• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    腺苷酸激酶催化循環(huán)后期Mg2+轉(zhuǎn)移的分子動力學(xué)模擬

    2016-11-08 06:00:21崔大超任衛(wèi)同李文飛南京大學(xué)物理學(xué)院南京微結(jié)構(gòu)國家實(shí)驗室人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心南京210093
    物理化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:質(zhì)子化微結(jié)構(gòu)激酶

    崔大超 任衛(wèi)同 李文飛 王 煒(南京大學(xué)物理學(xué)院,南京微結(jié)構(gòu)國家實(shí)驗室,人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京210093)

    腺苷酸激酶催化循環(huán)后期Mg2+轉(zhuǎn)移的分子動力學(xué)模擬

    崔大超任衛(wèi)同李文飛王煒*,
    (南京大學(xué)物理學(xué)院,南京微結(jié)構(gòu)國家實(shí)驗室,人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京210093)

    腺苷酸激酶是一個包含三個結(jié)構(gòu)域(LID結(jié)構(gòu)域、NMP結(jié)構(gòu)域和CORE結(jié)構(gòu)域)的蛋白質(zhì)分子,其主要作用是催化化學(xué)反應(yīng)Mg2++ATP+AMP?2ADP+Mg2+,進(jìn)而將細(xì)胞內(nèi)ATP分子的濃度維持在合適的范圍內(nèi)。在腺苷酸激酶催化上述化學(xué)反應(yīng)的過程中,需要有Mg2+的參與。最近的實(shí)驗發(fā)現(xiàn)Mg2+不僅參與上述反應(yīng)的化學(xué)步驟,而且對化學(xué)反應(yīng)發(fā)生后底物的釋放過程至關(guān)重要。已有晶體結(jié)構(gòu)數(shù)據(jù)顯示,在催化循環(huán)過程的化學(xué)反應(yīng)步驟完成后,一個Mg2+可同時和分別位于LID結(jié)構(gòu)域及NMP結(jié)構(gòu)域的兩個ADP分子配位。然而,在底物的釋放與分離過程中,Mg2+可能只與其中一個ADP分子結(jié)合。由于Mg2+與ADP分子的結(jié)合情況會在很大程度上影響作為催化循環(huán)限速步驟的底物釋放過程,因此人們有必要研究清楚在底物釋放前Mg2+與催化產(chǎn)物ADP分子的配位情況,即Mg2+更傾向于與LID結(jié)構(gòu)域的ADP分子結(jié)合還是與NMP結(jié)構(gòu)域的ADP分子結(jié)合。本文中,我們對催化反應(yīng)后底物釋放前的酶-底物復(fù)合物(包含酶、兩個ADP分子以及Mg2+)做了分子動力學(xué)模擬研究。我們基于metadynamics方法得到了Mg2+在兩個ADP分子間轉(zhuǎn)移的自由能面,發(fā)現(xiàn)在底物分離與釋放過程中,Mg2+更傾向于與LID結(jié)構(gòu)域的ADP分子結(jié)合。只有當(dāng)LID結(jié)構(gòu)域的ADP分子被質(zhì)子化,同時NMP結(jié)構(gòu)域的ADP分子處于去質(zhì)子化狀態(tài)時,Mg2+才會傾向于與NMP結(jié)構(gòu)域的ADP分子結(jié)合。另外,我們也刻畫了Mg2+轉(zhuǎn)移過程中配體交換與脫水過程。本工作的研究結(jié)果有助于理解腺苷酸激酶催化循環(huán)后期的分子過程。

    腺苷酸激酶;鎂離子轉(zhuǎn)移;Metadynamics;分子模擬

    doi:10.3866/PKU.WHXB201511201

    1 Introduction

    It is well known that when biological systems perform their functions,various organic biomolecules,inorganic cofactors,such as Mg2+,Ca2+,and Zn2+,heme,and phosphate are involved and play vital roles1-4.The most typical examples are such that metal ions can mediate a number of biological processes,including catalysis, electron transport,and structure modulations and so on.To fully understand the related functioning mechanisms of biomolecules, it is important to study the molecular processes involved by such metal ions5-7.Adenylate kinase is a kind of important enzymes which can catalyze the reversible reaction Mg2++ATP+AMP?2ADP+Mg2+8.This enzyme contains three domains,namely the LID domain,NMP domain,and CORE domain(Fig.1(a)),and has been frequently used as a model system to study the protein conformational motions,protein folding,and the coupling between chemical reaction and protein conformational dynamics, both experimentally and computationally8-23.It is well known that the Mg2+is involved in the chemical step of the catalytic cycle. Recent experimental studies demonstrated that the Mg2+also plays a role of pivot during the phosphate transfer from ATP to AMP9. Particularly,the experimental data showed that the presence of Mg2+in the ADP binding site is crucial for the substrate releasing and the protein conformational opening9,which is the rate limit step of the catalytic cycle of the adenylate kinase24.Therefore, revealing the final Mg2+binding state of the substrate(i.e.,the two ADP molecules)before the substrate releasing is important for understanding the key factors which control the catalytic efficiency of the adenylate kinase.

    Fig.1 (a)Crystal structure of theAKE in the substrate bound conformation(pdb code:1AKE);(b)the initial conformation of the twoADPmolecules and the Mg2+

    It was shown experimentally that the Mg2+coordinates to both ADP molecules right after the chemical step of the catalytic reaction(Fig.1(b))9.However,it is unclear whichADP molecule can bind with the Mg2+during the substrate releasing.As discussed in recent experimental work9,the Mg2+binding to the active site can promote the substrate releasing by modifying the local electrostatic interactions.Since the Mg2+binding to different ADP molecules can lead to very different perturbations to the local electrostatic environment,the information on the detailed Mg2+binding modes after the chemical step of the catalytic cycle is critical for understanding the factors controlling the substrate releasing and protein conformational opening.Due to the transient feature of the bound state of the post-catalytic complex,it is difficult to experimentally detect such information.Molecular dynamics simulations have been shown successful in revealing the molecular details of various complicated biological processes25-27.However, the conventional atomistic molecular dynamics is limited to simulatingthemolecularprocesseswithtimescaleslessthanmicrosecond,whichisusuallymuchshorterthantypicaltimescalesof functionalmotionsoflargeproteins.Forsuchcases,manybiased moleculardynamicsmethodsandenhancedsamplingmethodsare useful28-34.Metadynamicsisoneofthebiasedmolecular dynamics simulation methods,and has been extensively used in the studies of protein folding,functional motions,and transportation28,35-38.

