• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    腺苷酸激酶催化循環(huán)后期Mg2+轉(zhuǎn)移的分子動力學(xué)模擬

    2016-11-08 06:00:21崔大超任衛(wèi)同李文飛南京大學(xué)物理學(xué)院南京微結(jié)構(gòu)國家實(shí)驗室人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心南京210093
    物理化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:質(zhì)子化微結(jié)構(gòu)激酶

    崔大超 任衛(wèi)同 李文飛 王 煒(南京大學(xué)物理學(xué)院,南京微結(jié)構(gòu)國家實(shí)驗室,人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京210093)

    腺苷酸激酶催化循環(huán)后期Mg2+轉(zhuǎn)移的分子動力學(xué)模擬

    崔大超任衛(wèi)同李文飛王煒*,
    (南京大學(xué)物理學(xué)院,南京微結(jié)構(gòu)國家實(shí)驗室,人工微結(jié)構(gòu)科學(xué)與技術(shù)協(xié)同創(chuàng)新中心,南京210093)

    腺苷酸激酶是一個包含三個結(jié)構(gòu)域(LID結(jié)構(gòu)域、NMP結(jié)構(gòu)域和CORE結(jié)構(gòu)域)的蛋白質(zhì)分子,其主要作用是催化化學(xué)反應(yīng)Mg2++ATP+AMP?2ADP+Mg2+,進(jìn)而將細(xì)胞內(nèi)ATP分子的濃度維持在合適的范圍內(nèi)。在腺苷酸激酶催化上述化學(xué)反應(yīng)的過程中,需要有Mg2+的參與。最近的實(shí)驗發(fā)現(xiàn)Mg2+不僅參與上述反應(yīng)的化學(xué)步驟,而且對化學(xué)反應(yīng)發(fā)生后底物的釋放過程至關(guān)重要。已有晶體結(jié)構(gòu)數(shù)據(jù)顯示,在催化循環(huán)過程的化學(xué)反應(yīng)步驟完成后,一個Mg2+可同時和分別位于LID結(jié)構(gòu)域及NMP結(jié)構(gòu)域的兩個ADP分子配位。然而,在底物的釋放與分離過程中,Mg2+可能只與其中一個ADP分子結(jié)合。由于Mg2+與ADP分子的結(jié)合情況會在很大程度上影響作為催化循環(huán)限速步驟的底物釋放過程,因此人們有必要研究清楚在底物釋放前Mg2+與催化產(chǎn)物ADP分子的配位情況,即Mg2+更傾向于與LID結(jié)構(gòu)域的ADP分子結(jié)合還是與NMP結(jié)構(gòu)域的ADP分子結(jié)合。本文中,我們對催化反應(yīng)后底物釋放前的酶-底物復(fù)合物(包含酶、兩個ADP分子以及Mg2+)做了分子動力學(xué)模擬研究。我們基于metadynamics方法得到了Mg2+在兩個ADP分子間轉(zhuǎn)移的自由能面,發(fā)現(xiàn)在底物分離與釋放過程中,Mg2+更傾向于與LID結(jié)構(gòu)域的ADP分子結(jié)合。只有當(dāng)LID結(jié)構(gòu)域的ADP分子被質(zhì)子化,同時NMP結(jié)構(gòu)域的ADP分子處于去質(zhì)子化狀態(tài)時,Mg2+才會傾向于與NMP結(jié)構(gòu)域的ADP分子結(jié)合。另外,我們也刻畫了Mg2+轉(zhuǎn)移過程中配體交換與脫水過程。本工作的研究結(jié)果有助于理解腺苷酸激酶催化循環(huán)后期的分子過程。

    腺苷酸激酶;鎂離子轉(zhuǎn)移;Metadynamics;分子模擬

    doi:10.3866/PKU.WHXB201511201

    1 Introduction

    It is well known that when biological systems perform their functions,various organic biomolecules,inorganic cofactors,such as Mg2+,Ca2+,and Zn2+,heme,and phosphate are involved and play vital roles1-4.The most typical examples are such that metal ions can mediate a number of biological processes,including catalysis, electron transport,and structure modulations and so on.To fully understand the related functioning mechanisms of biomolecules, it is important to study the molecular processes involved by such metal ions5-7.Adenylate kinase is a kind of important enzymes which can catalyze the reversible reaction Mg2++ATP+AMP?2ADP+Mg2+8.This enzyme contains three domains,namely the LID domain,NMP domain,and CORE domain(Fig.1(a)),and has been frequently used as a model system to study the protein conformational motions,protein folding,and the coupling between chemical reaction and protein conformational dynamics, both experimentally and computationally8-23.It is well known that the Mg2+is involved in the chemical step of the catalytic cycle. Recent experimental studies demonstrated that the Mg2+also plays a role of pivot during the phosphate transfer from ATP to AMP9. Particularly,the experimental data showed that the presence of Mg2+in the ADP binding site is crucial for the substrate releasing and the protein conformational opening9,which is the rate limit step of the catalytic cycle of the adenylate kinase24.Therefore, revealing the final Mg2+binding state of the substrate(i.e.,the two ADP molecules)before the substrate releasing is important for understanding the key factors which control the catalytic efficiency of the adenylate kinase.

