HCAcomposite with the ratio of 1:1 is an ideal electrode material for supercapacitors.

    References

    (1)Wang,J.B.;Yang,X.Q.;Wu,D.C.;Fu,R.W.;Dresselhaus,M. S.;Dresselhaus,G.Journal of Power Sources 2008,185,589. doi:10.1016/j.jpowsour.2008.06.070

    (2)Li,J.;Wang,X.Y.;Huang,Q.H.;Gambo,S.;Sebastian,P.J. Journal of Power Sources 2006,158,784.

    (3)Burke,A.Journal of Power Sources 2000,91,37 doi:10.1016/ S0378-7753(00)00485-7

    (4)Lewandowski,A.;Jakobczyk,P.;Galinski,M.Electrochimica Acta 2012,86,225.doi:10.1016/j.electacta.2012.05.060

    (5)Wang,K.X.;Wang,Y.G.;Wang,Y.R.;Hosono,E.;Zhou,H.S. J.Phys.Chem.C 2009,113,1093.doi:10.1021/jp807463u

    (6)Chen,H.;Wang,F.;Tong,S.S.;Guo,S.L.;Pan,X.M.Applied Surface Science 2012,258,6097.doi:10.1016/j. apsusc.2012.03.009

    (7)González-García,P.;Centeno,T.A.;Urones-Garrote,E.;ávila-Brande,D.;Otero-Díaz,L.C.Applied Surface Science 2013, 265,731.doi:10.1016/j.apsusc.2012.11.092

    (8)Halama,A.;Szubzda,B.;Pasciak,G.;Electrochimica Acta 2010,55,7501.doi:10.1016/j.electacta.2010.03.040

    (9)Schmit,C.;Probstle,H.;Fricke,J.J.Non-Cryst.Solids 2001, 285,2772.

    (10)Liang,J.;Wei,B.Q.;Zhang,B.;Xu,C.L.;Wu,D.H.;Ma,R. Z.Journal of Power Sources 1999,84,126.

    (11)Lei,C.H.;Wilson,P.;Lekakou,C.Journal of Power Sources 2011,196,7823.

    (12)Peng,C.;Zhang,S.W.;Jewell,D.;Chen,G.Z.Prog.Nat.Sci. 2008,18,777.doi:10.1016/j.pnsc.2008.03.002

    (13)Sugimoto,W.;Yokoshima,K.;Murakami,Y.;Takasu,Y. Electrochimica Acta 2006,52,1742.doi:10.1016/j. electacta.2006.02.054

    (14)Xu,H.;Li,J.L.;Peng,Z.J.;Zhuang,J.X.;Zhang,J.L. Electrochimica Acta 2013,90,393.doi:10.1016/j. electacta.2012.12.047

    (15)Mastragostino,M.;Arbizzani,C.;Soavi,F.Solid State Ionics 2002,148,493.doi:10.1016/S0167-2738(02)00093-0

    (16)Li,J.;Cui,L.;Zhang,X.G.Applied Surface Science 2010,256, 4339.doi:10.1016/j.apsusc.2010.02.028

    (17)Biswas,S.;Drzal,L.T.Chemical Materials 2010,22,5667. doi:10.1021/cm101132g

    (18)Zhao,X.F.;Jiang,Q.;Guo,Y.N.;Zhang,N.;Shan,C.X.; Zhao,Y.Journal of Inorganic Material 2010,25,91.

    (19)Mi,H.Y.;Zhang,X.G.;Xu,Y.L.;Xiao,F.Applied Surface Science 2010,256,2284.doi:10.1016/j.apsusc.2009.10.053

    (20)Selvakumar,M.;Dhat,D.K.Applied Surface Science 2012, 263,236.doi:10.1016/j.apsusc.2012.09.036

    (21)Wang,G.X.;Zhang,B.L.;Yu,Z.L.;Qu,M.Z.Solid State Ionics 2005,176,1169.doi:10.1016/j.ssi.2005.02.005

    (22)Liu,N.P.;Shen,J.;Liu,D.Microporous and Mesoporous Materials 2013,167,176.doi:10.1016/j. micromeso.2012.09.009

    (23)Liu,D.;Shen,J.;Liu,N.P.;Yang,H.Y.;Du,A.Electrochimica Acta 2013,89,571.doi:10.1016/j.electacta.2012.11.033

    (24)Cui,C.J.;Zhao,A.L.;Wu,G.M.Journal of Functional Materials 2012,43,1281.