    In this work,by using metadynamics simulations,we simulated the Mg2+transfer between the two ADP molecules.From the simulation data,we constructed the free energy landscapes which can be used to characterize the Mg2+transfer to the individualADP molecules.Our results showed that the Mg2+prefers to coordinate with the ADP molecule of the LID domain.We found that only when the ADP of the LID domain was protonated,and simultaneously the ADP of the NMP domain was deprotonated,the Mg2+tended to coordinate with the ADP of the NMP domain.We also characterized the ligand exchange and dehydration processes of the Mg2+transfer.

    2 Materials and methods

    Our simulations started from the crystal structure of the adenylate kinase in E-coli(AKE)at the closed state with PDB code 1AKE39.In this structure,bis(adenosine)-5'-pentaphosphate(AP5) molecule was used to mimic the substrate.The initial structures of the two ADP molecules,which are the catalysis products,wereprepared by replacing the central phosphate group with Mg2+.The ADP molecules attached to the LID domain and NMP domain were denoted asADP1 andADP2,respectively.

    In this work,the metadynamics simulations were used to accelerate the conformational sampling and to construct the free energy landscapes.In the metadynamics simulations,repulsive Gaussian potential was periodically added to the conformational space previously visited during a short time interval28,38.To characterize the conformational space,some collective variable(s) which are relevant to the interesting molecular processes need to be predefined.The deposited Gaussian potential tends to force the molecule escape from the energy basins,and therefore speeds up the sampling along the biologically relevant collective variable(s). Once all the basins are filled up by the Gaussian potential,the conformational motions of the proteins can cover the whole range of the relevant collective variable(s),and the accumulation of the filled Gaussian potential can be used to construct the free energy landscape.Previously,the metadynamics has been widely used in simulating the rare events of ion transportation,protein folding, and other biologically important processes28,35-38.

    In order to monitor the Mg2+transfer between the two ADP molecules,we used the R1and R2,which correspond to the distances between the Mg2+and the Pβatoms of theADP1 andADP2, respectively,as the collective variables of the metadynamics simulations.The amplitude and width of the deposited Gaussian packages were set as 0.4187 kJ?mol-1and 0.01 nm,respectively. The Gaussian packages were added with an interval of 2 ps.To get better sampling convergence,we introduced harmonic restraints to the lower and upper boundaries of the R1and R2.The lower and upper boundaries were set as 0.3 and 0.6 nm,respectively.The lower(upper)boundary corresponds to the distance at which the oxygen atom coordinates to the Mg2+(the oxygen atom is well separated from the Mg2+).Larger values of upper boundary are better,but can significantly extend the available conformational space,therefore increase the computational time.Due to the lower and upper boundaries,the obtained free energy landscapes can only cover the conformational spaces with R1and R2range from 0.3 to 0.6 nm,respectively,although smaller or larger values of R1and R2can be sampled due to the weak harmonic restraints.Here, the lower and upper boundaries were 0.3 nm.

    The simulations were performed with NAMD2.9 software package40.The particle mesh Ewald algorithm was used with periodic boundary condition41.The direct term of the electrostatic interactions and the non-bonded van der Waals interactions were truncated at 1 nm.Firstly,the system was minimized by steepest descent method and conjugate gradient methods.Then the systems were gradually heated to 300 K with NVT ensemble and further relaxed at 300 K and 1.013×105Pa with NPT ensemble for 1.0 ns.The product metadynamics simulations were conducted for 100 ns.Due to the added biasing potential,with such short-length metadynamics simulations,we can observe molecular events of longer than microsecond time scale.

    Since the ADP molecules can be protonated,it will be interesting to investigate how the protonation states of the two ADP molecules can affect the final Mg2+binding state.In this work, each ADP molecule can be either protonated or deprotonated. Since there are two ADP molecules in the simulation system,we totally conducted four simulations,including:(1)both ADP molecules were deprotonated(denoted by“DD”),(2)only ADP molecule of the LID domain was protonated(denoted by“D(H) D”),(3)only ADP molecule of the NMP domain was protonated (denoted by“DD(H)”),and(4)both ADP molecules were protonated(denoted by“D(H)D(H)”).The systems were solvated in a cubic TIP3P water box with the box size of~343 nm3.Then,Na+and Cl-were added to neutralize the simulation box and to mimic the salt concentration of 0.1 mol?L-1.The CHARMM36 force field was used for the protein and theADP molecules42.The partial charges of the protonated ADP molecules were obtained from a webserver Paramchem43.The protein structure was visualized by VMD software44.

