• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同磺酸摻雜聚苯胺的制備及在超級電容器中的應(yīng)用

    2016-11-08 06:00:31林有鋮鐘新仙黃寒星王紅強馮崎鵬李慶余廣西師范大學(xué)化學(xué)與藥學(xué)學(xué)院藥用資源化學(xué)與藥物分子工程教育部重點實驗室廣西低碳能源材料重點實驗室廣西桂林541004
    物理化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:聚苯胺磺酸物理化學(xué)

    林有鋮 鐘新仙 黃寒星 王紅強 馮崎鵬 李慶余(廣西師范大學(xué)化學(xué)與藥學(xué)學(xué)院,藥用資源化學(xué)與藥物分子工程教育部重點實驗室,廣西低碳能源材料重點實驗室,廣西桂林541004)

    不同磺酸摻雜聚苯胺的制備及在超級電容器中的應(yīng)用

    林有鋮鐘新仙*黃寒星王紅強馮崎鵬李慶余*
    (廣西師范大學(xué)化學(xué)與藥學(xué)學(xué)院,藥用資源化學(xué)與藥物分子工程教育部重點實驗室,廣西低碳能源材料重點實驗室,廣西桂林541004)

    以MnO2為氧化劑,采用乳液聚合法,用三種不同的磺酸型表面活性劑制備摻雜聚苯胺(PANI)。通過掃描電子顯微鏡(SEM)、傅里葉變換紅外(FTIR)光譜以及X射線衍射(XRD)等手段對其結(jié)構(gòu)及形貌進行表征;用所得的摻雜聚苯胺制作電極,組裝成對稱扣式超級電容器,用循環(huán)伏安法(CV)、電化學(xué)阻抗(EIS)和恒電流充放電技術(shù)進行電化學(xué)性能研究。結(jié)果表明,磺酸表面活性劑的引入有利于PANI納米纖維的形成和分散,摻雜Nafion的PANI纖維直徑在30-40 nm之間,纖維交織成多孔的疏松結(jié)構(gòu);當(dāng)放電電流為0.1 A?g-1時,以PANI-Nafion、PANI-SDS(十二烷基磺酸鈉)、PANI-SDBS(十二烷基苯磺酸鈉)為電極材料的超級電容器比容量分別為385.3、359.7、401.6 F?g-1,均高于未摻雜PANI的比容量(235.8 F?g-1);其中,PANINafion的循環(huán)穩(wěn)定性最好,1000次循環(huán)后其比容量保持率高達70.7%。

    聚苯胺;有機磺酸;乳液聚合;納米纖維;超級電容器

    doi:10.3866/PKU.WHXB201511104

    1 Introduction

    Supercapacitors are a new type of energy storage devices with good electrochemical performance between traditional capacitors and secondary batteries.Supercapacitors have aroused highly attention because of their high power density,light weight,high rates of charge-dischage,long cycle life,good voltage memory, etc1-3.At present,supercapacitor electrode materials can be mainly divided into three categories:conducting polymers,carbon materials,numerous transition metal oxides1,4,5.Conducting polymers (e.g.,polyaniline(PANI),polythiophene(PTh),polypyrrole(PPy), polyfuran(PF)and their derivatives,etc.)have been extensively studied in recent years because they not only have high specific capacity,wide voltage windows,and highenergydensity,butalso arecheaperthanpreciousmetaloxide6-12.As an interesting member of conducting polymers,PANI has been considered to be a promising electrode material of supercapacitors due to its environmental stability,easy synthesis,high capacitance,and relatively low cost13-15.

    However,poor electrical conductivity and repeatedly insertion/ deinsertion process of the dopant ions accompanying swelling/ shrinkage of volume restrict the application of PANI,which destroys the polymer chains and further decays the specific capacitance as well as weakens the charge-discharge cycle life13,16. Furthermore,the swelling/shrinkage degree of PANI nanostructure is influenced by dopant ion.The macromolecules functionalized protonic acids such as camphorsulfonic acid(CSA)17,dodecylbenzenesulfonic acid(DBSA)18,p-toluenesulfonic acid(p-TSA)19, etc.have been used for doping into PANI through the introduction of larger hydrophobic group and counter-ions20.These organic sulfonic acids generally work as both surfactant and protonic agent during the process of emulsion polymerization.To the best of our knowledge,emulsion polymerization is an effective synthesis for PANI21-24,because it not only affects polymerization of monomer, chain growth,size and distribution of polymer,but also is a highly effective method,simple and low cost.

    Therefore organic sulfonic acids arouse our interest once again. Nafion,a kind of perfluorosulfonic acid,has high chemical and mechanical stability and good proton conductivity25,and was commonly used to fabricate proton conducting membranes26. Nafion was used for the electrodeposition of PPy and was doped into PPy27.Our research group applied Nafion as a dopant to improve the electrochemical properties of PANI28.As far as we know,there are few reports about the comparison between Nafion and common surfactants(e.g.,sodium dodecyl benzene sulfonate (SDBS)and sodium dodecyl sulfate(SDS))29-32used for preparing PANI so far.

    In this study,we adopted emulsion polymerization to prepare PANI at room temperature with Nafion as dopant and emulsifier and MnO2as oxidant.For comparison,SDBS and SDS were applied to synthesize PANI composites under the same condition. The structure and morphology of the resulting materials were examined by Fourier transform infrared(FTIR)spectrometry, scanningelectronmicroscope(SEM),andX-raydiffraction(XRD). These products were used as active electrode material for fastenertype supercapacitor cells and their electrochemical performances were evaluated by electrochemical test technique with the electrolyte of 1.0 mol?L-1H2SO4aqueous solution.