    (25)Omastová,M.;Trchová,M.;Kovárǒvác,J.;Stejskalc,J. Synthetic Metals 2003,138,447.doi:10.1016/S0379-6779(02) 00498-8

    (26)Cui,L.;Li,J.;Zhang,X.G.Materials Letters 2009,63,683.

    (27)Liang,N.Synthesis and Characterization of PPY and Its Composite Materials.Master Dissertation,Jiangsu University of Science and Technology,Zhenjiang,2012.[梁寧.聚吡咯及其復合材料的制備與性能研究[D].鎮(zhèn)江:江蘇科技大學, 2012.]

    (28)Du,B.;Jiang,Q.;Zhao,X.F.;Lin,S.Z.;Mu,P.S.;Zhao,Y. Acta Phys.-Chim.Sin.2009,25(3),513.[杜冰,江奇,趙曉峰,林孫忠,幕佩珊,趙勇.物理化學學報,2009,25(3), 513.]doi:10.3866/PKU.WHXB20090319

    (29)Pandolfo,A.G.;Hollenkamp,A.F.Journal of Power Sources 2006,157,11.doi:10.1016/j.jpowsour.2006.02.065

    (30)Conway,B.E.Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications;Kluwer Academic/Plenum Publishers:New York,1999;p 299.

    (31)An,K.H.;Jeon,K.K.;Heo,J.K.;Lim,S.C.;Bae,D.J.;Lee,Y.H.Journal of the Electrochemical Society 2002,149,A1058.

    (32)Liu,D.;Shen,J.;Li,Y.J.;Liu,N.P.;Liu,B.Acta Phys.-Chim. Sin.2012,28(4),843.[劉冬,沈軍,李亞捷,劉念平,劉斌.物理化學學報,2012,28(4),843.]doi:10.3866/PKU. WHXB201202172

    (33)Yan,J.;Wei,T.;Shao,B.;Ma,F.Q.;Fan,Z.J.Carbon 2010,48, 1731.doi:10.1016/j.carbon.2010.01.014

    (34)Zhu,J.B.;Xu,Y.L.;Wang,J.;Wang,J.P.Acta Phys.-Chim. Sin.2012,28(2),373.[朱劍波,徐友龍,王杰,王景平.物理化學學報,2012,28(2),373.]doi:10.3866/PKU. WHXB201112021

    (35)Zhou,X.W.;Wu,G.M.;Gao,G.H.;Cui,C.J.;Yang,H.Y.; Shen,J.;Zhou,B.;Zhang,Z.H.Electrochimica Acta 2012,74, 32.doi:10.1016/j.electacta.2012.03.178

    (36)Jurewicz,K.;Delpeux,S.;Bertagna,V.;Beguin,F.;Frackowiak, E.Chemical Physics Letters 2001,347,36.

    (37)Park,B.H.;Choi,J.H.Electrochimica Acta 2010,55,2888. doi:10.1016/j.electacta.2009.12.084

    Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors

    LI Ya-JieNI Xing-Yuan*SHEN JunLIU DongLIU Nian-PingZHOU Xiao-Wei
    (Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology,Institute of Physical Science and Engineering,Tongji University,Shanghai 200092,P.R.China)

    Polypyrrole(PPY)/nitric acid(HNO3)activated carbon aerogel(HCA)composites are prepared through chemical oxidative polymerization with different PPY/HCAmass ratios.Fourier transform infrared(FTIR)spectroscopy and scanning electron microscope(SEM)were employed to investigate the components and morphology of the samples.The results demonstrate that the synthesized materials maintain the threedimensional nanoporous structure of the carbon aerogel(CA);the activation by nitric acid and composition with PPY do not destroy the porous structure of the carbon aerogel and the complex still has the original threedimensional nanoporous structure.Composites with different mass ratios(3:1,2:1,1:1,1:2,1:3)of PPY/ HCA were prepared and the electrochemical properties were measured by cyclic voltammetry,galvanostatic charge-discharge test,and electrochemical impedance spectroscopy.The results confirm that the PPY/HCA composite with a ratio of 1:1 exhibits the best electrochemical performances;it has a high specific capacitance of 336 F?g-1,which is more than two times higher than that of CA(103 F?g-1);it also exhibits outstanding conductivity and cycling stability,retaining 91%of its initial capacitance after 2000 cycles.Therefore,thiscomposite is quite a promising electrode material for supercapacitors.