    3 Results and discussion

    Fig.2(a)shows the time series of the two collective variables, R1and R2(i.e.,the distances between the Mg2+and the Pβatoms of the ADP1 and ADP2,respectively).One can see that in the later stage of the metadynamics sampling,both collective variables can sample along wide range of the conformational space.The R1and R2hop between small values and large values,suggesting high sampling quality of the metadynamics simulations.With such metadynamics simulation data,we can construct the free energy landscape according to the deposited biasing potentials.The constructed free energy landscapes projected on the two collective variables are shown in Fig.2(b)at different stages of the metadynamics simulations for the conditions with two ADP molecules deprotonated.From the free energy landscape,we can see four major basins at most,which correspond to four Mg2+binding states,namely,Mg2+simultaneously binds to both ADP molecules (left-bottom),Mg2+binds toADP1 molecule(left-top),Mg2+binds toADP2 molecules(right-bottom),and Mg2+does not bind to any ADP molecules(right-top).We can see that the constructed free energy landscape does not change significantly after 60 ns except that a new conformational state at the right-top corner of the free energy landscape can appear with the simulation time.In this work,we mainly discuss the relative difference of the free energy values between the conformational states locating at the left-top corner and right-bottom corner of the free energy landscape,which gets converged after the simulation time of 60 ns.The representative snapshots of the major conformational states are also shown in Fig.2(c).Compared to the ADP2 bound state,the state with Mg2+binding to the ADP1 molecule has lower free energy,suggesting that after the catalysis reaction,the Mg2+prefers to bind with the ADP1 molecule before the substrate releasing when both ADP molecules are deprotonated.Such results are important because previous experimental data suggested that the Mg2+ions are involved in the substrate releasing and AKE domain opening by disrupting the local water environment and electrostatic in-teractions.Our results show that for the deprotonated ADP molecules,the Mg2+prefers to bind with theADP1 molecule,therefore will have more pronounced effect on the releasing of the ADP1 molecule.

    Fig.2 (a)Time series of the distances between the Mg2+and the Pβatoms of theADP1 andADP2,i.e.,the collective variables,R1and R2, respectively;(b)free energy landscapes projected on the R1and R2at different stages of the metadynamics simulations (the unit of the free energy is kJ?mol-1);(c)represent snapshots showing the binding modes between the Mg2+and the twoADPmolecules in the three major states

    In Fig.2(a),we can observe a state with the values of R1and/or R2around 0.25 nm,which is smaller than the lower boundary ofthe metadynamics simulations.As discussed in the previous section,sampling beyond the boundary is arising from the weak restraints of the boundaries in the metadynamics simulations.Due to the restraint in the metadynamics simulations,although the R1and R2can take the values smaller than the lower boundary,the biasing potentials were added to the conformational space within the boundaries.Consequently,the basins with R1and/or R2values of 0.3 nm in the free energy landscapes in Fig.2(b)actually also contain the states with the values of R1and/or R2lower than the lower boundary.However,such treatment does not affect our discussion since both the states with R1and/or R2values of 0.3 nm and the states with R1and/or R2values lower than the lower boundary are considered as Mg2+bound states in this work.

    Next,we investigate how the protonation state affects the Mg2+transfer.We repeated the above metadynamics simulations for another three protonation states,namely,D(H)D,DD(H),and D(H)D(H).DD is both ADP molecules deprotonated,D(H)D is onlyADP1 protonated,DD(H)is onlyADP2 protonated,D(H)D (H)is both ADP1 and ADP2 protonated.The constructed free energy landscapes,together with the one without protonation are shown in Fig.3.For the protonation states DD(H)and D(H)D(H), the results are very similar to that of without protonation(Fig.2 (b)),namely,the Mg2+prefers to bind with the ADP1 after the catalysis.Only for the protonation state D(H)D,in which the ADP1 is protonated,and simultaneously,theADP2 is deprotonated,the Mg2+prefers to bind with the ADP2.Possible reason for such protonation effects on the Mg2+bound state is that the protonation introduces a unit of positive charge,which tends to have repulsive interactions between theADP1 and the Mg2+.As a result, the Mg2+has more probability to bind with theADP2 thanADP1.

    Fig.3 Free energy landscapes projected on the R1and R2for different protonation states

    The Mg2+tends to coordinate with water molecules in solvent. In the crystal structure of AKE,the Mg2+can coordinate with protein residues,ADP molecules,and water molecules.From the catalytic transition state structure to the post-catalytic structure right before the substrate releasing,the coordination environment of Mg2+was modified.Particularly,the water molecules may exchange with theADP molecules.Fig.4(a)shows a representative trajectory,in which a Pβatom leaves the coordination shell of the Mg2+.At the same time,one water molecule comes into the coordination shell.Such result suggests the ligand exchange process during the Mg2+transfer.Since the breaking up of coordination bond needs to overcome a high energy barrier,the simultaneous coordination of a water molecule,namely ligand exchange,may help to reduce the energy barrier,therefore speed up the Mg2+transfer.Such hydration and/or dehydration of metal ions during the folding of other metalloprotein have also been observed in molecular dynamics simulations,and was shown to play crucial roles in speeding up the protein conformational dynamics2.

    Recent experimental data suggested that the Mg2+binding to the ADP molecules may affect the local water structure and dynamics, therefore contribute to the substrate releasing9.In this work,we also calculated the averaged number of water molecules coordinated to the Mg2+at different conformational states characterized by R1and R2.If we assume that the number of water molecules coordinated to the Mg2+is determined by the values of R1and R2, namely,the R1and R2are good reaction coordinates to define the local structure of Mg2+binding site,we can calculate the averaged number of water molecules bound to the Mg2+directly from the metadynamics simulations.Fig.4(b)shows the averaged number of water molecules coordinated to the Mg2+at different conformational states defined by the R1and R2.One can see that for all the four protonation states,different Mg2+bound states have different hydration extents.For the state with two ADP molecules bound to the Mg2+,the number of coordinated water molecules is the lowest,which is reasonable because the maximum of the Mg2+coordination number is fixed.Consequently,coordination of twoADP molecules will reduce the number of coordinated water molecules.With the breaking up of one of the ADP-Mg2+coordination bonds,around one or two water molecules may enter the coordination shell.When both ADP-Mg2+coordination bonds are broken,up to five water molecules can enter the coordination shell.These results suggested that the change of the Mg2+bound state can change the hydration state of the active site,therefore may contribute to the modulation of the substrate releasing steps.