    2 Experimental

    2.1Materials

    Perfluorinatedsulfonicacidionexchangeresin(Nafion)(5%(w, massfraction),Sigma-Aldrich).Sodiumdodecylbenzenesulfonate andsodiumdodecylsulfate(CP,XilongChemicalCo.,China).HCl, H2SO4,aniline(AN),MnO2,acetone,acetylene,polytetrafluoroethylene(AR,Xilong Chemical Co.,China).Water was doubledistilled.

    2.2Synthesis

    Firstly,4.0 mL of fresh aniline was purified by vacuum distillation before the experiment dissolved in 100 mLof 1.0 mol?L-1HCl with magnetic stirring at room temperature for 20 min to obtain a uniform solution.Then a small quantity of Nafion,SDS, and SDBS surfactant were added into the aqueous solution(the molecular structures of Nafion,SDS,and SDBS are shown in Fig.1).After that,MnO2was added slowly into the above mixture (the molar ratios of AN/MnO2is 1/1).A distinct color change of the mixture from transparent white to dark green was observed during the polymerization reaction.Then,the mixture was stirred for 10 h reaction.Finally,the product was filtered,washed with acetone and deionized water until Mn2+ion was completely removed from solution,dried under vacuum at 80°C for 24 h,and then these materials were marked as PANI-Nafion,PANI-SDS, and PANI-SDBS in the paper,respectively.PANI powder was obtained without adding the surfactant.

    2.3Characterization

    The morphology of the samples was analyzed by Fourier transform infrared spectroscopy(PE Spectrum One,Perkin Elmer, the wavenumber range 400-4000 cm-1with KBr as compressed slices)andField-emission-scanningelectronmicroscope(FE-SEM, FEI Quanta 200 FEG).The crystal structures of the samples were analyzed by X-ray diffraction(Rigaku D/max 2500 ν/pc,Cu Kα1,λ=0.15406 nm,the operation voltage and current maintained at 40 kV and 30 mA,respectively).The surface area of the samples was studied using BET measurements(ASAP2020,Micromeritics).

    Fig.1 Molecular structures of Nafion(a),SDS(b),and SDBS(c)

    2.4Electrochemical measurements

    The as-prepared PANI and doped PANI,polytetrafluoroethylene, and acetylene black(mass ratio,80:10:10)were mixed in absolute alcohol.The slurry was turned into a mud-like by magnetic stirring for 3 h,and then was rolled into a film with 0.2 mm thick. The film was cut into disk electrodes with diameter of 10 mm and dried under vacuum at 80°C for 4 h.Then fastener-type symmetric supercapacitor cells were assembled with the electrolyte of 1.0 mol?L-1H2SO4aqueous solution and two equal quality of disk electrodes divided by a piece of porous separator paper(shown in Fig.2).The electrochemical properties of cells were measured by cyclic voltammograms(CVs)(Zahner IM6,Germany),constant current charge-discharge test(Neware,Shenzhen,China),and electrochemical impedance spectroscopy(EIS)at ambient temperature.

    Fig.2 Assembly diagrams of button supercapacitor(a)and fastener-type supercapacitor cell(b)

    3 Results and discussion

    3.1Microstructure characterizations

    SEM images of different doped PANI and PANI materials are shown in Fig.3.Uniform interwoven nanofibers morphology with averagediametersofabout30-40nmandporousnetworkstructure isobtainedforPANI-Nafion(Fig.3(a)).Meanwhile,thefibrousand uniform morphology displays three-dimensional network with distributive porosity.These features are conducive to full contact withtheelectrolyteandtheelectrodematerials,andconsequently canimproveelectrochemicalperformanceofthematerials.PANISDS(Fig.3(b))also shows that nanofiber structures with average diameterof30-80nmareseverecross-linked.Similarmorphology canbeobservedforPANI-SDBS(Fig.3(c)),but the fibers appear uneven thickness(diameters of 20-110 nm)and more holes with sizes in wide range.Nevertheless,granular and fibrous PANI (Fig.3(d))agglomerates clearly with diameters between 40 and 100 nm.

    Fig.3 SEM images of PANI-Nafion(a),PANI-SDS(b),PANI-SDBS(c),and PANI(d)

    In order to further understand the changes of doped PANI morphology,we analyzed surface area of the samples by the BET measurements.The BET results of materials are shown in Table 1 and Fig.4.The results show that the doped PANI materials have a higher appreciably surface area than PANI.This finding may be attributed to the adding of small amount organic sulfonate,the anionic surfactants interact with cationic of imine groups via electrostatic force,which is favorable for reducing the interaction between PANI chain and forming longer PANI fibers with good dispersion33.These results suggest that the introduction of surfactant has an effect on the morphology of PANI to enable the formation of a fiber structure and increases dispersity of PANI. The bigger surface area and porous network structure of PANINafion may be the reason of the better electrochemical properties.

    3.2Molecular characterizations

    The FTIR spectra of PANI-Nafion,PANI-SDS,PANI-SDBS, and PANI are shown in Fig.5.The spectra of doped PANI exhibit the main IR bands similar to those of PANI.For PANI,the characteristic bands around 1578 and 1502 cm-1correspond to the C=C and C―N stretching vibrations of quinoid and benzenoid rings(N=Q=N),respectively.The other peaks at 1301,833,and 1147 cm-1belong to C―N stretching vibration of PANI,the external plane of C―H bending vibration in 1,4 disubstituted benzenes,and C=N stretching vibration of PANI,respectively. The FTIR spectrum of PANI studied in this work is consistent with the literature data34,35.Apparently a distinguishable band is present at 1000 cm-1in the doped PANI spectra which is attributed to the stretching vibrations of the sulfonic acid groups(―SO3H),indicating that surfactants successfully doped on the PANI during the synthesis.These results agree with the previous study36. Meanwhile,compared with PANI the main peaks of doped PANI occur a slight red-shift,it is suggested that doping reaction occurs on the nitrogen atom of quinine.Since―SO3H group is a strongelectron withdrawing group and reduces the electron density of the polymer chains through the delocalization of charge.As a result, the electron of transition energy is reduced and the group shifts to low vibration frequency37.