    June 25,2015;Revised:November 10,2015;Published on Web:November 13,2015.

    Activated carbon aerogel;Polypyrrole;Supercapacitor;Chemical oxidative polymerization; Composite electrode material;Capacitive property

    O646

    *Corresponding author.Email:nixingyuan@#edu.cn;Tel/Fax:+86-21-65986071.

    The project was supported by the National Natural Science Foundation of China(51072137,50802064,11074189),Key Projects in the National

    Science&Technology Pillar Program,China(2009BAC62B02),and Shanghai Committee of Science and Technology,China(11nm0501600).

    國家自然科學基金(51072137,50802064,11074189),國家科技支撐計劃重點項目(2009BAC62B02)及上??茖W技術(shù)委員會項目(11nm0501600)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    吡咯硝酸電容器
    銅與稀硝酸反應裝置的改進與創(chuàng)新
    云南化工(2021年7期)2021-12-21 07:28:06
    Au/聚吡咯復合材料吸附與催化性能的研究
    一道關(guān)于鐵與硝酸反應的計算題的七種解法
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    含銅硝酸退鍍液中銅的回收和硝酸的再生
    石墨烯在超級電容器中的應用概述
    硝酸鈀生產(chǎn)工藝研究
    超聲波促進合成新型吡咯α,β-不飽和酮
    合成化學(2015年10期)2016-01-17 08:56:06
    99国产极品粉嫩在线观看| 青青草视频在线视频观看| 母亲3免费完整高清在线观看| 久久久久久久大尺度免费视频| 制服人妻中文乱码| 精品乱码久久久久久99久播| 亚洲欧美激情在线| 国产高清国产精品国产三级| 亚洲五月婷婷丁香| 一二三四社区在线视频社区8| 黄网站色视频无遮挡免费观看| 啦啦啦在线免费观看视频4| 夜夜夜夜夜久久久久| 亚洲性夜色夜夜综合| 久久精品国产a三级三级三级| 欧美日韩国产mv在线观看视频| 法律面前人人平等表现在哪些方面 | 国产精品麻豆人妻色哟哟久久| www日本在线高清视频| 亚洲精品国产色婷婷电影| 一级,二级,三级黄色视频| 亚洲久久久国产精品| 另类精品久久| 丝袜美足系列| 久久久久久亚洲精品国产蜜桃av| 欧美激情极品国产一区二区三区| 国产欧美日韩一区二区三区在线| 在线观看免费高清a一片| 女警被强在线播放| 亚洲性夜色夜夜综合| 丝袜喷水一区| 下体分泌物呈黄色| svipshipincom国产片| 亚洲色图 男人天堂 中文字幕| 国产精品久久久人人做人人爽| 午夜激情av网站| 青青草视频在线视频观看| 桃花免费在线播放| 国产黄频视频在线观看| 久久人妻熟女aⅴ| 18禁国产床啪视频网站| 天天躁夜夜躁狠狠躁躁| 欧美精品啪啪一区二区三区 | 亚洲欧美清纯卡通| 啦啦啦在线免费观看视频4| av有码第一页| 在线观看人妻少妇| 亚洲精品国产av成人精品| 欧美少妇被猛烈插入视频| 亚洲一卡2卡3卡4卡5卡精品中文| 最近中文字幕2019免费版| 国产av一区二区精品久久| 99国产极品粉嫩在线观看| 黄色视频在线播放观看不卡| 青青草视频在线视频观看| 日本撒尿小便嘘嘘汇集6| 一级,二级,三级黄色视频| 国产精品九九99| 亚洲伊人色综图| 欧美国产精品va在线观看不卡| 丰满迷人的少妇在线观看| 亚洲av男天堂| 免费人妻精品一区二区三区视频| 成年人免费黄色播放视频| 伊人久久大香线蕉亚洲五| 下体分泌物呈黄色| 成年人午夜在线观看视频| 美女主播在线视频| 欧美黑人精品巨大| 热99久久久久精品小说推荐| 