    Fig.4 (a)Representative trajectory for the distances between Mg2+and Pβatom ofADP1 and between Mg2+and O atom of water molecule as a function of time;(b)averaged number of water molecules coordinated with Mg2+at different conformational states represented by collective variables R1and R2for the four protonation states

    In Fig.4(a),the representative snapshots at two time points are also shown.color on web version.

    4 Conclusions

    Insummary,byusingmetadynamicssimulations,westudiedthe Mg2+transfer around the substrate binding site of the adenylate kinaseinthelatestageofthecatalyticcycle.Ourresultsshowthat theMg2+tendstobindwiththeADP1afterthechemicalstepofthe catalysisinmostoftheprotonationstates.Onlyfortheprotonation statewithADP1protonated,andsimultaneouslyADP2deprotonated,theMg2+haspreferencetobindwiththeADP2moleculesdue to the electrostatic repulsion introduced by the protonation. Meanwhile,wedemonstratedtheligandexchangebetweenwater moleculesandPβatomofADPduringtheMg2+transfer.Inaddition, theresultsshowthattheMg2+transferchangesthehydrationstateof theMg2+,whichmayinturnaffectthewaterstructureanddynamics around the substrate binding pocket of theAKE.Our simulation resultsareimportantforunderstandingthefunctionalmechanism ofkinaseinvolvingMg2+ions.Firstly,werevealthepossibleeffects ofADPprotonationontheMg2+transferduringthelatestageofthe AKEcatalyticcycle.Secondly,weshowthedetailedMg2+binding modes after the chemical step of the catalytic cycle,which is importanttounderstandtheelectrostaticroleofMg2+forthesubstrate releasing.Thirdly,weprovidemoredetailedstructuralanddynamics information of the active site of theAKE,which is important for understandingitsfunctioningmechanism.ThemolecularmechanismsofsubstratereleasingconsideringdifferentMg2+boundstates deservefurtherworks.

    References

    (1)Palm-Espling,M.E.;Niemiec,M.S.;Wittung-Stafshede,P. Biochim.Biophys.Acta 2012,1823,1594.doi:10.1016/j. bbamcr.2012.01.013

    (2)Li,W.;Zhang,J.;Wang,J.;Wang,W.J.Am.Chem.Soc.2008, 130,892.doi:10.1021/ja075302g

    (3)Alberts,B.;Johnson,A.;Lewis,J.;Raff,M.;Roberts,K.; Walter,P.Molecular Biology of the Cell,1st ed.;Garland Science,Taylor&Francis Group:New York,2007.

    (4)Wilson,C.J.;Apiyo,D.;Wittung-Stafshede,P.Q.Rev. Biophys.2004,37,285.

    (5)Li,W.;Wang,W.;Takada,S.Proc.Natl.Acad.Sci.U.S.A. 2014,111,10550.doi:10.1073/pnas.1402768111

    (6)Li,W.;Zhang,J.;Su,Y.;Wang,J.;Qin,M.;Wang,W.J.Phys. Chem.B 2007,111,13814.doi:10.1021/jp076213t

    (7)Li,W.;Wang,J.;Zhang,J.;Wang,W.Curr.Opin.Struct.Biol. 2015,30,25.doi:10.1016/j.sbi.2014.11.006

    (8)Muller,C.W.;Schlauderer,G.J.;Reinstein,J.;Schulz,G.E. Structure 1996,4,147.doi:10.1016/S0969-2126(96)00018-4

    (9)Kerns,S.J.;Agafonov,R.V.;Cho,Y.J.;Pontiggia,F.;Otten, R.;Pachov,D.V.;Kutter,S.;Phung,L.A.;Murphy,P.N.; Thai,V.;Alber,T.;Hagan,M.F.;Kern,D.Nat.Struct.Mol. Biol.2015,22,124.doi:10.1038/nsmb.2941

    (10)Formoso,E.;Limongelli,V.;Parrinello,M.Sci.Rep.2015,5, 8425.doi:10.1038/srep08425

    (11)Giri Rao,V.V.;Gosavi,S.PLoS Comp.Biol.2014,10, e1003938.

    (12)Wang,Y.;Gan,L.F.;Wang,E.K.;Wang,J.J.Chem.Theory Comput.2013,9,84.doi:10.1021/ct300720s

    (13)Li,W.;Terakawa,T.;Wang,W.;Takada,S.Proc.Natl.Acad. Sci.U.S.A.2012,109,17789.doi:10.1073/pnas.1201807109

    (14)Pirchi,M.;Ziv,G.;Riven,I.;Cohen,S.S.;Zohar,N.;Barak, Y.;Haran,G.Nat.Commun.2011,2,493.doi:10.1038/ ncomms1504

    (15)Li,W.;Wolynes,P.G.;Takada,S.Proc.Natl.Acad.Sci.U.S. A.2011,108,3504.doi:10.1073/pnas.1018983108

    (16)Daily,M.D.;Phillips,G.N.,Jr.;Cui,Q.J.Mol.Biol.2010, 400,618.doi:10.1016/j.jmb.2010.05.015

    (17)Schrank,T.P.;Bolen,D.W.;Hilser,V.J.Proc.Natl.Acad.Sci. U.S.A.2009,106,16984.doi:10.1073/pnas.0906510106

    (18)Beckstein,O.;Denning,E.J.;Perilla,J.R.;Woolf,T.B. J.Mol.Biol.2009,394,160.doi:10.1016/j.jmb.2009.09.009

    (19)Lu,Q.;Wang,J.J.Am.Chem.Soc.2008,130,4772.doi: 10.1021/ja0780481

    (20)Whitford,P.C.;Miyashita,O.;Levy,Y.;Onuchic,J.N.J.Mol. Biol.2007,366,1661.doi:10.1016/j.jmb.2006.11.085