    Table1 BET test results of materials

    Fig.5 FTIR spectra of PANI-Nafion(a),PANI-SDS(b), PANI-SDBS(c),and PANI(d)

    Fig.6 shows XRD patters of PANI-Nafion,PANI-SDS,PANISDBS and PANI.The XRD pattern of doped PANI is similar to that of PANI.Two intense diffraction peaks at 2θ=21.3°,25.1° attribute to the groups paralleling to polymer chains and the groups perpendicular to polymer chains,respectively.The diffraction peak at 2θ=14.4°conforms to the scattering paralleling to polymer chains and represents partial amorphous characteristics of PANI.

    Fig.6 XRD patterns of PANI-Nafion(a),PANI-SDS(b), PANI-SDBS(c),and PANI(d)

    3.3Electrochemical performance

    The cyclic voltammograms of doped PANI and PANI shown in Fig.7werecarriedoutin1.0mol?L-1H2SO4aqueoussolutionwith potentialwindowfrom-0.2to0.8Vatascanrateof20mV?s-1. Fig.7 illustrates that a pair of anodic and cathodic current peaks attributed to PANI leucoemeraldine/emeraldine pair are clearly observed38.TheresponsecurrentofdopedPANIishigherthanPANI, aswellasthesymmetryofCVcurveofdopedPANIisbetterthan PANI.Meanwhile,the specific capacity of doped PANI is higher thanthatofPANIaccordingtotheareasoffourcurves,whichisin theorder:PANI-SDBS?PANI-Nafion?PANI-SDS?PANI.This fact may be due to the larger surface area and porous network structureofdopedPANIallowingabetterelectrolyteaccessaswell asprovidinglowerinternalresistance.

    Fig.7 Cyclic voltammograms of PANI-Nafion(a),PANI-SDS(b), PANI-SDBS(c),and PANI(d)electrodes

    Fig.8showsthegalvanostaticcharge-dischargecurvesofelectrodesin1.0mol?L-1H2SO4solutionat0.1A?g-1withthepotential window ranging from 0.0 to 0.7V.From Fig.8,charge-discharge curvesexpressroughlytrianglerepresentativeofthegoodcapacitive propertiesandreversibleredoxofPANI.Butallthecurvesarenot idealstraightlineoutofthewell-knownohmic-dropphenomenon causedbyinternalresistance39.

    The specific capacity value of single electrode can be calculated according to the following Eqs.(1)and(2):

    where CTis the total capacitance of button supercapacitor,I is the charge-discharge current,Δt is the discharge time,ΔV is the po-tential window set in the experiment,CSis the specific capacitance of single electrode(F?g-1),m1and m2are the masses of electrodes, respectively.

    Fig.8 First cycle charge-discharge curves of PANI-Nafion(a), PANI-SDS(b),PANI-SDBS(c),and PANI(d)electrodes

    The obtained specific capacity values are 385.3,359.7,401.6, and 235.8 F?g-1for PANI-Nafion,PANI-SDS,PANI-SDBS,and PANI,respectively.The results are consistent with CV test results and show that polyaniline nanomaterials doped with organic sulfonic acid have a higher capacitance than PANI.

    Electrochemical impedance spectroscopy is a powerful tool to understand the charge transfer of materials.Herein the performance of electrodes was tested in the frequency range of 10 mHz to 100 kHz with anAC perturbation voltage of 5 mV.Fig.9 shows the Nyquist plots of doped PANI and PANI.It is evident that the plots exhibit two parts:a low frequency region on the upper right portion and a high frequency region on the lower left portion of the plot.The resistance at the semi-circular portion at the high frequency range is commonly known as charge transfer resistance (Rct)between electrode and electrolyte.Impedance solution resistance(Rs)of doped PANI is equivalent to that of PANI electrode,both reaching to 0.7 Ω.Rctvalues of PANI-Nafion,PANISDS,PANI-SDBS,and PANI electrodes in the intermediate zone are 1.87,2.08,1.69,and 2.70 Ω,respectively,which show that PANI charge transfer resistance is decreased obviously after doping organic sulfonic acid.Because the sulfonic acid doped polyaniline forms porous network structure,which increases the contact area between electrodes and electrolytes,accelerate the proton diffusion rate,thereby possibly improving the electrochemical properties of the material.At the low frequency,the slope of diffusion impedance curve reflects the capacitance characteristics of an electrode.The slope of PANI-SDBS(curve c)is obviously greater than that of others,which shows that PANISDBS has better capacitance characteristics1.

    Fig.9 Electrochemical impedance spectroscopy of PANI-Nafion(a),PANI-SDS(b),PANI-SDBS(c),and PANI(d)electrodes

    Fig.10 Relationship between cycle number and specific capacitance of PANI-Nafion(a),PANI-SDS(b), PANI-SDBS(c),and PANI(d)electrodes

    The cyclic stability is a crucial parameter for supercapacitors electrode materials.The electrochemical stability of materials was tested by charge-discharge cycling tests between 0.0 and 0.7 V at 0.1 A?g-1for 1000 cycles.The relationship between specific capacitance of the different electrode materials and cycle numbers is depicted in Fig.10.The specific capacitances of the four electrode materials decrease gradually with increasing cycle numbers, which could be attributed to the swelling and shrinkage of conducting PANI during the long-term charge-discharge processes40. Interestingly,doped PANI delivers higher specific capacitance than PANI,among those materials PANI-Nafion basically shows the highest capacitance especially from 200 to 1000 cycles.After 1000 cycles,the specific capacities of PANI-Nafion,PANI-SDS, PANI-SDBS,and PANI are 272.4,150.4,178.7,and 93.1 F?g-1with capacitance retention calculated to 70.7%,41.8%,44.5%,and 39.5%,respectively.The possible reason of the result is the intervention of the macromolecular organic sulfonic acid anion, which increases the PANI molecular chain pitch so that the polymer chains PANI uniformly dispersed,thereby facilitating anion diffusion inside the electrode material,which is effective to inhibit the swelling phenomenon during dedoping process and improve the cycle performance of doped PANI.These results show that the stability of PANI-Nafion is the highest in the three doped PANI materials,from which we can deduce that Nafion provides mechanical reinforcement thus promoting to the formation the radical cations formed during the redox reaction41.