    Fig.1 (a)Crystal structure of theAKE in the substrate bound conformation(pdb code:1AKE);(b)the initial conformation of the twoADPmolecules and the Mg2+

    It was shown experimentally that the Mg2+coordinates to both ADP molecules right after the chemical step of the catalytic reaction(Fig.1(b))9.However,it is unclear whichADP molecule can bind with the Mg2+during the substrate releasing.As discussed in recent experimental work9,the Mg2+binding to the active site can promote the substrate releasing by modifying the local electrostatic interactions.Since the Mg2+binding to different ADP molecules can lead to very different perturbations to the local electrostatic environment,the information on the detailed Mg2+binding modes after the chemical step of the catalytic cycle is critical for understanding the factors controlling the substrate releasing and protein conformational opening.Due to the transient feature of the bound state of the post-catalytic complex,it is difficult to experimentally detect such information.Molecular dynamics simulations have been shown successful in revealing the molecular details of various complicated biological processes25-27.However, the conventional atomistic molecular dynamics is limited to simulatingthemolecularprocesseswithtimescaleslessthanmicrosecond,whichisusuallymuchshorterthantypicaltimescalesof functionalmotionsoflargeproteins.Forsuchcases,manybiased moleculardynamicsmethodsandenhancedsamplingmethodsare useful28-34.Metadynamicsisoneofthebiasedmolecular dynamics simulation methods,and has been extensively used in the studies of protein folding,functional motions,and transportation28,35-38.

    In this work,by using metadynamics simulations,we simulated the Mg2+transfer between the two ADP molecules.From the simulation data,we constructed the free energy landscapes which can be used to characterize the Mg2+transfer to the individualADP molecules.Our results showed that the Mg2+prefers to coordinate with the ADP molecule of the LID domain.We found that only when the ADP of the LID domain was protonated,and simultaneously the ADP of the NMP domain was deprotonated,the Mg2+tended to coordinate with the ADP of the NMP domain.We also characterized the ligand exchange and dehydration processes of the Mg2+transfer.

    2 Materials and methods

    Our simulations started from the crystal structure of the adenylate kinase in E-coli(AKE)at the closed state with PDB code 1AKE39.In this structure,bis(adenosine)-5'-pentaphosphate(AP5) molecule was used to mimic the substrate.The initial structures of the two ADP molecules,which are the catalysis products,wereprepared by replacing the central phosphate group with Mg2+.The ADP molecules attached to the LID domain and NMP domain were denoted asADP1 andADP2,respectively.

    In this work,the metadynamics simulations were used to accelerate the conformational sampling and to construct the free energy landscapes.In the metadynamics simulations,repulsive Gaussian potential was periodically added to the conformational space previously visited during a short time interval28,38.To characterize the conformational space,some collective variable(s) which are relevant to the interesting molecular processes need to be predefined.The deposited Gaussian potential tends to force the molecule escape from the energy basins,and therefore speeds up the sampling along the biologically relevant collective variable(s). Once all the basins are filled up by the Gaussian potential,the conformational motions of the proteins can cover the whole range of the relevant collective variable(s),and the accumulation of the filled Gaussian potential can be used to construct the free energy landscape.Previously,the metadynamics has been widely used in simulating the rare events of ion transportation,protein folding, and other biologically important processes28,35-38.

    In order to monitor the Mg2+transfer between the two ADP molecules,we used the R1and R2,which correspond to the distances between the Mg2+and the Pβatoms of theADP1 andADP2, respectively,as the collective variables of the metadynamics simulations.The amplitude and width of the deposited Gaussian packages were set as 0.4187 kJ?mol-1and 0.01 nm,respectively. The Gaussian packages were added with an interval of 2 ps.To get better sampling convergence,we introduced harmonic restraints to the lower and upper boundaries of the R1and R2.The lower and upper boundaries were set as 0.3 and 0.6 nm,respectively.The lower(upper)boundary corresponds to the distance at which the oxygen atom coordinates to the Mg2+(the oxygen atom is well separated from the Mg2+).Larger values of upper boundary are better,but can significantly extend the available conformational space,therefore increase the computational time.Due to the lower and upper boundaries,the obtained free energy landscapes can only cover the conformational spaces with R1and R2range from 0.3 to 0.6 nm,respectively,although smaller or larger values of R1and R2can be sampled due to the weak harmonic restraints.Here, the lower and upper boundaries were 0.3 nm.

    The simulations were performed with NAMD2.9 software package40.The particle mesh Ewald algorithm was used with periodic boundary condition41.The direct term of the electrostatic interactions and the non-bonded van der Waals interactions were truncated at 1 nm.Firstly,the system was minimized by steepest descent method and conjugate gradient methods.Then the systems were gradually heated to 300 K with NVT ensemble and further relaxed at 300 K and 1.013×105Pa with NPT ensemble for 1.0 ns.The product metadynamics simulations were conducted for 100 ns.Due to the added biasing potential,with such short-length metadynamics simulations,we can observe molecular events of longer than microsecond time scale.

    Since the ADP molecules can be protonated,it will be interesting to investigate how the protonation states of the two ADP molecules can affect the final Mg2+binding state.In this work, each ADP molecule can be either protonated or deprotonated. Since there are two ADP molecules in the simulation system,we totally conducted four simulations,including:(1)both ADP molecules were deprotonated(denoted by“DD”),(2)only ADP molecule of the LID domain was protonated(denoted by“D(H) D”),(3)only ADP molecule of the NMP domain was protonated (denoted by“DD(H)”),and(4)both ADP molecules were protonated(denoted by“D(H)D(H)”).The systems were solvated in a cubic TIP3P water box with the box size of~343 nm3.Then,Na+and Cl-were added to neutralize the simulation box and to mimic the salt concentration of 0.1 mol?L-1.The CHARMM36 force field was used for the protein and theADP molecules42.The partial charges of the protonated ADP molecules were obtained from a webserver Paramchem43.The protein structure was visualized by VMD software44.