    (21)Henzler-Wildman,K.A.;Lei,M.;Thai,V.;Kerns,S.J.; Karplus,M.;Kern,D.Nature 2007,450,913.doi:10.1038/ nature06407

    (22)Bae,E.;Phillips,G.N.,Jr.Proc.Natl.Acad.Sci.U.S.A.2006, 103,2132.doi:10.1073/pnas.0507527103

    (23)Miyashita,O.;Onuchic,J.N.;Wolynes,P.G.Proc.Natl.Acad. Sci.U.S.A.2003,100,12570.doi:10.1073/pnas.2135471100

    (24)Wolf-Watz,M.;Thai,V.;Henzler-Wildman,K.;Hadjipavlou, G.;Eisenmesser,E.Z.;Kern,D.Nat.Struct.Mol.Biol.2004, 11,945.doi:10.1038/nsmb821

    (25)Ma,W.;Schulten,K.J.Am.Chem.Soc.2015,137,3031.doi: 10.1021/ja512605w

    (26)Liu,F.F.;Dong,X.Y.;Sun,Y.Acta Phys.-Chim.Sin.2010, 26,1643.[劉夫鋒,董曉燕,孫彥.物理化學(xué)學(xué)報,2010,26, 1643.]doi:10.3866/PKU.WHXB20100613

    (27)Lindorff-Larsen,K.;Piana,S.;Dror,R.O.;Shaw,D.E. Science 2011,334,517.doi:10.1126/science.1208351

    (28)Laio,A.;Gervasio,F.L.Rep.Prog.Phys.2008,71,126601.

    (29)Darve,E.;Rodriguez-Gomez,D.;Pohorille,A.J.Chem.Phys 2008,128,144120.doi:10.1063/1.2829861

    (30)Warmflash,A.;Bhimalapuram,P.;Dinner,A.R.J.Chem. Phys.2007,127,154112.doi:10.1063/1.2784118

    (31)Terakawa,T.;Takada,S.Biophys.J.2011,101,1450.doi: 10.1016/j.bpj.2011.08.003

    (32)Li,W.;Yoshii,H.;Hori,N.;Kameda,T.;Takada,S.Methods 2010,52,106.doi:10.1016/j.ymeth.2010.04.014

    (33)Li,W.;Takada,S.J.Chem.Phys.2009,130,214108.doi: 10.1063/1.3146922

    (34)Li,W.;Takada,S.Biophys.J.2010,99,3029.doi:10.1016/j. bpj.2010.08.041

    (35)Bussi,G.;Gervasio,F.L.;Laio,A.;Parrinello,M.J.Am. Chem.Soc.2006,128,13435.doi:10.1021/ja062463w

    (36)Laio,A.;Parrinello,M.Proc.Natl.Acad.Sci.U.S.A.2002, 99,12562.doi:10.1073/pnas.202427399

    (37)Pfaendtner,J.;Branduardi,D.;Parrinello,M.;Pollard,T.D.; Voth,G.A.Proc.Natl.Acad.Sci.U.S.A.2009,106,12723. doi:10.1073/pnas.0902092106

    (38)Gervasio,F.L.;Parrinello,M.;Ceccarelli,M.;Klein,M.L. J.Mol.Biol.2006,361,390.doi:10.1016/j.jmb.2006.06.034

    (39)Muller,C.W.;Schulz,G.E.J.Mol.Biol.1992,224,159.doi: 10.1016/0022-2836(92)90582-5

    (40)Phillips,J.C.;Braun,R.;Wang,W.;Gumbart,J.;Tajkhorshid, E.;Villa,E.;Chipot,C.;Skeel,R.D.;Kale,L.;Schulten,K. J.Comput.Chem.2005,26,1781.

    (41)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98, 10089.doi:10.1063/1.464397

    (42)Huang,J.;MacKerell,A.D.,Jr.J.Comput.Chem.2013,34, 2135.doi:10.1002/jcc.23354

    (43)Vanommeslaeghe,K.;Raman,E.P.;MacKerell,A.D.,Jr. J.Chem.Inf.Model.2012,52,3155.doi:10.1021/ci3003649

    (44)Humphrey,W.;Dalke,A.;Schulten,K.J.Mol.Graphics 1996, 14,33.doi:10.1016/0263-7855(96)00018-5

    Metadynamics Simulations of Mg2+Transfer in the Late Stage of the Adenylate Kinase Catalytic Cycle

    CUI Da-ChaoREN Wei-TongLI Wen-Fei§WANG Wei*,§
    (National Laboratory of Solid State Microstructure,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,P.R.China)

    Adenylate kinase is a kind of important enzymes which can catalyze the reversible reaction Mg2++ATP+AMP?2ADP+Mg2+where the Mg2+coordination around the active site plays a crucial role.It was shown experimentally that one Mg2+ion can coordinate to both ADP molecules right after the chemical step of the catalytic reaction.During the substrate releasing and separation,the Mg2+may transfer to one of the ADP molecules.However,it is unclear which ADP molecule binds with the Mg2+during the substrate releasing.In this work,by using metadynamics method,we conducted molecular simulations on the adenylate kinase complexed with two ADP molecules and one Mg2+,which corresponds to the postcatalysis enzyme-substrate complex.We constructed the free energy landscapes characterizing the Mg2+transfer to the individual ADP molecules.Our results show that the Mg2+has preference to attach with the ADP molecule of the LID domain.We found that only when the LID domain ADP is protonated,andsimultaneously the NMP domain ADP is deprotonated,the Mg2+tends to attach with the NMP domain ADP. We also characterized the ligand exchange and dehydration processes during the Mg2+transfer.Our results provide insights into the molecular process during the late state of the adenylate kinase catalytic cycle.

    Adenylate kinase;Mg2+transfer;Metadynamics;Molecular simulation

    July 28,2015;Revised:November 13,2015;Published on Web:November 20,2015.