    4 Conclusions

    PANI-Nafion,PANI-SDS,and PANI-SDBS composite nanomaterials were prepared at room temperature by emulsion po-lymerization using manganese dioxide(MnO2)as oxidant and Nafion,SDS and SDBS as surfactant and dopant,respectively.The results suggest that the introduction of surfactant has an effect on the morphology of PANI and is in favour of forming a fiber structure,and increases dispersity of PANI.PANI-Nafion network with distributed porosity and average diameter of 30-40 nm was obtained.The electrochemical test results show that the capacitance and conductivity of PANI have been significantly improved after the doping of organic sulfonic acid.Among these,PANINafion delivers a higher specific capacity as well as an excellent cyclic stability far superior to other doped PANI and undoped PANI.The specific capacity of PANI-Nafion is 385.3 F?g-1at 0.1 A?g-1,its capacitance retention is 70.7%after 1000 cycles.All the electrochemical performance demonstrates that PANI-Nafion will be a promising electrode material for supercapacitors.

    References

    (1)Wang,L.L.;Xing,R.G.;Zhang,B.W.;Hou,Y.Acta Phys.-Chim.Sin.2014,30(9),1659.[汪麗麗,邢瑞光,張邦文,侯淵.物理化學(xué)學(xué)報,2014,30(9),1659.]doi:10.3866/PKU. WHXB201406162

    (2)Fan,T.J.;Tong,S.Z.;Zeng,W.J.;Niu,Q.L.;Liu,Y.D.;Kao, C.H.;Li,J.Y.;Huang,W.;Min,Y.;Arthur,J.E.Synth.Met. 2015,199,79.doi:10.1016/j.synthmet.2014.11.017

    (3)Simon,P.;Gogotsi,Y.Nat.Mater.2008,7,845.doi:10.1038/ nmat2297

    (4)Zhang,Y.;Feng,H.;Wu,X.B.;Wang,L.Z.;Zhang,A.Q.;Xia, T.C.;Dong,H.C.;Li,X.F.;Zhang,L.S.Int.J.Hydrog. Energy 2009,34,4889.doi:10.1016/j.ijhydene.2009.04.005

    (5)Brownson,D.A.C.;Kampouris,D.K.;Banks,C.E.J.Power Sources 2011,196,4873.doi:10.1016/j.jpowsour.2011.02.022

    (6)Tapan,K.D.;Smita,P.Polym.Plast.Technol.Eng.2012,51, 1487.doi:10.1080/03602559.2012.710697

    (7)Wang,J.D.;Peng,T.J.;Xian,H.Y.;Sun,H.J.Acta Phys.-Chim.Sin.2015,31(1),90.[汪建德,彭同江,鮮海洋,孫紅娟.物理化學(xué)學(xué)報,2015,31(1),90.]doi:10.3866/PKU. WHXB201411202

    (8)Yang,S.;Xu,G.Y.;Han,J.P.;Bing,H.;Dou,H.;Zhang,X.G. Acta Phys.-Chim.Sin.2015,31(4),685.[楊碩,徐桂銀,韓金鵬,邴歡,竇輝,張校剛.物理化學(xué)學(xué)報,2015,31(4), 685.]doi:10.3866/PKU.WHXB201502022

    (9)Gnanakan,S.R.P.;Murugananthem,N.;Subramania,A.Polym. Adv.Technol.2011,22(6),788.doi:10.1002/pat.1578

    (10)Liao,Y.;Gao L.;Zhang,X.H.;Chen,J.H.Mater.Res.Bull. 2012,47(7),1625.doi:10.1016/j.materresbull.2012.03.047

    (11)Peng,H.;Ma,G.F.;Ying,W.M.;Wang,A.D.;Huang,H.H.; Lei,Z.Q.J.Power Sources 2012,211,40.doi:10.1016/j. jpowsour.2012.03.074

    (12)Gao,L.;Liao,Y.;Zhang,X.H.;Chen,J.H.Chem.J.Chin. Univ.2013,34(2),2845.[高磊,廖奕,張小華,陳金華.高等學(xué)?;瘜W(xué)學(xué)報,2013,34(2),2845.]doi:10.7503/ cjcu20130366

    (13)Cong,H.P.;Ren,X.C.;Wang,P.;Yu,S.R.Energy Environ. Sci.2013,6,1185.doi:10.1039/C2EE24203F

    (14)Graeme,A.S.;Pon,K.;Adam,S.B.J.Power Sources 2011, 196,1.doi:10.1016/j.jpowsour.2010.06.084

    (15)David,V.;Pavel,L.;Kimberly,A.S.;Fred,W.;Alan,J.H.Adv. Mater.2014,26(30),5095.doi:10.1002/adma.201400966

    (16)Xin,G.X.;Wang,Y.H.;Liu,X.X.;Zhang,J.H.;Wang,Y.F.; Huang,J.J.;Zang,J.B.Electrochim.Acta 2015,167,254.doi: 10.1016/j.electacta.2015.03.181

    (17)Mohd,K.;Milton,A.T.;Iuri,S.B.;Vinicius,C.Z.;Jose,J.S. A.;Andre,A.P.Indian J.Mater.Sci.2013,2013,7.doi.org/ 10.1155/2013/718304

    (18)Salma,B.;Salma,G.;Khurshid,A.;Shah,A.A.Synth.Met. 2012,162,2259.doi:10.1016/j.synthmet.2012.11.003