    3 Results and discussion

    Fig.2(a)shows the time series of the two collective variables, R1and R2(i.e.,the distances between the Mg2+and the Pβatoms of the ADP1 and ADP2,respectively).One can see that in the later stage of the metadynamics sampling,both collective variables can sample along wide range of the conformational space.The R1and R2hop between small values and large values,suggesting high sampling quality of the metadynamics simulations.With such metadynamics simulation data,we can construct the free energy landscape according to the deposited biasing potentials.The constructed free energy landscapes projected on the two collective variables are shown in Fig.2(b)at different stages of the metadynamics simulations for the conditions with two ADP molecules deprotonated.From the free energy landscape,we can see four major basins at most,which correspond to four Mg2+binding states,namely,Mg2+simultaneously binds to both ADP molecules (left-bottom),Mg2+binds toADP1 molecule(left-top),Mg2+binds toADP2 molecules(right-bottom),and Mg2+does not bind to any ADP molecules(right-top).We can see that the constructed free energy landscape does not change significantly after 60 ns except that a new conformational state at the right-top corner of the free energy landscape can appear with the simulation time.In this work,we mainly discuss the relative difference of the free energy values between the conformational states locating at the left-top corner and right-bottom corner of the free energy landscape,which gets converged after the simulation time of 60 ns.The representative snapshots of the major conformational states are also shown in Fig.2(c).Compared to the ADP2 bound state,the state with Mg2+binding to the ADP1 molecule has lower free energy,suggesting that after the catalysis reaction,the Mg2+prefers to bind with the ADP1 molecule before the substrate releasing when both ADP molecules are deprotonated.Such results are important because previous experimental data suggested that the Mg2+ions are involved in the substrate releasing and AKE domain opening by disrupting the local water environment and electrostatic in-teractions.Our results show that for the deprotonated ADP molecules,the Mg2+prefers to bind with theADP1 molecule,therefore will have more pronounced effect on the releasing of the ADP1 molecule.

    Fig.2 (a)Time series of the distances between the Mg2+and the Pβatoms of theADP1 andADP2,i.e.,the collective variables,R1and R2, respectively;(b)free energy landscapes projected on the R1and R2at different stages of the metadynamics simulations (the unit of the free energy is kJ?mol-1);(c)represent snapshots showing the binding modes between the Mg2+and the twoADPmolecules in the three major states

    In Fig.2(a),we can observe a state with the values of R1and/or R2around 0.25 nm,which is smaller than the lower boundary ofthe metadynamics simulations.As discussed in the previous section,sampling beyond the boundary is arising from the weak restraints of the boundaries in the metadynamics simulations.Due to the restraint in the metadynamics simulations,although the R1and R2can take the values smaller than the lower boundary,the biasing potentials were added to the conformational space within the boundaries.Consequently,the basins with R1and/or R2values of 0.3 nm in the free energy landscapes in Fig.2(b)actually also contain the states with the values of R1and/or R2lower than the lower boundary.However,such treatment does not affect our discussion since both the states with R1and/or R2values of 0.3 nm and the states with R1and/or R2values lower than the lower boundary are considered as Mg2+bound states in this work.

    Next,we investigate how the protonation state affects the Mg2+transfer.We repeated the above metadynamics simulations for another three protonation states,namely,D(H)D,DD(H),and D(H)D(H).DD is both ADP molecules deprotonated,D(H)D is onlyADP1 protonated,DD(H)is onlyADP2 protonated,D(H)D (H)is both ADP1 and ADP2 protonated.The constructed free energy landscapes,together with the one without protonation are shown in Fig.3.For the protonation states DD(H)and D(H)D(H), the results are very similar to that of without protonation(Fig.2 (b)),namely,the Mg2+prefers to bind with the ADP1 after the catalysis.Only for the protonation state D(H)D,in which the ADP1 is protonated,and simultaneously,theADP2 is deprotonated,the Mg2+prefers to bind with the ADP2.Possible reason for such protonation effects on the Mg2+bound state is that the protonation introduces a unit of positive charge,which tends to have repulsive interactions between theADP1 and the Mg2+.As a result, the Mg2+has more probability to bind with theADP2 thanADP1.

    Fig.3 Free energy landscapes projected on the R1and R2for different protonation states

    The Mg2+tends to coordinate with water molecules in solvent. In the crystal structure of AKE,the Mg2+can coordinate with protein residues,ADP molecules,and water molecules.From the catalytic transition state structure to the post-catalytic structure right before the substrate releasing,the coordination environment of Mg2+was modified.Particularly,the water molecules may exchange with theADP molecules.Fig.4(a)shows a representative trajectory,in which a Pβatom leaves the coordination shell of the Mg2+.At the same time,one water molecule comes into the coordination shell.Such result suggests the ligand exchange process during the Mg2+transfer.Since the breaking up of coordination bond needs to overcome a high energy barrier,the simultaneous coordination of a water molecule,namely ligand exchange,may help to reduce the energy barrier,therefore speed up the Mg2+transfer.Such hydration and/or dehydration of metal ions during the folding of other metalloprotein have also been observed in molecular dynamics simulations,and was shown to play crucial roles in speeding up the protein conformational dynamics2.

    Recent experimental data suggested that the Mg2+binding to the ADP molecules may affect the local water structure and dynamics, therefore contribute to the substrate releasing9.In this work,we also calculated the averaged number of water molecules coordinated to the Mg2+at different conformational states characterized by R1and R2.If we assume that the number of water molecules coordinated to the Mg2+is determined by the values of R1and R2, namely,the R1and R2are good reaction coordinates to define the local structure of Mg2+binding site,we can calculate the averaged number of water molecules bound to the Mg2+directly from the metadynamics simulations.Fig.4(b)shows the averaged number of water molecules coordinated to the Mg2+at different conformational states defined by the R1and R2.One can see that for all the four protonation states,different Mg2+bound states have different hydration extents.For the state with two ADP molecules bound to the Mg2+,the number of coordinated water molecules is the lowest,which is reasonable because the maximum of the Mg2+coordination number is fixed.Consequently,coordination of twoADP molecules will reduce the number of coordinated water molecules.With the breaking up of one of the ADP-Mg2+coordination bonds,around one or two water molecules may enter the coordination shell.When both ADP-Mg2+coordination bonds are broken,up to five water molecules can enter the coordination shell.These results suggested that the change of the Mg2+bound state can change the hydration state of the active site,therefore may contribute to the modulation of the substrate releasing steps.