    O641

    *Corresponding author.Email:wfli@nju.edu.cn,wangwei@nju.edu.cn.

    §These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China(11334004,81421091).

    國家自然科學(xué)基金(11334004,81421091)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    質(zhì)子化微結(jié)構(gòu)激酶
    蚓激酶對UUO大鼠腎組織NOX4、FAK、Src的影響
    蚓激酶的藥理作用研究進(jìn)展
    金屬微結(jié)構(gòu)電鑄裝置設(shè)計
    5-羥甲基胞嘧啶pKa值的理論研究
    用于視角偏轉(zhuǎn)的光學(xué)膜表面微結(jié)構(gòu)設(shè)計
    New Situation in the Economic and Trade Cooperation and Competition between China and the US
    粘結(jié)型La0.8Sr0.2MnO3/石墨復(fù)合材料的微結(jié)構(gòu)與電輸運(yùn)性質(zhì)
    黏著斑激酶和踝蛋白在黏著斑合成代謝中的作用
    質(zhì)子化胞嘧啶碰撞誘導(dǎo)解離的實(shí)驗和理論研究
    質(zhì)子化與氮雜環(huán)類離子液體的研究及應(yīng)用
    科技資訊(2013年7期)2013-04-29 00:44:03
    亚洲精品国产成人久久av| av免费观看日本| 国产探花在线观看一区二区| 秋霞在线观看毛片| 国产人妻一区二区三区在| 久久久久网色| 韩国av在线不卡| 少妇熟女欧美另类| 啦啦啦啦在线视频资源| 欧美极品一区二区三区四区| 晚上一个人看的免费电影| 亚洲国产成人一精品久久久| 亚洲人成网站在线播| 亚洲图色成人| 男女那种视频在线观看| 日韩视频在线欧美| 久热这里只有精品99| 亚洲图色成人| 国产永久视频网站| 国产精品不卡视频一区二区| a级一级毛片免费在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美一区二区三区黑人 | 午夜老司机福利剧场| 日韩亚洲欧美综合| 精品人妻熟女av久视频| 91精品国产九色| 九九爱精品视频在线观看| 联通29元200g的流量卡| 内射极品少妇av片p| 国产爱豆传媒在线观看| 欧美性感艳星| 久久久久久久大尺度免费视频| 国产精品99久久久久久久久| 日韩欧美精品v在线| 国产精品女同一区二区软件| 久热久热在线精品观看| 久久久久久久久久成人| 亚洲自拍偷在线| 在线观看国产h片| 免费黄色在线免费观看| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 国产高潮美女av| 日韩av在线免费看完整版不卡| 免费少妇av软件| 国产高清国产精品国产三级 | 亚洲自偷自拍三级| 日韩三级伦理在线观看| 校园人妻丝袜中文字幕| 色婷婷久久久亚洲欧美| 2021少妇久久久久久久久久久| 嫩草影院入口| 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 亚洲精品日本国产第一区| 日韩亚洲欧美综合| 插阴视频在线观看视频| 秋霞在线观看毛片| 亚洲天堂国产精品一区在线| 免费看不卡的av| 网址你懂的国产日韩在线| 亚洲精品乱码久久久久久按摩| 中文欧美无线码| 国产真实伦视频高清在线观看| 精品国产乱码久久久久久小说| 亚洲国产精品专区欧美| 搡女人真爽免费视频火全软件| 亚洲av欧美aⅴ国产| 亚洲精品乱码久久久久久按摩| 波野结衣二区三区在线| 一级毛片黄色毛片免费观看视频| 在线观看av片永久免费下载| 亚洲熟女精品中文字幕| 99久久精品国产国产毛片| 国产熟女欧美一区二区| 久久久久久九九精品二区国产| av播播在线观看一区| 美女主播在线视频| 少妇人妻 视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 亚洲av日韩在线播放| 亚洲天堂av无毛| 五月玫瑰六月丁香| 我要看日韩黄色一级片| 卡戴珊不雅视频在线播放| 毛片女人毛片| 青春草国产在线视频| 少妇熟女欧美另类| 丝瓜视频免费看黄片| 人人妻人人看人人澡| 91狼人影院| 精品国产露脸久久av麻豆| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 久久综合国产亚洲精品| 亚洲精品国产av成人精品| a级毛色黄片| 一级爰片在线观看| 亚洲在久久综合| 国产爱豆传媒在线观看| 少妇人妻久久综合中文| 精品一区在线观看国产| 2021少妇久久久久久久久久久| 亚洲精品国产av蜜桃| 伊人久久精品亚洲午夜| 亚洲成人精品中文字幕电影| 2018国产大陆天天弄谢| 丝袜脚勾引网站| 18禁动态无遮挡网站| www.av在线官网国产| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 久久久久国产网址| 99热网站在线观看| 国产人妻一区二区三区在| 97超碰精品成人国产| 国产 一区精品| 国产成人a∨麻豆精品| 国产精品伦人一区二区| 午夜免费观看性视频| 欧美高清成人免费视频www| 国产精品99久久久久久久久| 日本免费在线观看一区| 婷婷色麻豆天堂久久| 亚洲天堂av无毛| 夫妻午夜视频| 免费大片18禁| 一区二区三区免费毛片| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 精品人妻一区二区三区麻豆| 精品视频人人做人人爽| av在线亚洲专区| 亚洲欧美一区二区三区黑人 | 国产 精品1| 国产精品人妻久久久久久| 久久国产乱子免费精品| 禁无遮挡网站| 色5月婷婷丁香| 日韩伦理黄色片| 最近手机中文字幕大全| 日日摸夜夜添夜夜添av毛片| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 六月丁香七月| 亚洲av中文字字幕乱码综合| 99热国产这里只有精品6| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| av网站免费在线观看视频| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区| 国产毛片a区久久久久| 高清日韩中文字幕在线| 三级国产精品片| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 免费看日本二区| 亚洲成人av在线免费| 有码 亚洲区| 免费看日本二区| 插逼视频在线观看| 97在线视频观看| 美女视频免费永久观看网站| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 嘟嘟电影网在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品99久久99久久久不卡 | 国语对白做爰xxxⅹ性视频网站| 国产伦精品一区二区三区四那| 亚洲熟女精品中文字幕| 午夜福利视频1000在线观看| 免费看光身美女| 一级毛片 在线播放| 国产美女午夜福利| 白带黄色成豆腐渣| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 亚洲色图综合在线观看| 久久这里有精品视频免费| 黄片wwwwww| 中文乱码字字幕精品一区二区三区| 欧美人与善性xxx| 少妇人妻久久综合中文| 建设人人有责人人尽责人人享有的 | 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 国产 精品1| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 欧美丝袜亚洲另类| .