免费在线观看影片大全网站| 黄色毛片三级朝国网站| 十分钟在线观看高清视频www| 老鸭窝网址在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久久久国产电影| 在线十欧美十亚洲十日本专区| 黄片播放在线免费| 日本一区二区免费在线视频| 久久中文字幕一级| 亚洲精品美女久久久久99蜜臀| 巨乳人妻的诱惑在线观看| 侵犯人妻中文字幕一二三四区| 男女高潮啪啪啪动态图| 99香蕉大伊视频| 亚洲欧美一区二区三区黑人| 女性生殖器流出的白浆| 免费少妇av软件| 久久久久久免费高清国产稀缺| 天天躁日日躁夜夜躁夜夜| 久久综合国产亚洲精品| 亚洲第一欧美日韩一区二区三区 | 亚洲色图综合在线观看| 亚洲精品乱久久久久久| 麻豆国产av国片精品| cao死你这个sao货| 亚洲成人国产一区在线观看| 极品少妇高潮喷水抽搐| 国产无遮挡羞羞视频在线观看| 曰老女人黄片| 亚洲 欧美一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产精品秋霞免费鲁丝片| 十八禁人妻一区二区| 欧美激情极品国产一区二区三区| 他把我摸到了高潮在线观看 | 久久人人爽人人片av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国产一级毛片高清牌| 后天国语完整版免费观看| 中国美女看黄片| 男女免费视频国产| 午夜福利免费观看在线| 国产精品二区激情视频| 亚洲视频免费观看视频| 天天影视国产精品| 亚洲 国产 在线| 亚洲精品国产区一区二| 国产精品免费视频内射| 国产亚洲精品一区二区www | 日本91视频免费播放| 99久久人妻综合| 91精品三级在线观看| av天堂在线播放| 少妇粗大呻吟视频| 妹子高潮喷水视频| 午夜激情av网站| 色播在线永久视频| 亚洲欧美日韩高清在线视频 | 国产精品秋霞免费鲁丝片| 成年人黄色毛片网站| 久久久久久久久久久久大奶| 久久99一区二区三区| 久久精品国产亚洲av高清一级| 国产成人精品在线电影| av有码第一页| 亚洲精品美女久久久久99蜜臀| 一区二区日韩欧美中文字幕| 精品国产一区二区三区四区第35| 久久久国产欧美日韩av| 91字幕亚洲| 伊人久久大香线蕉亚洲五| 亚洲国产欧美日韩在线播放| 一级黄色大片毛片| 一级黄色大片毛片| 国产精品免费视频内射| 免费日韩欧美在线观看| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美软件| 亚洲欧美清纯卡通| 黑人操中国人逼视频| 日韩免费高清中文字幕av| av电影中文网址| 国产免费一区二区三区四区乱码| 啦啦啦中文免费视频观看日本| 精品少妇久久久久久888优播| 正在播放国产对白刺激| 国产精品欧美亚洲77777| av网站在线播放免费| 首页视频小说图片口味搜索| 各种免费的搞黄视频| 最黄视频免费看| 后天国语完整版免费观看| 久9热在线精品视频| 欧美人与性动交α欧美精品济南到| 嫁个100分男人电影在线观看| 亚洲精品久久久久久婷婷小说| av超薄肉色丝袜交足视频| 日韩人妻精品一区2区三区| 1024视频免费在线观看| 最近最新中文字幕大全免费视频| 国产男女超爽视频在线观看| 99精国产麻豆久久婷婷| 日本wwww免费看| 久久中文字幕一级| 国产成人系列免费观看| 国产一级毛片在线| 久久久久久人人人人人| 久久久久久久大尺度免费视频| 中文字幕制服av| 黑人巨大精品欧美一区二区蜜桃| 亚洲专区中文字幕在线| 新久久久久国产一级毛片| 久久久国产欧美日韩av| 波多野结衣av一区二区av| 欧美av亚洲av综合av国产av| 国产又爽黄色视频| av视频免费观看在线观看| 久久久欧美国产精品| avwww免费| 1024香蕉在线观看| 免费高清在线观看日韩| 免费人妻精品一区二区三区视频| 精品欧美一区二区三区在线| 国产片内射在线| 国产免费一区二区三区四区乱码| 国产在线视频一区二区| 国产伦理片在线播放av一区| 伊人亚洲综合成人网| 亚洲欧洲精品一区二区精品久久久| 大码成人一级视频| 欧美精品av麻豆av| 精品国产乱子伦一区二区三区 | 国产欧美日韩一区二区三 | 日本av手机在线免费观看| 国产视频一区二区在线看| 久久久久国产精品人妻一区二区| 精品亚洲成a人片在线观看| 午夜福利,免费看| 欧美黄色片欧美黄色片| 国产一卡二卡三卡精品| 国产欧美亚洲国产| 