    Fig.4 (a)Representative trajectory for the distances between Mg2+and Pβatom ofADP1 and between Mg2+and O atom of water molecule as a function of time;(b)averaged number of water molecules coordinated with Mg2+at different conformational states represented by collective variables R1and R2for the four protonation states

    In Fig.4(a),the representative snapshots at two time points are also shown.color on web version.

    4 Conclusions

    Insummary,byusingmetadynamicssimulations,westudiedthe Mg2+transfer around the substrate binding site of the adenylate kinaseinthelatestageofthecatalyticcycle.Ourresultsshowthat theMg2+tendstobindwiththeADP1afterthechemicalstepofthe catalysisinmostoftheprotonationstates.Onlyfortheprotonation statewithADP1protonated,andsimultaneouslyADP2deprotonated,theMg2+haspreferencetobindwiththeADP2moleculesdue to the electrostatic repulsion introduced by the protonation. Meanwhile,wedemonstratedtheligandexchangebetweenwater moleculesandPβatomofADPduringtheMg2+transfer.Inaddition, theresultsshowthattheMg2+transferchangesthehydrationstateof theMg2+,whichmayinturnaffectthewaterstructureanddynamics around the substrate binding pocket of theAKE.Our simulation resultsareimportantforunderstandingthefunctionalmechanism ofkinaseinvolvingMg2+ions.Firstly,werevealthepossibleeffects ofADPprotonationontheMg2+transferduringthelatestageofthe AKEcatalyticcycle.Secondly,weshowthedetailedMg2+binding modes after the chemical step of the catalytic cycle,which is importanttounderstandtheelectrostaticroleofMg2+forthesubstrate releasing.Thirdly,weprovidemoredetailedstructuralanddynamics information of the active site of theAKE,which is important for understandingitsfunctioningmechanism.ThemolecularmechanismsofsubstratereleasingconsideringdifferentMg2+boundstates deservefurtherworks.

    References

    (1)Palm-Espling,M.E.;Niemiec,M.S.;Wittung-Stafshede,P. Biochim.Biophys.Acta 2012,1823,1594.doi:10.1016/j. bbamcr.2012.01.013

    (2)Li,W.;Zhang,J.;Wang,J.;Wang,W.J.Am.Chem.Soc.2008, 130,892.doi:10.1021/ja075302g

    (3)Alberts,B.;Johnson,A.;Lewis,J.;Raff,M.;Roberts,K.; Walter,P.Molecular Biology of the Cell,1st ed.;Garland Science,Taylor&Francis Group:New York,2007.

    (4)Wilson,C.J.;Apiyo,D.;Wittung-Stafshede,P.Q.Rev. Biophys.2004,37,285.

    (5)Li,W.;Wang,W.;Takada,S.Proc.Natl.Acad.Sci.U.S.A. 2014,111,10550.doi:10.1073/pnas.1402768111

    (6)Li,W.;Zhang,J.;Su,Y.;Wang,J.;Qin,M.;Wang,W.J.Phys. Chem.B 2007,111,13814.doi:10.1021/jp076213t

    (7)Li,W.;Wang,J.;Zhang,J.;Wang,W.Curr.Opin.Struct.Biol. 2015,30,25.doi:10.1016/j.sbi.2014.11.006

    (8)Muller,C.W.;Schlauderer,G.J.;Reinstein,J.;Schulz,G.E. Structure 1996,4,147.doi:10.1016/S0969-2126(96)00018-4

    (9)Kerns,S.J.;Agafonov,R.V.;Cho,Y.J.;Pontiggia,F.;Otten, R.;Pachov,D.V.;Kutter,S.;Phung,L.A.;Murphy,P.N.; Thai,V.;Alber,T.;Hagan,M.F.;Kern,D.Nat.Struct.Mol. Biol.2015,22,124.doi:10.1038/nsmb.2941

    (10)Formoso,E.;Limongelli,V.;Parrinello,M.Sci.Rep.2015,5, 8425.doi:10.1038/srep08425

    (11)Giri Rao,V.V.;Gosavi,S.PLoS Comp.Biol.2014,10, e1003938.

    (12)Wang,Y.;Gan,L.F.;Wang,E.K.;Wang,J.J.Chem.Theory Comput.2013,9,84.doi:10.1021/ct300720s

    (13)Li,W.;Terakawa,T.;Wang,W.;Takada,S.Proc.Natl.Acad. Sci.U.S.A.2012,109,17789.doi:10.1073/pnas.1201807109

    (14)Pirchi,M.;Ziv,G.;Riven,I.;Cohen,S.S.;Zohar,N.;Barak, Y.;Haran,G.Nat.Commun.2011,2,493.doi:10.1038/ ncomms1504

    (15)Li,W.;Wolynes,P.G.;Takada,S.Proc.Natl.Acad.Sci.U.S. A.2011,108,3504.doi:10.1073/pnas.1018983108

    (16)Daily,M.D.;Phillips,G.N.,Jr.;Cui,Q.J.Mol.Biol.2010, 400,618.doi:10.1016/j.jmb.2010.05.015

    (17)Schrank,T.P.;Bolen,D.W.;Hilser,V.J.Proc.Natl.Acad.Sci. U.S.A.2009,106,16984.doi:10.1073/pnas.0906510106

    (18)Beckstein,O.;Denning,E.J.;Perilla,J.R.;Woolf,T.B. J.Mol.Biol.2009,394,160.doi:10.1016/j.jmb.2009.09.009

    (19)Lu,Q.;Wang,J.J.Am.Chem.Soc.2008,130,4772.doi: 10.1021/ja0780481

    (20)Whitford,P.C.;Miyashita,O.;Levy,Y.;Onuchic,J.N.J.Mol. Biol.2007,366,1661.doi:10.1016/j.jmb.2006.11.085

    (21)Henzler-Wildman,K.A.;Lei,M.;Thai,V.;Kerns,S.J.; Karplus,M.;Kern,D.Nature 2007,450,913.doi:10.1038/ nature06407