国产精品久久| 一级毛片电影观看| 观看免费一级毛片| 久久久久精品久久久久真实原创| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 一级毛片电影观看| tube8黄色片| 国产黄色免费在线视频| 一区二区三区四区激情视频| 久久精品久久久久久久性| 精品人妻一区二区三区麻豆| 九草在线视频观看| av播播在线观看一区| 男女国产视频网站| 97热精品久久久久久| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 亚洲av日韩在线播放| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 欧美97在线视频| 亚洲欧美精品自产自拍| 色吧在线观看| 国产精品熟女久久久久浪| 观看免费一级毛片| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 日韩亚洲欧美综合| 亚洲av中文字字幕乱码综合| 三级国产精品欧美在线观看| 深爱激情五月婷婷| videos熟女内射| 在线a可以看的网站| 亚洲自偷自拍三级| 中文乱码字字幕精品一区二区三区| 少妇熟女欧美另类| 国产成人福利小说| 日日摸夜夜添夜夜爱| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| av在线天堂中文字幕| 久久精品久久久久久久性| 国产成人freesex在线| 亚洲欧美日韩无卡精品| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 国产精品国产三级国产av玫瑰| 色婷婷久久久亚洲欧美| 可以在线观看毛片的网站| 日产精品乱码卡一卡2卡三| 日本一二三区视频观看| 欧美最新免费一区二区三区| 一级毛片久久久久久久久女| 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 亚洲国产成人一精品久久久| 国产精品无大码| 国产人妻一区二区三区在| 看免费成人av毛片| 成人黄色视频免费在线看| kizo精华| 成年版毛片免费区| 草草在线视频免费看| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 欧美高清成人免费视频www| av在线蜜桃| 久久久久久国产a免费观看| 国产美女午夜福利| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 亚洲性久久影院| 国产精品久久久久久精品电影| 亚洲最大成人手机在线| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 啦啦啦啦在线视频资源| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 亚洲精品国产av成人精品| 久热这里只有精品99| 又大又黄又爽视频免费| 99久国产av精品国产电影| 免费人成在线观看视频色| 日日啪夜夜撸| 成人特级av手机在线观看| 国产成人免费观看mmmm| 噜噜噜噜噜久久久久久91| 成人二区视频| 麻豆成人av视频| 国产午夜精品久久久久久一区二区三区| 一级毛片久久久久久久久女| 中文字幕免费在线视频6| 特级一级黄色大片| 日韩不卡一区二区三区视频在线| 欧美成人一区二区免费高清观看| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 国产精品一区www在线观看| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡免费网站照片| 成人免费观看视频高清| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱| 亚洲精品国产色婷婷电影| 免费少妇av软件| 我的女老师完整版在线观看| 亚洲国产精品国产精品| 亚洲久久久久久中文字幕| 午夜福利在线在线| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 精品国产露脸久久av麻豆| 久久韩国三级中文字幕| 成人亚洲精品一区在线观看 | 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 黄片wwwwww| 又爽又黄无遮挡网站| 汤姆久久久久久久影院中文字幕| 国产乱来视频区| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 久久99精品国语久久久| 色视频www国产| 91午夜精品亚洲一区二区三区| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 久久午夜福利片| 国产成人精品福利久久| 天天躁日日操中文字幕| 大陆偷拍与自拍| 性插视频无遮挡在线免费观看| 国产探花极品一区二区| av在线播放精品| 天天一区二区日本电影三级| 一区二区三区四区激情视频| 亚洲色图av天堂| 丝袜美腿在线中文| 国产黄片美女视频| 国产免费视频播放在线视频| 亚洲成色77777| 午夜福利视频精品| 老司机影院毛片| 18禁在线无遮挡免费观看视频| 99久久九九国产精品国产免费| 亚洲色图综合在线观看| 成人免费观看视频高清| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 色网站视频免费| 美女内射精品一级片tv| 国产高清不卡午夜福利| 免费观看的影片在线观看| 国产老妇女一区| 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆| 能在线免费看毛片的网站| 十八禁网站网址无遮挡 | 直男gayav资源| 91狼人影院| 色吧在线观看| 中文字幕亚洲精品专区| 日韩电影二区| 亚洲av.av天堂| 少妇裸体淫交视频免费看高清| 亚洲av中文字字幕乱码综合| 国产精品秋霞免费鲁丝片| av女优亚洲男人天堂| av天堂中文字幕网| 国产高清国产精品国产三级 | 99热这里只有是精品在线观看| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 在线观看人妻少妇| 中文天堂在线官网| 男女边摸边吃奶| 男女国产视频网站| 亚洲国产精品国产精品| 91aial.com中文字幕在线观看| 久久99热这里只有精品18| 国产亚洲一区二区精品| 天堂中文最新版在线下载 | 毛片一级片免费看久久久久| 另类亚洲欧美激情| 日本wwww免费看| 男人和女人高潮做爰伦理| 