久久女婷五月综合色啪小说| bbb黄色大片| 国产成人影院久久av| 成年人黄色毛片网站| 色婷婷av一区二区三区视频| 欧美一级毛片孕妇| 欧美另类一区| 国产成人av激情在线播放| 国产成人a∨麻豆精品| 亚洲国产欧美网| 欧美精品啪啪一区二区三区 | 亚洲成人免费电影在线观看| 热re99久久精品国产66热6| 久久久精品区二区三区| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 91字幕亚洲| 免费黄频网站在线观看国产| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 精品久久久久久久毛片微露脸 | 母亲3免费完整高清在线观看| 麻豆av在线久日| 一进一出抽搐动态| 午夜福利乱码中文字幕| 巨乳人妻的诱惑在线观看| 日韩欧美一区二区三区在线观看 | 国产又色又爽无遮挡免| 亚洲,欧美精品.| 亚洲av日韩精品久久久久久密| 丝袜美腿诱惑在线| 大型av网站在线播放| 亚洲色图 男人天堂 中文字幕| 日本wwww免费看| 国产亚洲欧美精品永久| 久久99热这里只频精品6学生| 欧美国产精品va在线观看不卡| 不卡一级毛片| 97在线人人人人妻| 国产精品国产av在线观看| 国产免费现黄频在线看| 国产成人精品无人区| 欧美人与性动交α欧美精品济南到| 夜夜夜夜夜久久久久| 精品第一国产精品| 国产免费一区二区三区四区乱码| 一二三四在线观看免费中文在| 12—13女人毛片做爰片一| 日韩 欧美 亚洲 中文字幕| 久久久水蜜桃国产精品网| 国产成人精品久久二区二区91| 国产黄频视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品一区三区| 午夜福利影视在线免费观看| 日韩一区二区三区影片| 极品少妇高潮喷水抽搐| 国产一卡二卡三卡精品| 91av网站免费观看| 波多野结衣一区麻豆| 免费久久久久久久精品成人欧美视频| 久久人人爽av亚洲精品天堂| 91九色精品人成在线观看| 久久久久国产精品人妻一区二区| av线在线观看网站| 久久亚洲精品不卡| 性高湖久久久久久久久免费观看| 性色av乱码一区二区三区2| 99香蕉大伊视频| 高清av免费在线| 中亚洲国语对白在线视频| 日本wwww免费看| 欧美日韩亚洲国产一区二区在线观看 | 又大又爽又粗| 一区二区av电影网| 国产精品 欧美亚洲| 国精品久久久久久国模美| 国产老妇伦熟女老妇高清| 婷婷色av中文字幕| 搡老岳熟女国产| 国产三级黄色录像| 后天国语完整版免费观看| 亚洲精品国产一区二区精华液| netflix在线观看网站| 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| 免费在线观看完整版高清| 中文字幕人妻丝袜制服| 如日韩欧美国产精品一区二区三区| 亚洲综合色网址| 中文字幕av电影在线播放| 亚洲欧美精品综合一区二区三区| 国产在线一区二区三区精| 人妻一区二区av| av超薄肉色丝袜交足视频| 久久久久久亚洲精品国产蜜桃av| 中文字幕av电影在线播放| 亚洲精品第二区| 精品人妻在线不人妻| 99国产精品免费福利视频| 啪啪无遮挡十八禁网站| 少妇人妻久久综合中文| 国产视频一区二区在线看| 国产欧美日韩一区二区三区在线| 国产不卡av网站在线观看| 免费观看人在逋| 亚洲人成电影免费在线| 黄片播放在线免费| a级毛片黄视频| 亚洲少妇的诱惑av| 亚洲久久久国产精品| 亚洲精品自拍成人| 777米奇影视久久| 在线观看免费高清a一片| 水蜜桃什么品种好| 欧美在线黄色| 欧美亚洲 丝袜 人妻 在线| 少妇人妻久久综合中文| 欧美久久黑人一区二区| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网 | 大码成人一级视频| 中国国产av一级| 欧美精品亚洲一区二区| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 中文欧美无线码| 久久久久精品国产欧美久久久 | 乱人伦中国视频| 亚洲国产日韩一区二区| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 久久人人97超碰香蕉20202| 亚洲精品美女久久久久99蜜臀| 最新的欧美精品一区二区| 熟女少妇亚洲综合色aaa.