    (19)Girija,T.C.;Sangaranarayanan,M.V.Synth.Met.2006,156, 244.doi:10.1016/j.synthmet.2005.12.006

    (20)Jan,P.;Jaroslav,S.Polym.Degrad.Stab.2004,86,187.doi: 10.1016/j.polymdegradstab.2004.04.012

    (21)Gaikwad,P.D.;Shirale,D.J.;Gade,V.K.;Savale,P.A.; Kharat,H.J.;Kakde,K.P.;Hussaini,S.S.;Dhumane,N.R.; Shirsat,M.D.Bull.Mater.Sci.2006,29(2),169.doi:10.1007/ BF02704611

    (22)Chen,T.;Dong,C.F.;Li,X.G.;Gao,J.Polym.Degrad.Stab. 2009,94(10),1788.doi:10.1016/j. polymdegradstab.2009.06.011

    (23)Chen,W.;Rakhi,R.B.;Alshareef,H.N.J.Mater.Chem.A 2013,1,3315.doi:10.1039/C3TA00499F

    (24)Xie,H.G.;Ma,Y.M.;Guo,J.S.Polymer 1999,40(1),261. doi:10.1016/S0032-3861(98)00224-9

    (25)Smitha,B.;Sridhar,S.;Animesh,K.J.Membr.Sci.2005,259, 10.doi:10.1016/j.memsci.2005.01.035

    (26)Birgit,S.;Soowhan,K.;Vijayakumar,M.;Yang,Z.G.;Liu,J. J.Membr.Sci.2011,372,11.doi:10.1016/j.memsci.2011.01.025 (27)Kim,B.C.;Ko,J.M.;Wallace,G.G.J.Power Sources 2008, 177,665.doi:10.1016/j.jpowsour.2007.11.078

    (28)Huang,Y.G.;Zhong,X.X.;Huang,H.X.;Li,Q.Y.;Wang,Z. H.;Feng,Q.P.;Wang,H.Q.Int.J.Hydrog.Energy 2014,39 (28),16132.doi:10.1016/j.ijhydene.2014.06.013

    (29)Sudipta,C.;Fabien,S.;Christine,C.;Suzy,V.;Alexandre,B. Carbohydr.Polym.2012,90(2),967.doi:10.1016/j. carbpol.2012.06.028

    (30)Yang,M.;Li,J.X.;Li,H.H.;Su,L.W.;Wei,J.P.;Zhou,Z. Phys.Chem.Chem.Phys.2012,14,11048.doi:10.1039/ C2CP41604B

    (31)Qiu,Y.;Lu,L.;Wang,S.S.;Zhang,X.H.;He,S.T.;He,T. J.Power Sources 2014,253,300.doi:10.1016/j. jpowsour.2013.12.061

    (32)Gu,Y.S.;Tsai,J.Y.Synth.Met.2012,161(23-24),2743.doi: 10.1016/j.synthmet.2011.10.013

    (33)Zhou,D.H.;Li,Y.H.;Wang,J.Y.;Xu,P.;Han,X.J.Mater. Lett.2011,65(23-24),3601.doi:10.1016/j.matlet.2011.08.021

    (34)Zhang,L.Y.;He,S.J.;Chen,S.L.;Guo,Q.H.;Hou,H.Q.Acta Phys.-Chim.Sin.2010,26(12),3181.[張雷勇,何水劍,陳水亮,郭喬輝,侯豪情.物理化學(xué)學(xué)報,2010,26(12),3181.]doi: 10.3866/PKU.WHXB20101135

    (35)Trchová,M.;Sédeňková,I.;Tobolková,E.;Stejskal,J.Polym. Degrad.Stab.2004,86(1),179.doi:10.1016/j. polymdegradstab.2004.04.011

    (36)Lu,X.H.;Ng,H.Y.;Xu,J.Y.;He,H.B.Synth.Met.2002,128, 167.doi:10.1016/S0379-6779(01)00668-3

    (37)Liu,W.;Ashok,L.C.;Ramaswamy,N.;Jayant,K.;Sukant,T.; Ferdinando,F.B.;Lynne,S.J.Am.Chem.Soc.1999,121(49), 11345.doi:10.1021/ja9926156

    (38)David,E.S.;Su-Moon,P.J.Electrochem.Soc.1988,135(9), 2254.doi:10.1149/1.2096248

    (39)Mi,H.Y.;Zhang,X.G.;Yang,S.D.;Ye,X.G.;Luo,J.M. Mater.Chem.Phys.2008,112(1),127.doi:10.1016/j. matchemphys.2008.05.022

    (40)Yan,J.;Wei,T.;Fan,A.J.;Qian,W.Z.;Zhang,M.L.;Shen,X. D.;Wei,F.J.Power Sources 2010,195,3041.doi:10.1016/j. jpowsour.2009.11.028

    (41)Kima,B.C.;Too,C.O.;Kwon,J.S.;Ko,J.M.;Wallace,G.G. Synth.Met.2011,161,1130.doi:10.1016/j. synthmet.2011.01.015

    Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor

    LIN You-ChengZHONG Xin-Xian*HUANG Han-XingWANG Hong-Qiang FENG Qi-PengLI Qing-Yu*
    (Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources,Ministry of Education, Guangxi Key Laboratory of Low Carbon Energy Materials,School of Chemistry and Pharmaceutial Sciences, Guangxi Normal University,Guilin 541004,Guangxi Zhuang Autonomous Region,P.R.China)

    Polyaniline(PANI)nanomaterials doped with three different sulfonic acid surfactants(perfluorinated sulfonic acid ion exchange resin(Nafion),sodium dodecyl sulfate(SDS),and sodium dodecyl benzene sulfonate (SDBS))were prepared using an emulsion polymerization method with manganese dioxide(MnO2)as the oxidant.The structure and morphology of the products were studied by scanning electron microscopy(SEM), Fourier transform infrared(FTIR)spectroscopy,and X-ray diffraction(XRD).Symmetric redox supercapacitor was assembled with doped PANI as the active electrode material.The electrochemical performances of the materials were evaluated by cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS),and galvanostatic charge-discharge tests.These results suggest that the introduction of surfactant is beneficial for the formation of a fiber structure and increases the dispersion of PANI.APANI-Nafion network with distributed porosity and average diameters of 30-40 nm is obtained.The specific capacitances of PANI-Nafion,PANI-SDS, and PANI-SDBS electrodes at 0.1A?g-1are 385.3,359.7,and 401.6 F?g-1,respectively.Among these electrodes PANI-Nafion delivers the best cycle performance,maintaining 70.7%of its initial capacitance after 1000 cycles.