    (22)Bae,E.;Phillips,G.N.,Jr.Proc.Natl.Acad.Sci.U.S.A.2006, 103,2132.doi:10.1073/pnas.0507527103

    (23)Miyashita,O.;Onuchic,J.N.;Wolynes,P.G.Proc.Natl.Acad. Sci.U.S.A.2003,100,12570.doi:10.1073/pnas.2135471100

    (24)Wolf-Watz,M.;Thai,V.;Henzler-Wildman,K.;Hadjipavlou, G.;Eisenmesser,E.Z.;Kern,D.Nat.Struct.Mol.Biol.2004, 11,945.doi:10.1038/nsmb821

    (25)Ma,W.;Schulten,K.J.Am.Chem.Soc.2015,137,3031.doi: 10.1021/ja512605w

    (26)Liu,F.F.;Dong,X.Y.;Sun,Y.Acta Phys.-Chim.Sin.2010, 26,1643.[劉夫鋒,董曉燕,孫彥.物理化學(xué)學(xué)報,2010,26, 1643.]doi:10.3866/PKU.WHXB20100613

    (27)Lindorff-Larsen,K.;Piana,S.;Dror,R.O.;Shaw,D.E. Science 2011,334,517.doi:10.1126/science.1208351

    (28)Laio,A.;Gervasio,F.L.Rep.Prog.Phys.2008,71,126601.

    (29)Darve,E.;Rodriguez-Gomez,D.;Pohorille,A.J.Chem.Phys 2008,128,144120.doi:10.1063/1.2829861

    (30)Warmflash,A.;Bhimalapuram,P.;Dinner,A.R.J.Chem. Phys.2007,127,154112.doi:10.1063/1.2784118

    (31)Terakawa,T.;Takada,S.Biophys.J.2011,101,1450.doi: 10.1016/j.bpj.2011.08.003

    (32)Li,W.;Yoshii,H.;Hori,N.;Kameda,T.;Takada,S.Methods 2010,52,106.doi:10.1016/j.ymeth.2010.04.014

    (33)Li,W.;Takada,S.J.Chem.Phys.2009,130,214108.doi: 10.1063/1.3146922

    (34)Li,W.;Takada,S.Biophys.J.2010,99,3029.doi:10.1016/j. bpj.2010.08.041

    (35)Bussi,G.;Gervasio,F.L.;Laio,A.;Parrinello,M.J.Am. Chem.Soc.2006,128,13435.doi:10.1021/ja062463w

    (36)Laio,A.;Parrinello,M.Proc.Natl.Acad.Sci.U.S.A.2002, 99,12562.doi:10.1073/pnas.202427399

    (37)Pfaendtner,J.;Branduardi,D.;Parrinello,M.;Pollard,T.D.; Voth,G.A.Proc.Natl.Acad.Sci.U.S.A.2009,106,12723. doi:10.1073/pnas.0902092106

    (38)Gervasio,F.L.;Parrinello,M.;Ceccarelli,M.;Klein,M.L. J.Mol.Biol.2006,361,390.doi:10.1016/j.jmb.2006.06.034

    (39)Muller,C.W.;Schulz,G.E.J.Mol.Biol.1992,224,159.doi: 10.1016/0022-2836(92)90582-5

    (40)Phillips,J.C.;Braun,R.;Wang,W.;Gumbart,J.;Tajkhorshid, E.;Villa,E.;Chipot,C.;Skeel,R.D.;Kale,L.;Schulten,K. J.Comput.Chem.2005,26,1781.

    (41)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98, 10089.doi:10.1063/1.464397

    (42)Huang,J.;MacKerell,A.D.,Jr.J.Comput.Chem.2013,34, 2135.doi:10.1002/jcc.23354

    (43)Vanommeslaeghe,K.;Raman,E.P.;MacKerell,A.D.,Jr. J.Chem.Inf.Model.2012,52,3155.doi:10.1021/ci3003649

    (44)Humphrey,W.;Dalke,A.;Schulten,K.J.Mol.Graphics 1996, 14,33.doi:10.1016/0263-7855(96)00018-5

    Metadynamics Simulations of Mg2+Transfer in the Late Stage of the Adenylate Kinase Catalytic Cycle

    CUI Da-ChaoREN Wei-TongLI Wen-Fei§WANG Wei*,§
    (National Laboratory of Solid State Microstructure,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,P.R.China)

    Adenylate kinase is a kind of important enzymes which can catalyze the reversible reaction Mg2++ATP+AMP?2ADP+Mg2+where the Mg2+coordination around the active site plays a crucial role.It was shown experimentally that one Mg2+ion can coordinate to both ADP molecules right after the chemical step of the catalytic reaction.During the substrate releasing and separation,the Mg2+may transfer to one of the ADP molecules.However,it is unclear which ADP molecule binds with the Mg2+during the substrate releasing.In this work,by using metadynamics method,we conducted molecular simulations on the adenylate kinase complexed with two ADP molecules and one Mg2+,which corresponds to the postcatalysis enzyme-substrate complex.We constructed the free energy landscapes characterizing the Mg2+transfer to the individual ADP molecules.Our results show that the Mg2+has preference to attach with the ADP molecule of the LID domain.We found that only when the LID domain ADP is protonated,andsimultaneously the NMP domain ADP is deprotonated,the Mg2+tends to attach with the NMP domain ADP. We also characterized the ligand exchange and dehydration processes during the Mg2+transfer.Our results provide insights into the molecular process during the late state of the adenylate kinase catalytic cycle.

    Adenylate kinase;Mg2+transfer;Metadynamics;Molecular simulation

    July 28,2015;Revised:November 13,2015;Published on Web:November 20,2015.

    O641

    *Corresponding author.Email:wfli@nju.edu.cn,wangwei@nju.edu.cn.

    §These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China(11334004,81421091).