免费大片黄手机在线观看| 国产精品三级大全| 午夜激情福利司机影院| 精品少妇黑人巨大在线播放| 久久影院123| 看黄色毛片网站| 草草在线视频免费看| 亚洲久久久久久中文字幕| 亚洲欧美精品专区久久| 在线 av 中文字幕| 在线精品无人区一区二区三 | 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 少妇高潮的动态图| 丰满乱子伦码专区| 中文在线观看免费www的网站| 亚洲欧美精品自产自拍| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| 欧美性猛交╳xxx乱大交人| 午夜视频国产福利| 国产成人精品婷婷| 日本一本二区三区精品| av在线蜜桃| 精品一区二区三区视频在线| 国产老妇女一区| 一级片'在线观看视频| 欧美高清性xxxxhd video| 日本色播在线视频| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 中国三级夫妇交换| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 热re99久久精品国产66热6| 免费看a级黄色片| 韩国av在线不卡| 国产极品天堂在线| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| 国产伦在线观看视频一区| a级毛片免费高清观看在线播放| 亚洲人成网站高清观看| 少妇人妻久久综合中文| 国产在线一区二区三区精| 草草在线视频免费看| 国产91av在线免费观看| 视频区图区小说| 欧美丝袜亚洲另类| 蜜臀久久99精品久久宅男| videossex国产| 国产精品99久久久久久久久| 国产精品三级大全| 国产探花在线观看一区二区| 国产亚洲午夜精品一区二区久久 | 欧美精品国产亚洲| 成年女人在线观看亚洲视频 | 免费人成在线观看视频色| 亚洲精品色激情综合| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 国产精品国产三级国产专区5o| 99视频精品全部免费 在线| 欧美zozozo另类| 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 精品一区二区三区视频在线| 国产免费视频播放在线视频| 日韩成人伦理影院| 草草在线视频免费看| 中文字幕亚洲精品专区| 亚洲精品自拍成人| 黄色视频在线播放观看不卡| 中文天堂在线官网| 97精品久久久久久久久久精品| 国产高潮美女av| 大香蕉97超碰在线| 在线a可以看的网站| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 男的添女的下面高潮视频| 国产精品嫩草影院av在线观看| 精品国产露脸久久av麻豆| 一区二区三区免费毛片| 伦精品一区二区三区| 国产精品女同一区二区软件| 久久久欧美国产精品| 综合色av麻豆| 久热这里只有精品99| 久久久精品94久久精品| 日韩欧美一区视频在线观看 | 久久精品国产亚洲av涩爱| 亚洲精品色激情综合| 青春草视频在线免费观看| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 国产爽快片一区二区三区| 97人妻精品一区二区三区麻豆| 色视频www国产| 国产精品福利在线免费观看| 成年免费大片在线观看| freevideosex欧美| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 六月丁香七月| 看十八女毛片水多多多| 在线观看免费高清a一片| 白带黄色成豆腐渣| 久久99热这里只频精品6学生| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 大又大粗又爽又黄少妇毛片口| 一边亲一边摸免费视频| 观看免费一级毛片| 99久久中文字幕三级久久日本| 尤物成人国产欧美一区二区三区| 我的女老师完整版在线观看| 国产免费又黄又爽又色| 日韩三级伦理在线观看| 精品视频人人做人人爽| 亚洲欧洲日产国产| 人妻 亚洲 视频| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 国产欧美另类精品又又久久亚洲欧美| 高清在线视频一区二区三区| 国产精品一及| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久精品电影| 又黄又爽又刺激的免费视频.| 18禁裸乳无遮挡动漫免费视频 | 综合色av麻豆| www.av在线官网国产| 日韩免费高清中文字幕av| 日本-黄色视频高清免费观看| 国产精品一区www在线观看| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| 欧美精品人与动牲交sv欧美| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 国产亚洲午夜精品一区二区久久 | 亚洲自拍偷在线| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 97在线人人人人妻| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 日韩三级伦理在线观看| 男人添女人高潮全过程视频| 亚洲最大成人av| 人人妻人人爽人人添夜夜欢视频 | 成人欧美大片| 精品一区在线观看国产| 中文资源天堂在线| 偷拍熟女少妇极品色| 十八禁网站网址无遮挡 | 国内精品美女久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲精品自拍成人| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 老女人水多毛片| 久久久久久久精品精品| 男的添女的下面高潮视频| 99久久人妻综合| 中国国产av一级| 免费观看av网站的网址| 亚洲av不卡在线观看| 男女边吃奶边做爰视频| 色网站视频免费| 又爽又黄无遮挡网站| 九色成人免费人妻av| 免费av不卡在线播放| 麻豆精品久久久久久蜜桃| 日韩大片免费观看网站| 日本熟妇午夜| 丝袜脚勾引网站| 九九久久精品国产亚洲av麻豆| 欧美高清成人免费视频www| 日本一二三区视频观看| 3wmmmm亚洲av在线观看| 国产精品国产av在线观看| 国模一区二区三区四区视频| 亚洲欧美日韩无卡精品| 秋霞伦理黄片| 王馨瑶露胸无遮挡在线观看| 91aial.com中文字幕在线观看| 精品视频人人做人人爽| av国产久精品久网站免费入址| 一区二区三区精品91| 午夜精品一区二区三区免费看| 一区二区三区四区激情视频| 亚洲精品视频女| 亚洲av成人精品一区久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品自拍成人| 久久久久久久亚洲中文字幕| 色播亚洲综合网| 只有这里有精品99| 午夜精品一区二区三区免费看| 天天躁日日操中文字幕| 91aial.com中文字幕在线观看| 成人欧美大片| 最近手机中文字幕大全| 99热国产这里只有精品6| 18+在线观看网站| 国产亚洲av嫩草精品影院| 少妇丰满av| 日日摸夜夜添夜夜添av毛片| 在线 av 中文字幕|