    July 20,2015;Revised:November 6,2015;Published on Web:November 10,2015.

    Polyaniline;Organicsulfonic acid;Emulsion polymerization;Nanofiber;Supercapacitor

    O646

    *Corresponding authors.ZHONG Xin-Xian,Email:zhongxx2004@163.com;Tel:+86-773-5849641.LI Qing-Yu,Email:liqingyu62@126.com.

    The project was supported by the China Postdoctoral Science Foundation(2014M562499XB)and National Natural Science Foundation of China (U1401246,51474110).

    中國博士后科學(xué)基金(2014M562499XB)及國家自然科學(xué)基金(U1401246,51474110)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    聚苯胺磺酸物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進展
    中國塑料(2015年7期)2015-10-14 01:02:34
    白楊素在人小腸S9中磺酸化結(jié)合反應(yīng)的代謝特性
    生物質(zhì)炭磺酸催化異丁醛環(huán)化反應(yīng)
    聚苯胺復(fù)合材料研究進展
    中國塑料(2014年11期)2014-10-17 03:07:18
    多磺酸黏多糖乳膏聯(lián)合超聲電導(dǎo)儀治療靜脈炎30例
    高電導(dǎo)率改性聚苯胺的合成新工藝
    亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯 | 在线观看午夜福利视频| 亚洲一区二区三区欧美精品| 男女下面插进去视频免费观看| 91国产中文字幕| 免费在线观看黄色视频的| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区91| 高清毛片免费观看视频网站 | 欧美日韩亚洲综合一区二区三区_| 成年动漫av网址| 日韩有码中文字幕| 亚洲五月天丁香| 一区在线观看完整版| 亚洲第一欧美日韩一区二区三区| 老司机亚洲免费影院| 国产成人欧美| 国产野战对白在线观看| 少妇粗大呻吟视频| 极品教师在线免费播放| 另类亚洲欧美激情| 国产成人精品在线电影| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产a三级三级三级| 亚洲成人国产一区在线观看| 两性夫妻黄色片| 免费久久久久久久精品成人欧美视频| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 久久香蕉国产精品| 亚洲欧美激情综合另类| 亚洲专区字幕在线| 美女 人体艺术 gogo| 亚洲成国产人片在线观看| 亚洲午夜理论影院| 波多野结衣av一区二区av| 国产一区二区三区在线臀色熟女 | 国产av精品麻豆| 在线观看日韩欧美| 成人18禁高潮啪啪吃奶动态图| 国产精品乱码一区二三区的特点 | 国产无遮挡羞羞视频在线观看| 午夜免费观看网址| 久久精品亚洲av国产电影网| av国产精品久久久久影院| 国产精品久久久久久精品古装| 日韩欧美一区二区三区在线观看 | 好看av亚洲va欧美ⅴa在| 飞空精品影院首页| 日韩视频一区二区在线观看| 亚洲一区高清亚洲精品| 国产在视频线精品| 午夜福利欧美成人| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 999精品在线视频| 91精品三级在线观看| 黄片大片在线免费观看| 啦啦啦在线免费观看视频4| 丰满饥渴人妻一区二区三| 热99久久久久精品小说推荐| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费 | 999精品在线视频| 国产欧美日韩精品亚洲av| 欧美成狂野欧美在线观看| xxx96com| 国产欧美日韩一区二区三区在线| 十八禁网站免费在线| 两性夫妻黄色片| 精品一区二区三区av网在线观看| www.自偷自拍.com| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| 女性生殖器流出的白浆| 亚洲成国产人片在线观看| 久久精品亚洲熟妇少妇任你| 亚洲国产看品久久| 高清毛片免费观看视频网站 | 韩国av一区二区三区四区| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| 一本一本久久a久久精品综合妖精| 久久精品亚洲av国产电影网| netflix在线观看网站| 国产野战对白在线观看| 一级,二级,三级黄色视频| 国产高清videossex| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 免费在线观看视频国产中文字幕亚洲| 免费看a级黄色片| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 操美女的视频在线观看| 午夜激情av网站| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 人妻一区二区av| 午夜精品久久久久久毛片777| 丝袜美足系列| 亚洲片人在线观看| 波多野结衣一区麻豆| 91精品国产国语对白视频| 久久人人97超碰香蕉20202| 午夜福利在线免费观看网站| 国产男女内射视频| 女人被躁到高潮嗷嗷叫费观| 91成年电影在线观看| 女人被狂操c到高潮| 国产精品国产高清国产av | 天堂动漫精品| 精品一区二区三区四区五区乱码| 超碰成人久久| 精品国产美女av久久久久小说| 久久九九热精品免费| 久久青草综合色| 人人妻,人人澡人人爽秒播| 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 日日爽夜夜爽网站| 色播在线永久视频| 久久天躁狠狠躁夜夜2o2o| 久久人妻熟女aⅴ| 日韩大码丰满熟妇| 久久精品国产99精品国产亚洲性色 | cao死你这个sao货| 国产国语露脸激情在线看| 18禁裸乳无遮挡动漫免费视频| 色94色欧美一区二区| 高清黄色对白视频在线免费看| 国产精品成人在线| 法律面前人人平等表现在哪些方面| 午夜日韩欧美国产| 天堂俺去俺来也www色官网| av欧美777| 亚洲精品中文字幕一二三四区| 多毛熟女@视频| 国产亚洲精品久久久久久毛片 | 高清在线国产一区| 免费在线观看影片大全网站| 国产免费现黄频在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产99精品国产亚洲性色 | 大陆偷拍与自拍| 国产精品九九99| 黄色视频,在线免费观看| 中文欧美无线码| 日本wwww免费看| 精品一区二区三区av网在线观看| 超碰97精品在线观看| 91精品三级在线观看| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 91av网站免费观看| 国产麻豆69| 日日摸夜夜添夜夜添小说| 亚洲三区欧美一区| 精品视频人人做人人爽| 精品亚洲成a人片在线观看| 精品人妻在线不人妻| 十八禁网站免费在线| 一夜夜www| 精品一区二区三区四区五区乱码| 亚洲欧美激情在线| 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费 | 婷婷精品国产亚洲av在线 | 超碰97精品在线观看| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 久久草成人影院| 久久香蕉精品热| 国产精品.