    國家自然科學(xué)基金(11334004,81421091)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    質(zhì)子化微結(jié)構(gòu)激酶
    蚓激酶對UUO大鼠腎組織NOX4、FAK、Src的影響
    蚓激酶的藥理作用研究進(jìn)展
    金屬微結(jié)構(gòu)電鑄裝置設(shè)計
    5-羥甲基胞嘧啶pKa值的理論研究
    用于視角偏轉(zhuǎn)的光學(xué)膜表面微結(jié)構(gòu)設(shè)計
    New Situation in the Economic and Trade Cooperation and Competition between China and the US
    粘結(jié)型La0.8Sr0.2MnO3/石墨復(fù)合材料的微結(jié)構(gòu)與電輸運(yùn)性質(zhì)
    黏著斑激酶和踝蛋白在黏著斑合成代謝中的作用
    質(zhì)子化胞嘧啶碰撞誘導(dǎo)解離的實(shí)驗和理論研究
    質(zhì)子化與氮雜環(huán)類離子液體的研究及應(yīng)用
    科技資訊(2013年7期)2013-04-29 00:44:03
    日韩制服丝袜自拍偷拍| 亚洲精品美女久久av网站| 伦精品一区二区三区| 久久人妻熟女aⅴ| 精品国产一区二区久久| 欧美另类一区| 日韩成人av中文字幕在线观看| 51国产日韩欧美| 日日啪夜夜爽| 亚洲性久久影院| 日韩一本色道免费dvd| 99香蕉大伊视频| 9色porny在线观看| 婷婷色av中文字幕| a级片在线免费高清观看视频| 美女大奶头黄色视频| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 亚洲图色成人| 插逼视频在线观看| 男的添女的下面高潮视频| 婷婷色麻豆天堂久久| 少妇被粗大的猛进出69影院 | 在线观看国产h片| 色婷婷av一区二区三区视频| 国产免费一级a男人的天堂| 国产成人精品久久久久久| 人成视频在线观看免费观看| 久久久久国产网址| 亚洲性久久影院| 日本91视频免费播放| 欧美成人午夜免费资源| 久久久久久人妻| 久久久久久人人人人人| 免费黄频网站在线观看国产| 亚洲人成网站在线观看播放| 大香蕉久久网| 美女国产视频在线观看| 最后的刺客免费高清国语| 久久久久久人妻| 少妇高潮的动态图| 亚洲美女黄色视频免费看| 爱豆传媒免费全集在线观看| 哪个播放器可以免费观看大片| 香蕉丝袜av| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 日韩电影二区| 久久久久久久亚洲中文字幕| 99国产综合亚洲精品| 国产麻豆69| 亚洲情色 制服丝袜| 9191精品国产免费久久| 国产男女内射视频| 日韩制服骚丝袜av| 母亲3免费完整高清在线观看 | 飞空精品影院首页| 国产精品久久久久久精品古装| 国产深夜福利视频在线观看| 精品亚洲成国产av| 精品第一国产精品| 69精品国产乱码久久久| 2022亚洲国产成人精品| 肉色欧美久久久久久久蜜桃| 99热全是精品| 一级爰片在线观看| 成人亚洲欧美一区二区av| 日本与韩国留学比较| 多毛熟女@视频| 男人爽女人下面视频在线观看| 国产高清三级在线| 大陆偷拍与自拍| 极品人妻少妇av视频| 国产精品久久久久久av不卡| 亚洲精品456在线播放app| 日韩在线高清观看一区二区三区| a级毛片在线看网站| 欧美人与性动交α欧美精品济南到 | 9热在线视频观看99| 少妇精品久久久久久久| 亚洲国产成人一精品久久久| 欧美成人午夜免费资源| 一区二区日韩欧美中文字幕 | 久久久久精品性色| 亚洲人与动物交配视频| 女性被躁到高潮视频| 国产精品久久久久久av不卡| 国产精品免费大片| 国产成人免费观看mmmm| 免费观看av网站的网址| 欧美激情 高清一区二区三区| 草草在线视频免费看| 久久女婷五月综合色啪小说| 亚洲精品一二三| 97在线人人人人妻| 少妇的逼水好多| 日本黄色日本黄色录像| videosex国产| 色婷婷av一区二区三区视频| 日本爱情动作片www.在线观看| 日本爱情动作片www.在线观看| 亚洲婷婷狠狠爱综合网| 婷婷成人精品国产| 夜夜爽夜夜爽视频| 精品少妇黑人巨大在线播放| 国产免费现黄频在线看| 亚洲,欧美精品.| 免费黄网站久久成人精品| 久久99热6这里只有精品| 国产精品久久久久成人av| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 国产成人av激情在线播放| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 亚洲av男天堂| 秋霞在线观看毛片| 成人免费观看视频高清| 精品久久国产蜜桃| 青春草国产在线视频| 国产一区二区三区综合在线观看 | 妹子高潮喷水视频| 香蕉丝袜av| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 九色成人免费人妻av| 欧美成人午夜精品| 久久久久国产网址| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 久久久久久久久久久免费av| av一本久久久久| 免费看av在线观看网站| 日本免费在线观看一区| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 丝袜喷水一区| 午夜av观看不卡| 亚洲婷婷狠狠爱综合网| 成年女人在线观看亚洲视频| 精品国产乱码久久久久久小说| 婷婷色综合www| 久久这里有精品视频免费| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 97在线人人人人妻| 中文欧美无线码| 午夜福利视频精品| 男女无遮挡免费网站观看| 国产精品国产三级专区第一集| 中文字幕av电影在线播放| 乱码一卡2卡4卡精品| 天天操日日干夜夜撸| 久久热在线av| 国产又爽黄色视频| 日韩中字成人| 国产精品99久久99久久久不卡 | 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 春色校园在线视频观看| 亚洲在久久综合| 最新中文字幕久久久久| 97人妻天天添夜夜摸| 不卡视频在线观看欧美| 一级片'在线观看视频| 韩国高清视频一区二区三区| 插逼视频在线观看| 国产综合精华液| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 丝袜在线中文字幕| 国产免费现黄频在线看| 欧美性感艳星| av在线app专区| 男的添女的下面高潮视频| 99热网站在线观看| 下体分泌物呈黄色| 免费看光身美女| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 