| 亚洲av片天天在线观看| 黄色 视频免费看| 美女高潮喷水抽搐中文字幕| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲国产一区二区在线观看 | 制服人妻中文乱码| 老司机影院成人| 国产日韩欧美在线精品| 日韩视频一区二区在线观看| 日本一区二区免费在线视频| 啦啦啦中文免费视频观看日本| 久久久久久免费高清国产稀缺| 91麻豆精品激情在线观看国产 | 热99久久久久精品小说推荐| 高清黄色对白视频在线免费看| 国产精品亚洲av一区麻豆| 丰满少妇做爰视频| 人人妻,人人澡人人爽秒播| 黄色视频不卡| 欧美日韩福利视频一区二区| 久久99热这里只频精品6学生| 日韩一区二区三区影片| av欧美777| 成人亚洲精品一区在线观看| 99香蕉大伊视频| 国产高清国产精品国产三级| 亚洲欧美日韩另类电影网站| 国产深夜福利视频在线观看| 女性生殖器流出的白浆| 女警被强在线播放| 热re99久久国产66热| 老熟女久久久| 日韩视频一区二区在线观看| 操美女的视频在线观看| 亚洲av成人一区二区三| av天堂在线播放| 国产av精品麻豆| 亚洲国产av影院在线观看| 国产成人a∨麻豆精品| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 极品人妻少妇av视频| 在线观看舔阴道视频| 无遮挡黄片免费观看| 天堂中文最新版在线下载| 自拍欧美九色日韩亚洲蝌蚪91| 岛国在线观看网站| 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 法律面前人人平等表现在哪些方面 | 免费在线观看视频国产中文字幕亚洲 | 91麻豆精品激情在线观看国产 | 国产男女超爽视频在线观看| 日韩制服骚丝袜av| 一本久久精品| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影 | 最近中文字幕2019免费版| 国产精品亚洲av一区麻豆| 一本大道久久a久久精品| 老熟女久久久| 国产在线免费精品| 99久久精品国产亚洲精品| 无限看片的www在线观看| 国产真人三级小视频在线观看| 一级片免费观看大全| 中文字幕最新亚洲高清| 国产精品久久久久久精品古装| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 亚洲伊人色综图| 在线看a的网站| 天天躁夜夜躁狠狠躁躁| 亚洲男人天堂网一区| 极品少妇高潮喷水抽搐| 国产一区二区三区综合在线观看| 国产精品 欧美亚洲| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 90打野战视频偷拍视频| 人妻久久中文字幕网| 超碰97精品在线观看| 美女脱内裤让男人舔精品视频| svipshipincom国产片| 久久久久久人人人人人| 精品免费久久久久久久清纯 | 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 国产在线免费精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲全国av大片| 高清黄色对白视频在线免费看| 久久久久久久久免费视频了| 极品少妇高潮喷水抽搐| 国产黄色免费在线视频| 色播在线永久视频| 国产免费av片在线观看野外av| 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 国产欧美亚洲国产| 久久久国产一区二区| 欧美 日韩 精品 国产| 最近最新中文字幕大全免费视频| 亚洲国产精品一区三区| 国产亚洲av片在线观看秒播厂| 亚洲人成电影观看| 欧美日韩国产mv在线观看视频| 欧美午夜高清在线| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 91av网站免费观看| 色视频在线一区二区三区| 日本欧美视频一区| 美女主播在线视频| 下体分泌物呈黄色| 90打野战视频偷拍视频| 正在播放国产对白刺激| 日本五十路高清| 91国产中文字幕| 五月天丁香电影| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看 | 午夜日韩欧美国产| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 另类精品久久| 99国产精品一区二区蜜桃av | 亚洲全国av大片| 男女之事视频高清在线观看| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 成年动漫av网址| 欧美日韩成人在线一区二区| 亚洲自偷自拍图片 自拍| 精品一区二区三卡| 久久99一区二区三区| 久久青草综合色| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 国产一级毛片在线| 五月开心婷婷网| 777米奇影视久久| 欧美+亚洲+日韩+国产| 国产黄色免费在线视频| 亚洲专区字幕在线| 国产在线视频一区二区| 法律面前人人平等表现在哪些方面 | 中亚洲国语对白在线视频| 久久亚洲国产成人精品v| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| 亚洲人成77777在线视频| 久久久精品94久久精品| 乱人伦中国视频| 亚洲人成电影观看| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久久久99蜜臀| 久久久国产一区二区| 18禁观看日本| 这个男人来自地球电影免费观看| 一本久久精品| 十八禁网站免费在线| 国产激情久久老熟女| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品自拍成人| 老司机深夜福利视频在线观看 | bbb黄色大片| 99热全是精品| 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 热99久久久久精品小说推荐| 久久久久久亚洲精品国产蜜桃av| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 欧美精品一区二区免费开放| 亚洲国产精品成人久久小说| 国产成人精品在线电影| 精品一区二区三区av网在线观看 | 国产成人a∨麻豆精品| 在线永久观看黄色视频| 国产区一区二久久| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 欧美精品亚洲一区二区| 亚洲欧美色中文字幕在线| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 少妇裸体淫交视频免费看高清 | av福利片在线| 男人爽女人下面视频在线观看| 亚洲国产看品久久| 麻豆国产av国片精品| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 国产1区2区3区精品| 亚洲精品一二三| 亚洲综合色网址| 99久久人妻综合| 操出白浆在线播放| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 美女福利国产在线| 日本精品一区二区三区蜜桃| 国产亚洲午夜精品一区二区久久| 99国产极品粉嫩在线观看| 精品少妇内射三级| 嫁个100分男人电影在线观看| 中国国产av一级| 9热在线视频观看99| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| a级毛片黄视频| 国产一卡二卡三卡精品| 国产色视频综合| 丝袜美足系列| 亚洲成人免费av在线播放| 狠狠狠狠99中文字幕| 一级毛片电影观看| 丝袜在线中文字幕| 91av网站免费观看| av一本久久久久| 女人被躁到高潮嗷嗷叫费观| 俄罗斯特黄特色一大片| 亚洲综合色网址| 老汉色∧v一级毛片| 国产伦人伦偷精品视频| 亚洲精品国产色婷婷电影| 亚洲 国产 在线| 精品福利永久在线观看| 国产1区2区3区精品| av欧美777| 国产熟女午夜一区二区三区| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 91成年电影在线观看| 一级毛片电影观看| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| 91老司机精品| 天天影视国产精品| 一区在线观看完整版| 成年人午夜在线观看视频| 黄色视频不卡| 一级毛片电影观看| 99国产极品粉嫩在线观看| 免费高清在线观看视频在线观看| 99久久综合免费| 宅男免费午夜| 老司机午夜福利在线观看视频 | 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 国产精品一区二区精品视频观看|