久久久| 亚洲精品乱久久久久久| 国产精品国产高清国产av | 日韩免费高清中文字幕av| av视频免费观看在线观看| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 久久久国产精品麻豆| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 岛国毛片在线播放| 中文字幕最新亚洲高清| 丁香欧美五月| 视频区图区小说| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 三上悠亚av全集在线观看| 久久精品国产亚洲av高清一级| 淫妇啪啪啪对白视频| 波多野结衣av一区二区av| 国产色视频综合| 久久精品国产综合久久久| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 国产无遮挡羞羞视频在线观看| 欧美日韩乱码在线| 美女福利国产在线| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | av片东京热男人的天堂| 国产精品免费视频内射| 狠狠狠狠99中文字幕| 欧美精品av麻豆av| 免费看a级黄色片| 人成视频在线观看免费观看| 国产在视频线精品| av有码第一页| 亚洲欧美日韩高清在线视频| 国产精品国产av在线观看| 老司机午夜十八禁免费视频| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 啦啦啦在线免费观看视频4| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 妹子高潮喷水视频| 国产精品 国内视频| 美女福利国产在线| 久久久久精品人妻al黑| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线观看二区| 91国产中文字幕| 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 激情视频va一区二区三区| а√天堂www在线а√下载 | 中国美女看黄片| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 人妻久久中文字幕网| 黑人巨大精品欧美一区二区蜜桃| 别揉我奶头~嗯~啊~动态视频| 欧美日韩av久久| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 亚洲国产精品sss在线观看 | 久久ye,这里只有精品| 免费黄频网站在线观看国产| 国产黄色免费在线视频| 两个人看的免费小视频| av线在线观看网站| 99re6热这里在线精品视频| 无限看片的www在线观看| 飞空精品影院首页| 午夜福利,免费看| 久久久国产成人免费| 国产在视频线精品| avwww免费| 大香蕉久久成人网| 国产成人精品久久二区二区免费| 村上凉子中文字幕在线| 18禁美女被吸乳视频| 成人18禁高潮啪啪吃奶动态图| 成人av一区二区三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| 一本大道久久a久久精品| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 麻豆乱淫一区二区| 久久久久精品人妻al黑| 国产成人av教育| 免费在线观看视频国产中文字幕亚洲| 91麻豆精品激情在线观看国产 | 成人手机av| 一本综合久久免费| 国产一区在线观看成人免费| 国产国语露脸激情在线看| 精品久久久精品久久久| 日本欧美视频一区| 免费看十八禁软件| 日韩免费高清中文字幕av| 国产精品九九99| 9色porny在线观看| 国产91精品成人一区二区三区| 老司机福利观看| 自线自在国产av| 欧美色视频一区免费| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区久久久樱花| 高潮久久久久久久久久久不卡| 午夜福利一区二区在线看| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av在线 | 一级a爱片免费观看的视频| 无人区码免费观看不卡| 久久久久久免费高清国产稀缺| 在线天堂中文资源库| 午夜久久久在线观看| 99国产极品粉嫩在线观看| 国产成人精品无人区| 窝窝影院91人妻| 亚洲男人天堂网一区| 黄色丝袜av网址大全| 国产不卡一卡二| 亚洲精品乱久久久久久| 国产在线观看jvid| 高清毛片免费观看视频网站 | 多毛熟女@视频| 欧美国产精品va在线观看不卡| 免费在线观看完整版高清| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 香蕉丝袜av| 黄色怎么调成土黄色| 国产男靠女视频免费网站| 亚洲一码二码三码区别大吗| 亚洲在线自拍视频| 午夜免费成人在线视频| 国产精品久久视频播放| 色综合婷婷激情| 国产91精品成人一区二区三区| 法律面前人人平等表现在哪些方面| 搡老岳熟女国产| 首页视频小说图片口味搜索| 亚洲成人免费av在线播放| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线 | 午夜福利欧美成人| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼 | 99精品在免费线老司机午夜| 国产一区二区激情短视频| 国产精品电影一区二区三区 | av不卡在线播放| 黑丝袜美女国产一区| 亚洲av片天天在线观看| 香蕉丝袜av| 无限看片的www在线观看| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 国产精品一区二区精品视频观看| 久久久久国内视频| 成人特级黄色片久久久久久久| 嫁个100分男人电影在线观看| 一边摸一边做爽爽视频免费| 欧美日韩成人在线一区二区| 婷婷成人精品国产| bbb黄色大片| 亚洲 国产 在线| 午夜老司机福利片| 日本五十路高清| 国产亚洲欧美98| videos熟女内射| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 精品久久蜜臀av无| 精品人妻在线不人妻| 国产片内射在线| 欧美午夜高清在线| 亚洲精品久久午夜乱码| 