欧美日韩av久久| 免费大片黄手机在线观看| 黑人高潮一二区| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 两个人看的免费小视频| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 亚洲精品av麻豆狂野| 丁香六月天网| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 成年人免费黄色播放视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件 | 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 婷婷色综合大香蕉| 欧美精品亚洲一区二区| 在线天堂最新版资源| 丰满迷人的少妇在线观看| 老女人水多毛片| 欧美日韩成人在线一区二区| 在现免费观看毛片| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 国产日韩欧美在线精品| 日韩伦理黄色片| 曰老女人黄片| 亚洲成人av在线免费| 免费av中文字幕在线| 丝瓜视频免费看黄片| 日韩av不卡免费在线播放| 久久午夜福利片| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 99久久人妻综合| 国产黄色免费在线视频| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 一级爰片在线观看| 亚洲伊人久久精品综合| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 亚洲欧美清纯卡通| 少妇高潮的动态图| 色视频在线一区二区三区| 成人综合一区亚洲| 七月丁香在线播放| 成年av动漫网址| 亚洲精品日韩在线中文字幕| 亚洲国产色片| av.在线天堂| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲 | 精品一区二区三卡| 七月丁香在线播放| 亚洲图色成人| 欧美bdsm另类| 国产无遮挡羞羞视频在线观看| 制服丝袜香蕉在线| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 日韩不卡一区二区三区视频在线| 久久青草综合色| 久久久久久人人人人人| 久久国产精品大桥未久av| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| 老女人水多毛片| 国产欧美亚洲国产| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 欧美人与性动交α欧美软件 | 免费观看av网站的网址| 亚洲综合色惰| 91精品伊人久久大香线蕉| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 久久国内精品自在自线图片| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 精品一区在线观看国产| 成人国产av品久久久| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久 | av不卡在线播放| 亚洲国产精品999| 午夜免费观看性视频| 男女边摸边吃奶| 国产亚洲欧美精品永久| 在线免费观看不下载黄p国产| 午夜免费观看性视频| 老司机影院毛片| 一级毛片 在线播放| 又黄又粗又硬又大视频| 欧美97在线视频| 91午夜精品亚洲一区二区三区| av在线播放精品| 蜜桃在线观看..| 欧美精品国产亚洲| 韩国精品一区二区三区 | 黄网站色视频无遮挡免费观看| 捣出白浆h1v1| 激情五月婷婷亚洲| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 久久这里有精品视频免费| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久国产电影| 欧美人与性动交α欧美精品济南到 | 我要看黄色一级片免费的| 九草在线视频观看| 久久97久久精品| 色5月婷婷丁香| 夫妻午夜视频| 午夜视频国产福利| 国国产精品蜜臀av免费| 久热这里只有精品99| 亚洲av福利一区| 高清在线视频一区二区三区| 国产一区二区在线观看av| 超碰97精品在线观看| 亚洲精品日韩在线中文字幕| 99热6这里只有精品| 伊人亚洲综合成人网| www日本在线高清视频| 亚洲成人av在线免费| 91精品国产国语对白视频| 不卡视频在线观看欧美| av在线播放精品| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| av片东京热男人的天堂| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 熟妇人妻不卡中文字幕| 精品久久久久久电影网| 十八禁高潮呻吟视频| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 欧美日韩成人在线一区二区| 欧美丝袜亚洲另类| 国产 一区精品| 三级国产精品片| 国产黄色免费在线视频| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区| 青春草国产在线视频| freevideosex欧美| 热re99久久精品国产66热6| freevideosex欧美| 欧美丝袜亚洲另类| 成人手机av| 一级黄片播放器| 精品人妻偷拍中文字幕| 51国产日韩欧美| a级毛片在线看网站| 黄色视频在线播放观看不卡| 亚洲精品视频女| 国产精品99久久99久久久不卡 | 天堂中文最新版在线下载| 最近手机中文字幕大全| 成年美女黄网站色视频大全免费| 亚洲国产色片| 男女啪啪激烈高潮av片| 人妻系列 视频| 1024视频免费在线观看| 丰满饥渴人妻一区二区三| 国产精品国产三级专区第一集| 少妇熟女欧美另类| 制服诱惑二区| 成年av动漫网址| 亚洲欧美成人综合另类久久久| 纯流量卡能插随身wifi吗| 日韩中字成人| 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 成年女人在线观看亚洲视频| 欧美精品av麻豆av| 色5月婷婷丁香| 在线观看美女被高潮喷水网站| 午夜福利,免费看| 国产综合精华液| 精品人妻熟女毛片av久久网站| 免费观看性生交大片5| 捣出白浆h1v1| 亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 中文字幕精品免费在线观看视频 | 热re99久久精品国产66热6| 日本av免费视频播放| 超碰97精品在线观看| 久久99蜜桃精品久久| 建设人人有责人人尽责人人享有的| 欧美亚洲 丝袜 人妻 在线| 国产乱来视频区| 超色免费av| 久久久精品区二区三区| 26uuu在线亚洲综合色| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 丁香六月天网| 有码 亚洲区| 久热这里只有精品99| 国产亚洲最大av| 蜜桃在线观看..