国产三级黄色录像| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久成人av| 在线看a的网站| 亚洲色图av天堂| 夜夜爽天天搞| 亚洲欧美日韩另类电影网站| 两性夫妻黄色片| 每晚都被弄得嗷嗷叫到高潮| 美女 人体艺术 gogo| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 亚洲国产精品sss在线观看 | 精品国内亚洲2022精品成人 | 9色porny在线观看| 国产一区二区激情短视频| 看黄色毛片网站| 午夜福利在线免费观看网站| 不卡av一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费观看网址| 一级毛片女人18水好多| 成人亚洲精品一区在线观看| 黑人操中国人逼视频| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| av欧美777| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 一级黄色大片毛片| 亚洲精华国产精华精| 激情在线观看视频在线高清 | 看黄色毛片网站| 国产欧美亚洲国产| 亚洲 欧美一区二区三区| 亚洲,欧美精品.| 欧美中文综合在线视频| 99热只有精品国产| 精品国内亚洲2022精品成人 | 看片在线看免费视频| 国产精品免费一区二区三区在线 | 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 在线观看66精品国产| av网站免费在线观看视频| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 久久精品91无色码中文字幕| 少妇猛男粗大的猛烈进出视频| 久久中文看片网| 欧美国产精品一级二级三级| 99re在线观看精品视频| x7x7x7水蜜桃| 丝瓜视频免费看黄片| 女警被强在线播放| 亚洲 国产 在线| 日韩有码中文字幕| 看黄色毛片网站| a级片在线免费高清观看视频| 欧美成人免费av一区二区三区 | 国产欧美亚洲国产| 正在播放国产对白刺激| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| 国产99白浆流出| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 欧美日韩国产mv在线观看视频| 捣出白浆h1v1| 淫妇啪啪啪对白视频| 亚洲av美国av| 亚洲午夜理论影院| 电影成人av| 少妇 在线观看| 精品福利永久在线观看| a级毛片黄视频| 在线观看免费视频网站a站| 校园春色视频在线观看| 无遮挡黄片免费观看| 国产麻豆69| 久久人人97超碰香蕉20202| 热99re8久久精品国产| 三上悠亚av全集在线观看| 在线看a的网站| 黑人操中国人逼视频| 免费高清在线观看日韩| √禁漫天堂资源中文www| 99久久人妻综合| 欧美人与性动交α欧美精品济南到| 国产精品久久久久久精品古装| 久久亚洲真实| 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 中国美女看黄片| 色老头精品视频在线观看| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 精品国产超薄肉色丝袜足j| 亚洲国产毛片av蜜桃av| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲| 麻豆乱淫一区二区| 国产精品久久视频播放| 曰老女人黄片| 在线观看午夜福利视频| 超碰97精品在线观看| av网站免费在线观看视频| 一级黄色大片毛片| 久久天躁狠狠躁夜夜2o2o| 久久久精品区二区三区| 久久精品亚洲av国产电影网| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 亚洲精品一卡2卡三卡4卡5卡| 又大又爽又粗| 国产视频一区二区在线看| 黄片大片在线免费观看| 动漫黄色视频在线观看| 久9热在线精品视频| 欧美精品亚洲一区二区| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| 欧美亚洲 丝袜 人妻 在线| 午夜福利影视在线免费观看| 黑丝袜美女国产一区| 国产在视频线精品| 天天操日日干夜夜撸| 麻豆成人av在线观看| 国产精品偷伦视频观看了| 午夜视频精品福利| 免费在线观看黄色视频的| 亚洲伊人色综图| e午夜精品久久久久久久| 天天影视国产精品| www.精华液| 欧美老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 亚洲久久久国产精品| 久久人妻av系列| 啦啦啦 在线观看视频| 久久精品亚洲精品国产色婷小说| 亚洲黑人精品在线| 欧美不卡视频在线免费观看 | 中文亚洲av片在线观看爽 | 曰老女人黄片| 十八禁人妻一区二区| 丝袜在线中文字幕| 很黄的视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| 黑人操中国人逼视频| 丁香六月欧美| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 后天国语完整版免费观看| 亚洲精品成人av观看孕妇| 夜夜爽天天搞| 少妇 在线观看| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 久久性视频一级片| 妹子高潮喷水视频| 一级作爱视频免费观看| 日韩免费av在线播放| 操出白浆在线播放| 一进一出抽搐gif免费好疼 | 人成视频在线观看免费观看| 欧美激情极品国产一区二区三区| 日日爽夜夜爽网站| 女人久久www免费人成看片| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美| 午夜免费观看网址| xxxhd国产人妻xxx| 一个人免费在线观看的高清视频| 色综合婷婷激情| 免费观看人在逋| av免费在线观看网站| 亚洲熟女精品中文字幕| 成人国产一区最新在线观看| 国产成人欧美在线观看 | 国内久久婷婷六月综合欲色啪| 欧美黑人欧美精品刺激| 美女福利国产在线| 男女下面插进去视频免费观看| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 国产日韩欧美亚洲二区| 国产亚洲欧美精品永久| 亚洲视频免费观看视频| 黑人欧美特级aaaaaa片| 天堂√8在线中文| 午夜91福利影院| 久久亚洲真实| 免费在线观看影片大全网站| 两人在一起打扑克的视频| 国产不卡一卡二| 9色porny在线观看| 亚洲人成77777在线视频| 色老头精品视频在线观看| 最新的欧美精品一区二区| 女人被躁到高潮嗷嗷叫费观| 国产麻豆69| 一a级毛片在线观看| 91大片在线观看| 男女床上黄色一级片免费看| 成人精品一区二区免费| 欧美日韩亚洲综合一区二区三区_| 国产精品乱码一区二三区的特点 | 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 午夜免费成人在线视频| 夫妻午夜视频| 久久香蕉国产精品|