| 青青草视频在线视频观看| 捣出白浆h1v1| 丰满少妇做爰视频| 在线看a的网站| 免费日韩欧美在线观看| 视频在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 午夜精品国产一区二区电影| 我的女老师完整版在线观看| 青春草视频在线免费观看| 少妇的逼好多水| 热99久久久久精品小说推荐| 免费观看性生交大片5| 日韩熟女老妇一区二区性免费视频| 好男人视频免费观看在线| 日本免费在线观看一区| 国产成人aa在线观看| 日韩av不卡免费在线播放| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| 一级毛片 在线播放| 精品一区二区三卡| 丰满乱子伦码专区| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠久久av| 99热全是精品| 日韩伦理黄色片| 亚洲少妇的诱惑av| 午夜久久久在线观看| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 国产精品一国产av| 亚洲图色成人| 高清av免费在线| 国产精品不卡视频一区二区| 中文字幕av电影在线播放| 99精国产麻豆久久婷婷| 久久久久精品性色| 中文欧美无线码| 内地一区二区视频在线| 中文精品一卡2卡3卡4更新| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 亚洲中文av在线| 高清欧美精品videossex| 亚洲精品aⅴ在线观看| 亚洲欧美日韩另类电影网站| 波多野结衣一区麻豆| 精品亚洲乱码少妇综合久久| 日韩av免费高清视频| 国产不卡av网站在线观看| 日本av手机在线免费观看| 亚洲av电影在线进入| www日本在线高清视频| freevideosex欧美| 亚洲美女搞黄在线观看| 亚洲综合色网址| 熟女av电影| 少妇猛男粗大的猛烈进出视频| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 我的女老师完整版在线观看| 国产精品国产av在线观看| 日韩成人av中文字幕在线观看| 欧美最新免费一区二区三区| 午夜激情av网站| 亚洲熟女精品中文字幕| 日日啪夜夜爽| 丰满乱子伦码专区| 伦理电影大哥的女人| 亚洲av免费高清在线观看| 免费高清在线观看视频在线观看| 老熟女久久久| 国产国拍精品亚洲av在线观看| a级片在线免费高清观看视频| 久久 成人 亚洲| 男女免费视频国产| 妹子高潮喷水视频| 国产精品国产三级国产av玫瑰| 国产午夜精品一二区理论片| 中文字幕av电影在线播放| 免费观看av网站的网址| 久久99热6这里只有精品| 日韩制服骚丝袜av| 考比视频在线观看| 午夜福利视频精品| 伊人亚洲综合成人网| 国产精品蜜桃在线观看| 美女福利国产在线| 国产有黄有色有爽视频| a级毛片黄视频| 成人黄色视频免费在线看| 日本91视频免费播放| 狂野欧美激情性xxxx在线观看| 女性生殖器流出的白浆| 人妻少妇偷人精品九色| 观看av在线不卡| 一级爰片在线观看| 观看美女的网站| 你懂的网址亚洲精品在线观看| 少妇 在线观看| 国产极品粉嫩免费观看在线| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 大话2 男鬼变身卡| 亚洲av综合色区一区| 99久久中文字幕三级久久日本| 国产午夜精品一二区理论片| 美女内射精品一级片tv| 久久免费观看电影| 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 国产男女超爽视频在线观看| 九色亚洲精品在线播放| 又大又黄又爽视频免费| 80岁老熟妇乱子伦牲交| 亚洲高清免费不卡视频| 亚洲一区二区三区欧美精品| 亚洲图色成人| 成人影院久久| 老司机影院毛片| 亚洲精品成人av观看孕妇| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美一区视频在线观看| 高清不卡的av网站| 午夜福利网站1000一区二区三区| 亚洲精品456在线播放app| 精品午夜福利在线看| 人妻一区二区av| 日韩免费高清中文字幕av| 国产极品天堂在线| 精品亚洲成a人片在线观看| 伦理电影免费视频| 99精国产麻豆久久婷婷| 天堂俺去俺来也www色官网| 亚洲av.av天堂| 免费在线观看完整版高清| av电影中文网址| 中文欧美无线码| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 午夜福利网站1000一区二区三区| 亚洲精品国产av蜜桃| 亚洲欧洲日产国产| 亚洲人成77777在线视频| 久久精品夜色国产| 精品一区二区三区四区五区乱码 | 亚洲内射少妇av| av有码第一页| 亚洲欧美日韩另类电影网站| 一级毛片 在线播放| 亚洲,欧美,日韩| 五月天丁香电影| 26uuu在线亚洲综合色| 国产av一区二区精品久久| 亚洲高清免费不卡视频| 超色免费av| 午夜影院在线不卡| 免费观看无遮挡的男女| 亚洲精品视频女| 在线观看人妻少妇| 国产综合精华液| 国产成人精品无人区| 内地一区二区视频在线| 国产高清国产精品国产三级| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 黑人猛操日本美女一级片| 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 国产国拍精品亚洲av在线观看| 性高湖久久久久久久久免费观看| 久久人人爽人人片av| 亚洲精品乱久久久久久| www.av在线官网国产| 亚洲欧美一区二区三区国产| 国产成人免费观看mmmm| 十八禁网站网址无遮挡| 国产片特级美女逼逼视频| 视频区图区小说| 欧美老熟妇乱子伦牲交| 色婷婷久久久亚洲欧美| 草草在线视频免费看| 欧美激情 高清一区二区三区| 欧美国产精品va在线观看不卡| 国产欧美日韩综合在线一区二区| 赤兔流量卡办理| 高清欧美精品videossex| 看非洲黑人一级黄片| 蜜桃在线观看..| 日本欧美国产在线视频| 亚洲欧美成人综合另类久久久| 中国美白少妇内射xxxbb| 大香蕉97超碰在线| 人人妻人人澡人人看| 亚洲国产精品999| a级毛片黄视频| av片东京热男人的天堂| 日本黄色日本黄色录像| 亚洲五月色婷婷综合| 亚洲国产欧美在线一区| 女人久久www免费人成看片| 黄网站色视频无遮挡免费观看| 欧美精品国产亚洲| 夫妻性生交免费视频一级片| 亚洲精品中文字幕在线视频| 多毛熟女@视频| 免费观看在线日韩| 男人舔女人的私密视频| 久久人人爽av亚洲精品天堂|